Behavior Features of the Approach Curve of a Scanning Ion-Conductance Microscope

Мұқаба

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The operation of a scanning ion-conductance microscope is based on the assumption that the ion current I(z) flowing in an electrolyte solution through the narrow aperture of a probe in the form of a glass nanopipette has a maximum saturation value away from the sample under study and decreases as the probe approaches the surface. The value of the scanning ion-conductance microscope operating current is usually chosen near the saturation current I ~ 09Isat. However, in some cases there is an unusual behavior of the I(z) approach curve near the surface when the ion current increases as the nanopipette approaches the sample surface. The appearance of a peak on the I(z) curve as the nanopipette approaches the sample surface is what we call the “peak effect”. It is obvious that the peak effect can lead to a failure in the operation of the scanning ion-conductance microscope servo system and noise at the images getting by scanning ion-conductance microscope. In this work the appearance of a peak on the approach curve have been studied experimentally. Considering the nanopipette near the sample surface as a microfluidic system in the form of a T – shaped channel the I(z) dependence using the finite element method and the СOMSOL software package have been calculated.

Авторлар туралы

S. Lukashenko

IAI RAS

Хат алмасуға жауапты Автор.
Email: stas.lukashenko@mail.ru
Russia, 198095, Saint-Petersburg

O. Gorbenko

IAI RAS

Хат алмасуға жауапты Автор.
Email: gorolga64@gmail.com
Russia, 198095, Saint-Petersburg

M. Zhukov

IAI RAS

Email: aogolubok@mail.ru
Russia, 198095, Saint-Petersburg

S. Pichahchi

IAI RAS

Email: aogolubok@mail.ru
Russia, 198095, Saint-Petersburg

I. Sapozhnikov

IAI RAS

Email: aogolubok@mail.ru
Russia, 198095, Saint-Petersburg

M. Felshtyn

IAI RAS

Email: aogolubok@mail.ru
Russia, 198095, Saint-Petersburg

A. Golubok

IAI RAS

Хат алмасуға жауапты Автор.
Email: aogolubok@mail.ru
Russia, 198095, Saint-Petersburg

Әдебиет тізімі

  1. Hansma P.K., Drake B., Marti O., Gould S.A., Prater S.B. // Science 1989. V. 243. P. 641. https://www.doi.org/10.1126/science.2464851
  2. Shevchuk A.I., Frolenkov G.I., Sanchez D., James P.S., Freedman N., Lab M.J., Jones R., Klenerman D., Korchev Y.E. // Angew. Chem. Int. Ed. 2006. V. 45. P. 2212. https://www.doi.org/10.1002/anie.200503915
  3. Макарова Е.С., Яминский И.В. // Медицина и высокие технологии 2016. Т. 1. С. 39.
  4. Яминский И.В., Ахметова А.И., Советников Т.О., Тихомирова М.А., Янг Ш. // Наноиндустрия 2022. Т. 15. № 3. С. 168. https://www.doi.org/10.22184/1993-8578.2022.15.3-4.168.173
  5. Comstock D.J., Elam J.W., Pellin M.J., Hersam M.C. // Anal. Chem. 2010. V. 82. P. 1270. https://www.doi.org/10.1021/ac902224q
  6. Rodolfa K.T., Bruckbauer A., Zhou D., Korchev Y.E., Klenerman D. // Angew. Chem. Int. Ed. 2005. T. 44. P. 6854. https://www.doi.org/10.1002/anie.200502338
  7. Momotenko D., Page A., Adobes-Vidal M., Unwin P.R. // ACS Nano V. 10. P. 8871. https://www.doi.org/10.1021/acsnano.6b04761
  8. Shevchuk A.I., Hobson P., Lab M.J., Klenerman D., Krauzewicz N., Korchev Y.E. // Pflugers Arch. Eur. J. Physiol. 2008. V. 456. P. 227. https://www.doi.org/10.1007/s00424-007-0410-4
  9. Dorwling-Carter L., Aramesh M., Han H., Zambelli T., Momotenko D. // Anal. Chem. 2018. V. 90. P. 19.
  10. Thatenhorst D., Rheinlaender J., Schaffer T.E., Dietzel I.D., Happel P. // Anal. Chem. 2014. V. 86. P. 9838.
  11. Rheinlaender J., Schäffer T.E. // Anal. Chem. 2017. V. 89. P. 11875. https://www.doi.org/10.1021/acs.analchem.7b03871
  12. Wei C., Bard A.J., Feldberg S.W. // Anal. Chem. 1997. V. 69. P. 4627. https://www.doi.org/10.1021/ac970551g
  13. Chen C-C., Zhou Y., Baker L.A. // Annu. Rev. Anal. Chem. 2012. V. 5. P. 207. https://www.doi.org/10.1146/annurev-anchem-062011- 143203
  14. Chen C-C., Bake L.A. // Analyst 2011. V. 136. P. 90. https://www.doi.org/10.1039/C0An00604A
  15. Novak P. et al. // Nat. Methods 2009. V. 6. P. 279. https://www.doi.org/10.1038/nmeth.1306
  16. Sa N., Baker L.A. // J. Am. Chem. Soc. 2011. V. 133. P. 10398. https://www.doi.org/10.1021/ja203883q
  17. McKelvey K., Kinnear S.L., Perry D., Momotenko D., Unwin P.R. // J. Am. Chem. Soc. 2014. V. 136. P. 13. https://www.doi.org/10.1021/la5020412
  18. Yingfei M., Rujia L., Xiaoyue S., Dengchao W. // Chem. Electrochem. 2021. V. 8. P. 3917. https://www.doi.org/10.1002/celc.202101180
  19. Sa N., Lan W.J., Shi W., Baker L.A. // ACS Nano 2013. V. 7. №. 11. P. 272. https://www.doi.org/10.1021/nn4050485.
  20. Clarke R.W., Zhukov A., Richards O., Johnson N., Ostanin V., Klenerman D. // American Chem. Soc. 2012. https://www.doi.org/10.1021/ja3094586
  21. Zhukov M.V., Lukashenko S.Yu., Sapozhnikov I.D., Felshtyn M.L., Gorbenko O.M., Golubok A.O. // J. Phys.: Conf. Ser. 2021. V. 2086. https://www.doi.org/10.1088/1742-6596/2086/1/012074
  22. Zhang L., Biesheuve P.M., Ryzhkov I.I. // Phys. Rev. Appl. 2019. V. 12. P. 014039. https://www.doi.org/10.1103/PhysRevApplied.12.014039
  23. Bannard J.E. // J. Appl. Electrochem. 1975. V. 5. P. 43. https://www.doi.org/10.1007/BF00625958

© С.Ю. Лукашенко, О.М. Горбенко, М.В. Жуков, С.В. Пичахчи, И.Д. Сапожников, М.Л. Фельштын, А.О. Голубок, 2023