Фенольный сегмент метаболома корня Scutellaria lateriflora
- Авторы: Елькин Ю.Н.1, Маняхин А.Ю.2,3,4
-
Учреждения:
- Тихоокеанский институт биоорганической химии им. Г. Б. Елякова ДВО РАН
- Федеральный научный центр биоразнообразия наземной биоты Восточной Азии ДВО РАН
- Владивостокский государственный университет
- Ningbo Еxcare Рharm Inc.
- Выпуск: № 1 (2025)
- Страницы: 24-34
- Раздел: БИОХИМИЯ
- URL: https://rjeid.com/1026-3470/article/view/682147
- DOI: https://doi.org/10.31857/S1026347025010033
- ID: 682147
Цитировать
Полный текст
Аннотация
В статье представлены результаты изучения метаболитов корней и корневых волосков S. lateriflora методом жидкостной хромато-масс-спектрометрии. Установлено, что основная доля полифенольных метаболитов корней и корневых волосков приходится на фенилэтаноиды и флавоноиды, содержащие до двух и до четырех метоксильных групп соответственно. Среди флавоноидов вогонин, 6-ОМе вогонин и их гликозиды наиболее обильны в корнях растения. Фенилэтаноиды представлены серией кофеил-рутинозидов дигидротирозола, с паритетным флавоноидам содержанием. Кроме полифенолов, в корневой системе обнаружено значительное содержание сахарозы.
Ключевые слова
Полный текст

Об авторах
Ю. Н. Елькин
Тихоокеанский институт биоорганической химии им. Г. Б. Елякова ДВО РАН
Email: mau84@mail.ru
Россия, пр. 100-летия Владивостока, 159, Владивосток, 690022
А. Ю. Маняхин
Федеральный научный центр биоразнообразия наземной биоты Восточной Азии ДВО РАН; Владивостокский государственный университет; Ningbo Еxcare Рharm Inc.
Автор, ответственный за переписку.
Email: mau84@mail.ru
Россия, пр. 100-летия Владивостока, 159/1, Владивосток, 690022; ул. Гоголя, 41, Владивосток, 690014; Улица Си-цзы-Шань, 172, Чуньсяо, Бэйлунь, Нинбо, 315830 Китай
Список литературы
- Bolton J. L., Dunlap T. L., Dietz B. M. Formation and biological targets of botanical o-quinones // Food Chem. Tox. 2018. V. 120. P. 700–707. https://doi.org/10.1016/j.fct.2018.07.050
- Chen S. Genetic and phylogenetic analysis of the complete genome for the herbal medicine plant of Scutellaria baicalensis from China // Mit. DNA B. 2019. V. 4. P. 1683–1685. https://doi.org/10.1080/23802359.2019.1605859
- Costine B., Zhang M. Z., Chhajed S., Pearson B., Chen S. X., Nadakuduti S. S. Exploring native Scutellaria species provides insight into differential accumulation of flavones with medicinal properties // Sci. Rep. 2022. V. 12. P. 13201. https://doi.org/10.1038/s41598-022-17586-367-1.
- Cui M. Y., Lu A. R., Li J. X., Liu J., Fang Y. M., Pei T. L., Zhong X., Wei Y. K., Kong Y., Qiu W. Q., Hu Y. H., Yang J., Chen X. Y., Martin C., Zhao Q. Two types of O-methyltransferases are involved in biosynthesis of anticancer methoxylated 4`-deoxyflavones in Scutellaria baicalensis Georgi // Plant Biotech. J. 2021. V. 20. P. 1–14. https://doi.org/10.1111/pbi.13700
- Elkin Y. N., Kulesh N. I., Shishmarev V. M., Kargin V. M., Manyakhin A. Y. Scutellaria baicalensis: the end of the flavone biosynthesis pathway // Acta Biol. Crac. bot. 2022. V. 64. P. 39–43. https://doi.org/10.24425/abcsb.2021.136704
- Elkin Y. N., Kulesh N. I., Stepanova A. Y., Solovieva A. I., Kargin V. M., Manyakhin A. Y. Methylated flavones of the hairy root culture Scutellaria baicalensis // J. Plant Phys. 2018. V. 231. P. 277–280. https://doi.org/10.1016/j.jplph.2018.10.009
- Elkin Y. N., Stepanova A. Y., Pshenichnyuk S. A., Manyakhin A. Y. Root specific methylated flavones protect of Scutellaria baicalensis // Khim. Rast. Syr’ja. 2023. № 4. P. 241–248. https://doi.org/10.14258/jcprm.20230411877
- Islam M. N., Downey F., Ng C. K. Y. Comparative analysis of bioactive phytochemicals from Scutellaria baicalensis, Scutellaria lateriflora, Scutellaria racemosa, Scutellaria tomentosa and Scutellaria wrightii by LC-DAD-MS // Metabolomics. 2011. V. 7. P. 446–453. https://doi.org/10.1007/s11306-010-0269-9
- Kim J. K., Kim Y. S., Kim Y., Uddin M. R., Kim Y. B., Kim H. H., Park S. U. Comparative analysis of flavonoids and polar metabolites from hairy roots of Scutellaria baicalensis and Scutellaria lateriflora // World J. Microbio. Biotech. 2014. V. 30. P. 887–892. https://doi.org/10.1007/s11274-013-1498-7
