Methemoglobin reductase activity of nuclear erythrocytes of the sea ruff (Scorpaena porcus, Linnaeus, 1758) under normal and oxidative stress conditions (in vitro experiments)

Cover Page

Cite item

Full Text

Abstract

A method for evaluating the methemoglobin reductase activity of nuclear erythrocytes of teleost fish is proposed. The work was performed on a bottom marine species (Scorpaena porcus, Linnaeus, 1758). In an in vitro experiment, the erythrocyte suspension of this type was weighed in solutions with different concentrations of NaNO2, after washing from this compound, the process of methemoglobin (MetHb) reduction was studied for 150 min. The functional state of hemoglobin was judged by the results of spectral analysis. The study of the kinetics of MetHb reduction showed that the dependence was well described by the equation of an exponential function with a coefficient of determination (R2) greater than 0.9. The nature of the dependence remained at different levels of oxidative stress. This made it possible to calculate the velocity constant of the first order k (25 oC). In this species, it was 5.75–6.45 (10–3) min–1, which slightly exceeded the known values for mammals, and was close to the data obtained for other species of bony fish. It was found that the MetHb-reductase activity of the nuclear erythrocytes of the sea ruff increased with a rise in the oxidative load. At a concentration of 6.0 mM NaNO2, it was 1.73 ± 0.21 µM MetHb min–1 g–1 Hb. It is assumed that this is due to the process of deoxygenation of hemoglobin.

Full Text

Restricted Access

About the authors

A. A. Soldatov

Federal Research Center “A.O. Kovalevsky Institute of Biology of the South Seas of the Russian Academy of Sciences”; Sevastopol State University

Author for correspondence.
Email: alekssoldatov@yandex.ru
Russian Federation, Nakhimov av., 2, Sevastopol, 299011; Universitetskaya str., 33, Sevastopol, 299053

N. T. Shalagina

Federal Research Center “A.O. Kovalevsky Institute of Biology of the South Seas of the Russian Academy of Sciences”

Email: alekssoldatov@yandex.ru
Russian Federation, Nakhimov av., 2, Sevastopol, 299011

V. N. Rychkova

Federal Research Center “A.O. Kovalevsky Institute of Biology of the South Seas of the Russian Academy of Sciences”

Email: alekssoldatov@yandex.ru
Russian Federation, Nakhimov av., 2, Sevastopol, 299011

T. A. Kukhareva

Federal Research Center “A.O. Kovalevsky Institute of Biology of the South Seas of the Russian Academy of Sciences”

Email: alekssoldatov@yandex.ru
Russian Federation, Nakhimov av., 2, Sevastopol, 299011

