Compatibility of strains and the three-fold differentiability of the displacement field
- Autores: Georgievskii D.V.1,2,3
- 
							Afiliações: 
							- Lomonosov Moscow State University
- Ishlinsky Institute for Problems in Mechanics RAS
- Moscow Center of Fundamental and Applied Mathematics
 
- Edição: Nº 2 (2024)
- Páginas: 244-248
- Seção: Articles
- URL: https://rjeid.com/1026-3519/article/view/673096
- DOI: https://doi.org/10.31857/S1026351924020112
- EDN: https://elibrary.ru/uvtjmp
- ID: 673096
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The problem of the necessary class of smoothness of solutions to quasi-static problems of deformable solid mechanics in terms of displacements was discussed. It is shown that in order for the equations of compatibility of deformations to become identities when displacements are substituted in them, the existence of some third mixed derivatives of displacements is required. A counterexample for a linearly elastic compressible isotropic elastic medium was given. In this counterexample, the displacement field, being a doubly differentiable solution to the boundary value problem for the system of Lame equations in the entire domain, is not a solution to the displacement problem at all points in this domain.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
D. Georgievskii
Lomonosov Moscow State University; Ishlinsky Institute for Problems in Mechanics RAS; Moscow Center of Fundamental and Applied Mathematics
							Autor responsável pela correspondência
							Email: georgiev@mech.math.msu.su
				                					                																			                												                	Rússia, 							Moscow; Moscow; Moscow						
Bibliografia
- Nowacki W. Teoria sprezystosci. Warszawa: PWN, 1973.
- Georgievskii D.V. High-rank deformators and the Kroener incompatibility tensors with two-domensional structure of indices // Doklady Physics. 2019. V. 64. № 6. P. 256–257.
- Pobedria B.E. Numerical Methods in Theory of Elasticity and Plasticity. Moscow: Moscow Univ., 1995. [in Russian]
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
