Ultracold neutron source based on superfluid helium for the PIK Reactor

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A high density ultracold neutron source based on superfluid helium is going to be created in NRC “Kurchatov Institute” — PNPI for scientific research in fundamental physics. The ultracold neutron source is to be installed on the Horizontal Experimental Channel 4 (HEC-4), which is the biggest of available experimental channels of PIK Reactor Complex. Thermal neutron flux density at the channel outlet is expected to be around 3 × 1010 cm–2s–1. The new ultracold neutron source at the PIK Reactor is planned to achieve a density of 2.2 × 103 cm–3 at ultracold neutron neutron guide exit and 200 cm–3 at neutron electric dipole moment spectrometer facility. The designed ultracold neutron guide system is going to support five experimental facilities alternately. At the initial stage the ultracold neutron source is planned to be equipped with already existing PNPI experimental plants: a neutron electric dipole moment spectrometer and neutron lifetime measuring facilities (with a gravitational and magnetic trap). A unique technological cryogenic complex with superfluid helium was designed and realized for this ultracold neutron source. Said complex includes equipment for achieving temperatures down to 1 K and removal of up to 60 W of heat from superfluid helium.

Толық мәтін

Рұқсат жабық

Авторлар туралы

V. Lyamkin

NRC “Kurchatov Institute” — PNPI

Хат алмасуға жауапты Автор.
Email: lyamkin_va@pnpi.nrcki.ru
Ресей, 188300, Gatchina