- Li J., Wang Y. H., Smillie T. J., Khan I. A. Identification of phenolic compounds from Scutellaria lateriflora by liquid chromatography with ultraviolet photodiode array and electrospray ionization tandem mass spectrometry // J. Biomed. Anal. 2012. V. 63. P. 120–127. https://doi.org/10.1016/j.jpba.2012.01.027
- Li L., Kitazawa H., Zhang X., Zhang L., Sun Y., Wang X., Liu Y., Guo S., Yu S. Melatonin retards senescence via regulation of the electron leakage of postharvest white mushroom (Agaricus bisporus) // Food Chem. 2021. V. 340. P. 127833. https://doi.org/10.1016/j.foodchem.2020.127833
- Modelli A., Pshenichnyuk S. A. Gas-phase dissociative electron attachment to flavonoids and possible similarities to their metabolic pathways // Phys. Chem. Chem. Phys. 2013. V. 15. P. 1588–1600. https://doi.org/10.1039/C2CP43379F
- Pei T., Yan M., Huang Y., Wei Y., Martin C., Zhao Q. Specific flavonoids and their biosynthetic pathway in Scutellaria baicalensis // Front. Plant Sci. 2022. V. 13. P. 866282. https://doi.org/10.3389/fpls.2022.866282
- Pshenichnyuk S. A., Elkin Y. N., Kulesh N. I., Lazneva E. F., Komolov A. S. Low–energy electron interaction with retusin extracted from Maackia amurensis: towards a molecular mechanism of the biological activity of flavonoids // Phys. Chem. Chem. Phys. 2015. V. 17. P. 16805–16812. https://doi.org/10.1039/C5CP02890F
- Qiao X., Li R., Song W., Miao W. J., Liu J., Chen H. B., Guo D. A., Ye M. A targeted strategy to analyze untargeted mass spectral data: Rapid chemical profiling of Scutellaria baicalensis using ultra-high performance liquid chromatography coupled with hybrid quadrupole orbitrap mass spectrometry and key ion filtering // J. Chrom. A. 2016. V. 1441. P. 83–95. https://doi.org/10.1016/j.chroma.2016.02.079
- Sherman S. H., Nirmal J. Current status of research on medicinal plant Scutellaria lateriflora: A review // J. Med. Act. Plants. 2022. V. 11. P. 22–38. https://doi.org/10.7275/shxv-wb39
- Stepanova A. Y., Solov’eva A. I., Malunova M. V., Salamaikina S. A., Panov Y. M., Lelishentsev A. A. Hairy roots Scutellaria spp. (Lamiaceae) as promising producers of antiviral flavones // Molecules. 2021. V. 26. P. 3927. https://doi.org/10.3390/molecules26133927
- Takagi S., Yamaki M., Inoue K. Studies on the water-soluble constituents of the roots of Scutellaria baicalensis Georgi (Wogon) // Yakugaku Zasshi. 1980. V. 100. Iss. 12. P. 1220–1224. https://doi.org/10.1248/yakushi1947.100.12_1220
- Tsai P. J., Huang W. C., Hsieh M. C., Sung P. J., Kuo Y. H., Wu W. H. Flavones isolated from Scutellariae radix suppress propionibacterium acnes-induced cytokine production in vitro and in vivo // Molecules. 2016. V. 21. P. 15. https://doi.org/10.3390/molecules21010015
- Wang Z. L., Wang S., Kuang Y., Hu Z. M., Qiao X., Ye M. A comprehensive review on phytochemistry, pharmacology, and flavonoid biosynthesis of Scutellaria baicalensis // Pharm. Biol. 2018. V. 56. P. 465–484. https://doi.org/10.1080/13880209.2018.1492620
- Wilczańska-Barska A., Królicka A., Głód D., Majdan M., Kawiak A., Krauze-Baranowska M. Enhanced accumulation of secondary metabolites in hairy root cultures of Scutellaria lateriflora following elicitation // Biotech. Lett. 2012. V. 34. P. 1757–1763. https://doi.org/10.1007/s10529-012-0963-y
- Xia H., Attygalle A. B. Effect of electrospray ionization source conditions on the tautomer distribution of deprotonated p-hydroxybenzoic acid in the gas phase // Anal. Chem. 2016.V. 88. P. 6035–6043. https://doi.org/10.1021/acs.analchem.6b01230
- Zhao Q., Cui M. Y., Levsh O., Yang D., Liu J., Li J., Hill L., Yang L., Hu Y., Weng J. K., Chen X. Y., Martin C. Two CYP82D enzymes function as flavone hydroxylases in the biosynthesis of root-specific 4’-deoxyflavones in Scutellaria baicalensis // Mol. Plant. 2018. V. 11. P. 135–148. http://dx.doi.org/10.1016/j.molp.2017.08.009
- Zhao Q., Zhang Y., Wang G., Hill L., Weng J. K., Chen X. Y., Xue H., Martin C. A specialized flavone biosynthetic pathway has evolved in the medicinal plant, Scutellaria baicalensis // Sci. Adv. 2016. V. 2. P. e1501780. https://doi.org/10.1126/sciadv.1501780
- Zhang Z., Lian X. Y., Li S., Stringer J. L. Characterization of chemical ingredients and anticonvulsant activity of American skullcap (Scutellaria lateriflora) // Phytomed. 2009. V. 16. P. 485–493. https://doi.org/10.1016/j.phymed.2008.07.011
Дополнительные файлы
