Round splashes of a viscous liquid

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The splashes of a highly viscous fluid (glycerol) resulting from its pulsed displacement from a gap between two rapidly approaching disks are studied. It is found that, outside the disks, the splash has the form of a thin film bounded by an annular rim. A physical model of the splash is formulated, and analytical solutions describing its trajectory are given. The calculation results are compared with experimental data. The effects of fluid viscosity, surface tension, and film breakdown are analyzed. It is shown that the key influence on the splash development scenarios is exerted by surface tension of the film connecting the rim to the disks.

Texto integral

Acesso é fechado

Sobre autores

A. Bazilevskii

Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: baz@ipmnet.ru
Rússia, Moscow

A. Rozhkov

Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences

Email: rozhkov@ipmnet.ru
Rússia, Moscow

Bibliografia

  1. Yarin A.L., Roisman I.V., Tropea C. Collision Phenomena in Liquids and Solids, Cambridge University Press, 2017.
  2. Yarin A.L. Drop impact dynamics: splashing, spreading, receding, bouncing // Annu. Rev. Fluid Mech. 2006. V. 38. P. 159–192.
  3. Базилевский А.В., Рожков А.Н. Удар микроструи по микроволокну // Изв. РАН. МЖГ. 2023. № 5. С. 110–118.
  4. Базилевский А.В., Рожков А.Н. Всплеск упругой жидкости – реологический тест полимерных растворов // Высокомолекулярные соединения. Серия А. 2018. Т. 60. № 3. C. 235–248.
  5. Bazilevsky A.V., Rozhkov A.N. Letter: Dome-shaped splashes generated by the impact of a small disk on a sessile water drop // Phys. Fluids. 2018. V. 30. P. 101702.
  6. Bazilevsky A.V., Rozhkov A.N. Impact of a small disk on a sessile water drop // Phys. Fluids. 2020. V. 32. P. 087101.
  7. Rozhkov A., Prunet-Foch В., Vignes-Adler М. Impact of water drops on small targets // Phys. Fluids. 2002. V. 14. P. 3485.
  8. Reynolds O. Papers on Mechanical and Physical Aspects // Phil. Trans. Roy. Soc. 1886. V. 177. P. 157–234.
  9. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика/ Уч. пособ. В 10 т. Т. 6. Гидродинамика. М.: Наука. Гл. ред. физ-мат. лит., 1986. 736 с.
  10. Eggers J., Villermaux E. Physics of liquid jets // Reports on Progress in Physics. 2008. V. 71. 79p.
  11. Ентов В.М., Кестенбойм Х.С., Рожков А.Н., Шарчевич Л.И. О динамической форме равновесия пленки вязкой и упруговязкой жидкости // Изв. АН СССР. МЖГ. 1980. № 2. С. 9–18.
  12. Rayleigh L. On the instability of jets // Proc. London Math. Soc. 1879. V. 10. P. 4–13.
  13. Taylor G.I., Michael D.H. On making holes in a sheet of fluid // J. Fluid Mech. 1973. V. 58. № 4. P. 625–639.
  14. Taylor G.I. The dynamics of thin sheets of fluid. III. Disintegration of fluid sheets // Proc. Roy. Soc. Lond. A. 1959. V. A253. № 1274. P. 313–321.
  15. Taylor G.I. Instability of jets, threads, and sheets of viscous fluid // Proc. 12th Int. Congr. Appl. Mech. (ICTAM 1968), Springer, 1969. P. 382–388.
  16. Ribe N.M., Habibi M., Bonn D. Liquid Rope Coiling // Annu. Rev. Fluid Mech. 2012. V. 44. P. 249–266.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Method (a) and experimental setup (b): 1 – cylindrical guide; 2 – impact disk; 3 – drop; 4 – fixed disk; 5 – video camera; 6 – LED illuminator. The graph in (a) is a calculation using formula (1.1) for r2= 2.5 mm, u0 = 2.1 m/s, h0 = 1 mm and 2 mm.

Baixar (185KB)
3. Fig. 2. Glycerol splashes: (a) – u0=1.4 m/s (H=100 mm), m0=29 mg, (b) – u0=2.1 m/s (H=225 mm), m0=17.6 mg, (c) – u0=2.1 m/s, m0=22 mg. Arrow 1 shows the film, arrow 2 – the disturbance growing on the edge jet. The time elapsed since the impact disk stopped is indicated.

Baixar (1MB)
4. Fig. 3. Diameter of glycerol splashes as a function of time: 1 – u0=1.4 m/s, m0=29 mg, without film destruction; 2 – u0=2.1 m/s, m0=17.6 mg, without film destruction; 3 – u0=2.1 m/s, m0=22 mg, with film destruction. The arrow shows the moment of the beginning of film rupture. Time is counted from the moment of closing of the gap (stopping of the impact disk).

Baixar (75KB)
5. Fig. 4. To the calculation of the pulsed ejection of liquid from the gap.

Baixar (73KB)
6. Fig. 5. Results of calculations using formulas (2.6) and (2.9): (a) – outflow velocity v and total velocity V, (b) – kinetic energy E of the splash as functions of the gap between the disks. Inserts: gap between the disks (a) and excess pressure in the center of the disks (b) as functions of time. Parameters used: µ = 0, 0.1, 1.35 Pa s, u0 = = 2.1 m/s, h0 = 1.5 mm, r2 = 2.5 mm, r1=1 mm, M = 6 g.

Baixar (310KB)
7. Fig. 6. Splash diagram.

Baixar (193KB)
8. Fig. 7. Calculations of splash trajectories: 1 – experiment with glycerol (points, H=100 mm, m0=29 mg) and the corresponding calculation (line for V0=1.43 m/s, m0=29 mg, r0=2.97 mm, µ=1.35 Pa⋅s); 2 – experiment with glycerol (H=225 mm, m0=17.6 mg) and the corresponding calculation (V0=2.07 m/s, m0=17.6 mg, r0=3.3 mm, µ=1.35 Pa⋅s); 3 – calculation of a low-viscosity splash for V0=2.07 m/s, m0=17.6 mg, r0=3.3 mm, µ=0.01 Pa⋅s; 4 – analytical solution of inviscid splash (2.15) for V0=2.07 m/s, m0=17.6 mg, r0=3.3 mm; 5 – calculation of viscous splash without film for V0=2.07 m/s, m0=17.6 mg, r0=3.3 mm, µ=1.35 Pa⋅s.

Baixar (134KB)
9. Fig. 8. The appearance and expansion of holes in the glycerol film (a). Distortion of the splash shape during its collapse with the destruction of the internal film (b) and without its destruction (c). The impact velocity u0=1.4 m/s. The time interval between frames is 0.5 ms (a, b) and 1 ms (c).

Baixar (935KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024