A. Serebrov

NRC “Kurchatov Institute” — PNPI

Email: lyamkin_va@pnpi.nrcki.ru
Ресей, 188300, Gatchina

A. Koptyuhov

NRC “Kurchatov Institute” — PNPI

Email: lyamkin_va@pnpi.nrcki.ru
Ресей, 188300, Gatchina

S. Ivanov

NRC “Kurchatov Institute” — PNPI

Email: lyamkin_va@pnpi.nrcki.ru
Ресей, 188300, Gatchina

E. Kolomenskiy

NRC “Kurchatov Institute” — PNPI

Email: lyamkin_va@pnpi.nrcki.ru
Ресей, 188300, Gatchina

A. Vasilev

NRC “Kurchatov Institute” — PNPI

Email: lyamkin_va@pnpi.nrcki.ru
Ресей, 188300, Gatchina

Әдебиет тізімі

  1. Зельдович Я.Б. // ЖЭТФ. 1959. Т. 36. С. 1952.
  2. Владимирский В.В. // ЖЭТФ. 1960. Т. 39. С. 1062.
  3. Базаров Б.А., Ежов В.Ф., Коврижных Н.А., Рябов В.Л., Андреев А.З., Глушков А.Г., Князьков В.А., Крыгин Г.Б. // Письма в ЖТФ. 2016. Т. 42. В. 13. С. 1.
  4. Serebrov A.P., Lyamkin V.A. // J. Neutron Res. 2022. V. 24. № 2. P. 145. https://www.doi.org/10.3233/JNR-220007
  5. А.с. 1178243 (СССР). Устройство для получения холодных и ультрахолодных нейтронов. / Ленинградский институт ядерной физики им. Б.П. Константинова. Алтарев И.С., Ефимов Н.А., Лобашев В.М., Серебров А.П. // 1983. С. 4.
  6. А.с. 1414197 (СССР). Устройство для получения холодных и ультрахолодных нейтронов. / Ленинградский институт ядерной физики им. Б.П. Константинова. Алтарев И.С., Ерозолимский Б.Г., Кирсанов С.Г., Кузнецов И.А., Серебров А.П. // 1986. С. 4.
  7. Алтарев И.С., Боровикина Н.В., Булкин А.П., Весна В.А., Гарусов Е.А., Григорьева Л.А., Егоров А.И., Ерозолимский Б.Г., Ерыкалов А.И., Захаров А.А., Иванов С.Н., Кезерашвили В.Я., Кирсанов С.Г., Коломенский Э.А., Коноплев К.А., Кузнецов И.А., Лобашев В.М., Маслов Н.Ф., Митюхляев В.А., Окунев И.С., Песков Б.Г., Петров Ю.В., Пикулик Р.Г., Пирожков А.Н., Порсев Г.Д., Серебров A.П., Соболев Ю.В., Тальдаев Р.Р., Шустов В.А., Щебетов А.Ф. // Письма в ЖЭТФ. 1986. T. 44. В. 6. С. 269.
  8. Steyerl A., Nagel H., Schreiber F.X., Steinhauser K.A., Gähler R., Gläser W., Ageron P., Astruc J.M., Drexel W., Gervais G., Mampe W. // Phys. Lett. A. 1986. V. 116. № 7. P. 347. https://www.doi.org/10.1016/0375-9601(86)90587-6
  9. Swenson C. // Phys. Rev. 1950. V. 79. № 4. P. 626. https://www.doi.org/10.1103/PhysRev.79.626
  10. Ахиезер A.И., Померанчук И.Я. // ЖЭТФ. 1945. Т. 16. С. 391.
  11. Golub R., Pendlebury J.M. // Phys. Lett. A. 1977. V. 62. P. 337. https://www.doi.org/10.1016/0375-9601(77)90434-0
  12. McClintock P.V. // Cryogenics. 1978. V. 18. P. 201. https://www.doi.org/10.1016/0011-2275(78)90002-4
  13. Yoshiki H., Nakai H., Gutsmiedl E. // Cryogenics. 2005. V. 45. P. 399. https://www.doi.org/10.1016/j.cryogenics.2005.01.007
  14. Zimmer O. // Europ. Phys. J. C. 2010. V. 67. P. 589. https://www.doi.org/10.1140/epjc/s10052-010-1327-1
  15. Martin J., Franke B., Hatanaka K., Kawasaki S., Picker R. // Nucl. Phys. News. 2021. V. 31. № 2. P. 19. https://www.doi.org/10.1080/10619127.2021.1881367
  16. Piegsa F.M., Fertl M., Ivanov S.N., Kreuz M., Leung K.K.H., Schmidt-Wellenburg P., Soldner T., Zimmer O. // Phys. Rev. C. 2014. V. 90. P. 015501. https://www.doi.org/10.1103/PhysRevC.90.015501
  17. Leung K.K.H., Muhrer G., Hügle T., Ito T.M., Lutz E.M., Makela M., Morris C.L., Pattie Jr. R.W., Saunders A., Young A.R. // J. Appl. Phys. 2019. V. 126. P. 224901. https://www.doi.org/10.1063/1.5109879
  18. Kawasaki S., Okamura T. // EPJ Web of Conf. 2019. V. 219. P. 10001. https://www.doi.org/10.1051/epjconf/201921910001
  19. Ковальчук М.В., Воронин В.В., Григорьев С.В., Серебров А.П. // Кристаллография. 2021. Т. 66. № 2. С. 191. https://www.doi.org/10.31857/S0023476121020065
  20. Leung K.K.H, Ivanov S., Piegsa F.M., Simson M., Zimmer O. // Phys. Rev. C. 2016. V. 93. P. 025501. https://www.doi.org/10.1103/PhysRevC.93.025501
  21. Серебров А.П., Лямкин В.А., Прудников Д.В., Кешишев К.О., Болдарев С.Т., Васильев А.В. // ЖТФ. 2017. Т. 87. Вып. 2. С. 301. https://www.doi.org/10.21883/JTF.2017.02.44142.1941
  22. Серебров А.П., Лямкин В.А., Фомин А.К., Онегин М.С. // ЖТФ. 2022. Т. 92. Вып. 6. С. 327. https://www.doi.org/10.21883/JTF.2022.06.52522.21-22
  23. Altarev I.S., Borisov Yu.V., Brandin A.B., Egorov A.I., Ezhov V.F., Ivanov S.N., Lobashov V.M., Nazarenko V.A., Porsev G.D., Ryabov V.L., Serebrov A.P., Taldaev R.R. // Nucl. Phys. A. 1980. V. 341. P. 269. https://www.doi.org/10.1016/0375-9474(80)90313-9
  24. Фомин А.К., Серебров А.П. // ЖТФ. 2022. Т. 92. Вып. 2. С. 15. https://www.doi.org/10.21883/JTF.2022.02. 52025.261-21
  25. Abel C., Afach S., Ayres N.J., Baker C.A., Ban G., Bison G., Bodek K., Bondar V., Burghoff M., Chanel E., Chowdhuri Z., Chiu P.J., Clement B., Crawford C.B., Daum M., Emmenegger S., et al // Phys. Rev. Lett. 2020. V. 124. P. 081803. https://www.doi.org/10.1103/PhysRevLett.124.081803

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Evolution of UCN density over time in different UCN sources: ● — PNPI; ▲ — others; empty figures — based on superfluid helium; figures with a dot inside — based on solid deuterium (s-D2); figures filled entirely in black — other methods of obtaining UCN. The current PNPI project of a UCN source based on superfluid helium is marked with a dot in a circle.

Жүктеу (34KB)
3. Fig. 2. Dependences of the phonon excitation energy (dispersion curves) on the wave vector in superfluid helium: for a free neutron (1) and the Landau curve (2).

Жүктеу (20KB)
4. Fig. 3. Location of the UCN source with superfluid helium at the PIK reactor. On the left – implementation on the GEK-4 channel. On the right – diagram of the UCN source: 1 – isotopically pure superfluid 4He; 2 – natural helium in a heat exchanger at a temperature of 1 K; 3 – pre-moderator (liquid D2); 4 – graphite; 5 – lead screen; 6 – biological shielding of the UCN source; 7, 8 – multilayer biological shielding of the reactor complex; 9 – GEK-4 channel.

Жүктеу (20KB)
5. Fig. 4. Schematic diagram of the location of the UCN source.

Жүктеу (51KB)
6. Fig. 5. General view of the equipment of the technological complex of the UCN source at the PIK reactor complex. A — protective casemate of the GEK-4 channel, B — zone of cryogenic equipment of the UCN source, C — zone of experimental installations on UCN beams, D — workshop for experiments on UCN beams, E — room of the UCN source operator. 1 — intra-casemate part of the UCN source, 2 — vessels with isotopically pure 4He, 3 — vacuum pumping system of helium vapor, 4 — helium and deuterium pipelines.

Жүктеу (67KB)
7. Fig. 6. Structural diagram of the UCN source (description of units further in the text).

Жүктеу (32KB)
8. Fig. 7. Progress in lowering the upper limit of the neutron electric dipole moment dn. ▼ — ORNL-Harvard, ● — ORNL-ILL, ■ — ILL-sussex-RAL, ♦ — PSI, ▲ — PNPI. Results up to 1980 were obtained using cold neutrons. The last point is a forecast of the result that will be obtained by 2025 at the new UCN source at the PIK reactor.

Жүктеу (12KB)

© Russian Academy of Sciences, 2024