References

  1. Andreyeva A. Y., Soldatov A. A., Mukhanov V. S. The influence of acute hypoxia on the functional and morphological state of the black scorpionfish red blood cells // In Vitro Cellular & Developmental Biology – Animal. 2017. V. 53. P. 312–319. doi: 10.1007/s11626-016-0111-4
  2. Benesch R. E., Benesch R., Yung S. Equations for the spectrophotometric analysis of hemoglobin mixtures // Anal. Biochem. 1973. V. 55. P. 245–248. doi: 10.1016/0003-2697(73)90309-6
  3. Blair B., Barlow C., Martin E., Schumaker R., McIntyre J. Methemoglobin determination by multi-component analysis in coho salmon (Oncorhynchus kisutch) possessing unstable hemoglobin // Methods. 2020. V. 7. № 100836. doi.org/10.1016/j.mex.2020.100836
  4. Gam L. T. H., Jensen F. B., Damsgaard C., Huong D. T. T., Phuong N. T., Bayley M. Extreme nitrite tolerance in the clown knifefish Chitala ornate is linked to up-regulation of methaemoglobin reductase activity. Aquat. Toxicol. 2017. V. 187. P. 9–17. doi: 10.1016/j.aquatox.2017.03.013
  5. Gladwin M. T., Kim-Shapiro D. B. The functional nitrite reductase activity of the hemiglobins. Blood. 2008. V. 112. P. 2636–2647. doi: 10.1182/blood-2008-01-115261
  6. Graham M. S., Fletcher G. L. High concentrations of methemoglobin in five species of temperate marine teleosts // J. Exp. Zool. 1986. V. 239. P. 139–142. doi: 10.1002/jez.1402390117
  7. Jensen B., Fago A. A Novel Possible Role for Met Hemoglobin as Carrier of Hydrogen Sulfide in the Blood // Antioxidants & Redox Signaling. 2020. V. 32. № 4. P. 258–265. doi: 10.1089/ars.2019.7877
  8. Jensen F. B., Nielsen K. Methemoglobin reductase activity in intact fish red blood cells // Comp. Biochem. Physiol. Part A: Mol. & Integ. Physiol. 2018. V. 216. P. 14–19. doi.org/10.1016/j.cbpa.2017.11.004
  9. Maestre R., Pazos M., Medina I. Involvement of methemoglobin (MetHb) formation and hemin loss in the pro-oxidant activity of fish hemoglobins // J. Agric. Food Chem. 2009. V. 57. P. 7013–21. doi: 10.1021/jf9006664
  10. Mansouri A., Lurie A. A. Concise review: methemoglobinemia. Am. J. Hematol. 1993. V. 42. P. 7–12. doi: 10.1002/ajh.2830420104
  11. Powell M. D., Perry S. F. Respiratory and acid-base pathophysiology of hydrogen peroxide in rainbow trout (Oncorhynchus mykiss) // Aquat. Toxicol. 1997. V. 37. P. 99–112. doi.org/10.1016/S0166-445X(96)00826-0
  12. Power G. G., Bragg S. L., Oshiro B. T., Dejam A., Hunter C. J., Blood A. B. A novel method of measuring reduction of nitrite-induced methemoglobin applied to fetal and adult blood of humans and sheep // J. Appl. Physiol. 2007. V. 103. P. 1359–1365. doi: 10.1152/japplphysiol.00443.2007
  13. Sajiki J., Takahashi K. In Vitro Formation of Methemoglobin by Lipophilic Fractions in Fishes and the Causative Substance // Eisei-Kagaku. 1991. V. 37. P. 467–472. doi: 10.1248/JHS1956.37.467
  14. Saleh M. C., McConkey S. NADH-dependent cytochrome b5 reductase and NADPH methemoglobin reductase activity in the erythrocytes of Oncorhynchus mykiss // Fish Physiol. Biochem. 2012. V. 38. P. 1807–1813. doi: 10.1007/s10695-012-9677-2
  15. Schechter A. N. Hemoglobin research and the origins of molecular medicine // Blood. 2008. V. 112. P. 3927–3938. doi: 10.1182/blood-2008-04-078188
  16. Soldatov A. A. Physiological Aspects of Effects of Urethane Anesthesia on the Organism of Marine Fishes // Hydrobiol. J. 2005. V. 41. P. 113–126. doi: 10.1615/HydrobJ.v41.i1.130
  17. Soldatov A. A. Cases of a Spontaneous Increase in Methemoglobin Concentration in Fish Blood during the Annual Cycle // Inland Water Biology. 2023. V. 16. P. 769–775. doi.org/10.1134/S1995082923040181
  18. Sztiller M., Puchala M., Kowalczyk A. et al. The influence of ferrylhemoglobin and methemoglobin on the human erythrocyte membrane // Red. Rep. 2006. V. 11. P. 263–271. doi: 10.1179/135100006X155012
  19. Tiihonen K., Nikinmaa M. Short communication substrate utilization by carp (Cyprinus carpio) erythrocytes // J. Exp. Biol. 1991. V. 161. № 1. P. 509–514. doi: 10.1242/jeb.161.1.509
  20. Welbourn E. M., Wilson M. T., Yusof A. et al. The mechanism of formation, structure and physiological relevance of covalent hemoglobin attachment to the erythrocyte membrane // Free Rad. Biol. Med. 2017. V. 103. P. 95–106. doi.org/10.1016/j.freeradbiomed.2016.12.024
  21. Woo S. P.S., Liu W., Au D. W.T. et al. Antioxidant responses and lipid peroxidation in gills and erythrocytes of fish (Rhabdosarga sarba) upon exposure to Chattonella marina and hydrogen peroxide: Implications on the cause of fish kills // J. Exp. Mar. Biol. Ecol. 2006. V. 336. P. 230–241. doi: 10.1016/j.jembe.2006.05.013

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Spectral characteristics of black scorpionfish hemolysates under normal conditions and under oxidative stress (a – at 1.5 mM NaNO2; b – at 3.0 mM NaNO2; c – at 6.0 mM NaNO2; green spectrum – before adding NaNO2; red spectrum – immediately after adding NaNO2; blue spectrum – 150 min after washing away NaNO2)

Download (29KB)
3. Fig. 2. An example of the kinetic curve of MetHb recovery after the removal of oxidative stress (NaNO2) (a – normal scale, b – logarithmic scale)

Download (22KB)
4. Fig. 3. Kinetic characteristics of the MetHb reduction process after removal of oxidative stress of varying intensity (1 – at 1.5 mM NaNO2; 2 – at 3.0 mM NaNO2; 3 – at 6.0 mM NaNO2)

Download (23KB)
5. Fig. 4. The reaction rate constant (k) of the first order (1 – at 1.5 mM NaNO2; 2 – at 3.0 mM NaNO2; 3 – at 6.0 mM NaNO2)

Download (12KB)
6. Fig. 5. MetHb-reductase activity of nucleated erythrocytes of the black scorpionfish under oxidative stress of different intensity (1 – at 1.5 mM NaNO2; 2 – at 3.0 mM NaNO2; 3 – at 6.0 mM NaNO2)

Download (16KB)

Copyright (c) 2025 Russian Academy of Sciences