On the Spatial Resolution of a Piezoresonance Probe Sensor with a Wolfram Needle

Cover Page

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In scanning probe microscopy, the various types of force interaction probe sensors are used. Silicon cantilevers with optical registration of their deflection under the influence of force interaction with the surface under study are the most widespread. Also “self-sensing” probe sensors based on a silicon cantilever or piezo tubes using piezoresistive or piezoresonance principle for measuring their deflection, respectively, are known. In this work a “self-sensing” piezoresonance probe sensor was investigated. The sensor is a piezo tube, at the free end of which a W needle with a length of several millimeters is fixed. It is generally assumed that the spatial resolution of SPM probe sensors is due to the radius of the sphere at the apex of the needle tip. However, in the oscillatory modes of scanning probe microscopy operation the “spot” of the probe’s contact with the sample can be blurred, impairing the spatial resolution. In this paper the amplitude-frequency characteristic of the piezo-tube – W needle system and the size of the effective contact spot of the probe with the sample were calculated by finite element method. The calculation results are compared with the experimental frequency response curve.

About the authors

O. M. Gorbenko

IAI RAS

Author for correspondence.
Email: gorolga64@gmail.com
Russia, 198095, Saint-Petersburg

M. V. Zhukov

IAI RAS

Author for correspondence.
Email: cloudjyk@yandex.ru
Russia, 198095, Saint-Petersburg

S. Yu. Lukashenko

IAI RAS

Email: aogolubok@mail.ru
Russia, 198095, Saint-Petersburg

S. V. Pichahchi

IAI RAS

Email: aogolubok@mail.ru
Russia, 198095, Saint-Petersburg

I. D. Sapozhnikov

IAI RAS

Email: aogolubok@mail.ru
Russia, 198095, Saint-Petersburg

M. L. Felshtyn

IAI RAS

Email: aogolubok@mail.ru
Russia, 198095, Saint-Petersburg

A. O. Golubok

IAI RAS

Author for correspondence.
Email: aogolubok@mail.ru
Russia, 198095, Saint-Petersburg

References

  1. Binnig G., Quate C.F., Gerber Ch. // Phys. Rev. Lett. 1986. V. 56. P. 930. https://www.doi.org/10.1103/PhysRevLett.56.930
  2. Wiesendanger R. Scanning Probe Microscopy and Spectroscopy. Cambrige University Press, 1994. 637 p.
  3. Миронов В.Л. Основы сканирующей зондовой микроскопии. Москва: Техносфера, 2009. 143 с.
  4. Sharapov V. Piezoceramic Sensors. Springer Verlag, 2011. 498 p.
  5. Giessibl F.J. // Appl. Phys. Lett. 1998. V. 73. P. 3956. https://www.doi.org/10.1063/1.122948
  6. Akiyama T., Staufer U., de Rooij N.F. // Appl. Surf. Sci. 2003. V. 210. P. 18. https://www.doi.org/10.1016/S0169-4332(02)01471-X
  7. Bausells J. // Microelectronic Engineering. 2015. V. 145. P. 9. https://www.doi.org/10.1016/j.mee.2015.02.010
  8. Васильев А.А., Керпелева С.Ю, Котов В.В., Сапожников И.Д., Голубок А.О. // Научное приборостроение. 2005. Т. 15. С. 62.
  9. Быков А.В. // Известия ЮФУ. Технические науки. 2015. Т. 9. № 170. С. 145.
  10. Малохатко С.В., Гусев Е.Ю., Быков А.В., Житяева Ю.Ю. // Известия ЮФУ, Технические науки. 2017. Т. 6. С. 234.
  11. Yang, M.-H. // Master Thesis, Department of Mechanical and Mechatronic Engineering, National Taiwan Ocean University: Keelung. 2007.
  12. Гальченко В.Я., Филимонов С.А., Батраченко А.В., Филимонова Н.В. // Журн. нано- и электронной физики. 2018. Т. 10. С. 04025-1.
  13. Барфут Дж. Полярные диэлектрики и их применение. М.: Мир, 1981. 526 с.
  14. Яффе Б., Кук У., Яффе Г. Пьезоэлектрическая керамика. М.: Мир, 1974. 288 с.
  15. Ransley J. Пьезоэлектрические материалы: разбор стандартов. Блог COMSOL https://www.comsol.ru/ blogs/piezoelectric-materials-understanding-standards/. Cited 02 October 2014.
  16. Черепанцев А.С., Салтыков В.А. // Приборы и техника эксперимента. 2020. Т. 1. С. 130.
  17. COMSOL Documentation. https://doc.comsol.com. Cited 02 October 2014.
  18. Meirovitch L. Fundamentals of Vibration. McGraw-Hill Education, 2003. 806 p.
  19. Wilson E.L. Static and Dynamic Analysis of Structures (4th ed.). Berkeley Computers and Structures Inc, 2002. 423 p.
  20. Соннерлинд Х. Теория и механизмы демпфирования в механике конструкций. Блог COMSOL https://www.comsol.ru/blogs/damping-in-structural-dynamics-theory-and-sources/. Сited 14 March 2019.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (153KB)
3.

Download (129KB)
4.

Download (558KB)
5.

Download (197KB)
6.

Download (359KB)
7.

Download (248KB)

Copyright (c) 2023 О.М. Горбенко, М.В. Жуков, С.Ю. Лукашенко, С.В. Пичахчи, И.Д. Сапожников, М.Л. Фельштын, А.О. Голубок