Structure and magnetic properties of multilayer nanosystems based on thin films of cobalt and chromium-group metals deposited by magnetron method
- Autores: Prokaznikov А.V.1, Paporkov V.А.2, Selyukov R.V.1, Vasilev S.V.1, Savenko О.V.2
-
Afiliações:
- NRC Kurchatov Institute
- Demidov Yaroslavl State University
- Edição: Nº 10 (2024)
- Páginas: 47-56
- Seção: Articles
- URL: https://rjeid.com/1028-0960/article/view/664732
- DOI: https://doi.org/10.31857/S1028096024100066
- EDN: https://elibrary.ru/SHMJVU
- ID: 664732
Citar
Resumo
In film nanostructures based on cobalt and buffer layers of chromium group metals formed by magnetron sputtering, features of the conductivity of buffer layers of various thicknesses and the magneto-optical response of cobalt films on tungsten were revealed. Analysis of electron microscopy data, X-ray phase analysis, and magneto-optical measurements indicates the specific structure and properties of tungsten films, the resistance of which depends on their thickness and is determined by the charge transfer between the crystallites. There is no magnetic anisotropy in nanostructures based on tungsten/cobalt layers.
Sobre autores
А. Prokaznikov
NRC Kurchatov Institute
Autor responsável pela correspondência
Email: prokaznikov@mail.ru
Valiev Institute of Physics and Technology RAS, Yaroslavl Branch
Rússia, YaroslavlV. Paporkov
Demidov Yaroslavl State University
Email: pva@uniyar.ac.ru
Rússia, Yaroslavl
R. Selyukov
NRC Kurchatov Institute
Email: prokaznikov@mail.ru
Valiev Institute of Physics and Technology RAS, Yaroslavl Branch
Rússia, YaroslavlS. Vasilev
NRC Kurchatov Institute
Email: prokaznikov@mail.ru
Valiev Institute of Physics and Technology RAS, Yaroslavl Branch
Rússia, YaroslavlО. Savenko
Demidov Yaroslavl State University
Email: prokaznikov@mail.ru
Rússia, Yaroslavl
Bibliografia
- Merlo A., Leonard G. // Materials. 2021. V. 14. № 14. P. 3823. https://doi.org/10.3390/ma14143823
- Селюков Р.В., Изюмов М.О., Наумов В.В. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2020. № 8. С. 26. https://doi.org/10.31857/S1028096020080142
- Селюков Р.В., Наумов В.В., Изюмов М.О., Васильев С.В., Мазалецкий Л.А. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2023. № 2. С. 9. https://doi.org/10.31857/S1028096023020097
- Аверкиев И.К., Колотов А.А., Бакиева О.Р. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2023. № 3. С. 46. https://doi.org/10.31857/S1028096023030020
- Vüllers F.T.N., Spolenak R. // Thin Solid Films. 2015. V. 577. P. 26. https://doi.org/10.1016/j.tsf.2015.01.030
- Wang S.X., Taratorin A.M. Magnetic Information Storage Technology. London: Academic Press, 1999.
- Rotenberg E., Freelon B.K., Koh H., Bostwick A., Rossnagel K., Schmid A., Kevan S.D. // New J. Phys. 2005. V. 7. № 1. P. 114. https://doi.org/10.1088/1367-2630/7/1/114
- Abdelhameed A.H., Angloher G., Bauer P., Bento A., Bertoldo E.,·Canonica L., Fuchs D., Hauff D., et al. // J. Low Temp. Phys. 2020. V. 199. P. 407. https://doi.org/10.1007/s10909-020-02357-x
- Blundell S. Magnetism in Condensed Matter. Oxford, NY: Oxford University Press Inc, 2001.
- Mattheiss L.F. // Phys. Rev. 1965. V. 139. № 6A. P. A1893. https://doi.org/10.1103/PhysRev.139.A1893
- Булаевский Л.Н. // УФН. 1976. Т. 120. № 2. С. 259. https://doi.org/10.3367/UFNr.0120.197610c.0259
- Bouziane K., Mamor M., Meyer F. // Appl. Phys. A. 2005. V. 81. № 1. P. 209. https://doi.org/10.1007/s00339-004-2558-5
- Enss C. Cryogenic Particle Detection. Berlin–Heidelberg–NY: Springer, 2005.
- Buchin E.Yu., Vaganova E.I., Naumov V.V., Paporkov V.A., Prokaznikov A.V. // Tech. Phys. Lett. 2009. V. 35. № 7. P. 589. https://doi.org/10.1134/S1063785009070025
- Nagakubo A., Lee H.T., Ogi H., Moruyama T., Ono T. // Appl. Phys. Lett. 2020. V. 116. P. 021901. https://doi.org/10.1063/1.5131768
- Poulopoulos P., Grammatikopoulos S., Trachylis D., Bissas G., Dragatsikas I., Velgakis M.J., Politis C. // J. Surf. Interfaces Mater. 2015. V. 3. № 1. P. 52. https://doi.org/10.1166/jsim.2015.1077
- Miller A.M., Lemon M., Choffel M.A., Rich S.R., Harvel F., Johnson D.C. // Z. Naturforsch. B. 2022. V. 77. № 4–5. P. 313. https://doi.org/10.1515/znb-2022-0020
- Basaviah S., Pollak S. R. // J. Appl. Phys. 1968. V. 39. № 12. P. 5548. https://doi.org/10.1063/1.1656012
- Morcom W.R., Worrell W.L., Sell H. G., Kaplan H. I. // Metall. Trans. 1974. V. 5. P. 155. https://doi.org/10.1007/BF02642939
- Frank F.C., Kasper J.S. // Acta Crystallogr. 1959. V. 12. P. 483. https://doi.org/10.1107/S0365110X59001499
- Lassner E., Schubert W.-D. Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds. New York: Kluwer Academic/Plenum Publishers, 1999.
- Li W., Fenton J.C., Wang Y., McComb D. W., Warburton P.A. // J. Appl. Phys. 2008. V. 104. № 9. P. 093913. https://doi.org/10.1063/1.3013444
- Nix W.D., Clemens B.M. // J. Mater. Res. 1999. V. 14. № 8. P. 4367. https://doi.org/10.1557/JMR.1999.0468
- Гантмахер В.Ф., Левинсон И.Б. Рассеяние носителей тока в металлах и полупроводниках. М.: Наука, 1984. 350 с.
- Selyukov R.V., Amirov I.I., Naumov V.V. // Russ. Microelectronics. 2022. V. 51. № 6. P. 488. https://doi.org/10.1134/S1063739722700081
- Lita E., Rosenberg D., Nam S., Miller A.J., Balzar D., Kaatz L. M., Schwall R. E. // IEEE Trans. Appl. Supercond. 2005. V. 15. № 2. P. 3528. https://doi.org/10.1109/TASC.2005.849033
- Fuchs K. // Math. Proc. Cambridge Phil. Soc. 1938. V. 34. № 1. P. 100. https://doi.org/10.1017/S0305004100019952
- Абрикосов А.А. Основы теории металлов. М.: Наука, 1987. 520 с.
- Boiko V.V., Gantmacher V.F., Gasparov V.A. // Sov. Phys. JETP. 1974. V. 38. № 3. P. 604.
- Desai P.D., Chu T.K., James H.M., Ho C.Y. // J. Phys. Chem. Ref. Data. 1984. V. 13. № 4. P. 1094. https://doi.org/10.1063/1.555723
- Lee J.-S., Cho J., You C.-Y. // J. Vac. Sci. Technol. A. 2016. V. 34. № 2. P. 021502. https://doi.org/10.1116/1.4936261
- Mayadas A.F., Shatzkes M. // Phys. Rev. 1970. V. 1. № 4. P. 1382. https://doi.org/10.1103/PhysRevB.1.1382
Arquivos suplementares
