Bifurcations and stability of phase transition fronts in geothermal reservoirs

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The stability of a layer of water above a layer of vapor, separated by a boiling or condensation surface, in a geothermal reservoir is considered. In an unperturbed state in lowpermeability rocks, there is one interface, which can be either a water boiling surface or a vapor condensation surface. At relatively large permeability values, two new solutions can be formed, corresponding to other positions of the interface. The conditions for the existence and merging of stationary solutions depending on the parameters of the physical system are studied numerically. The stability of stationary positions of interfaces was studied using the normal mode method. It was found that the transition to instability precedes bifurcations of solutions and can occur both at finite and infinite wave numbers.

全文:

受限制的访问

作者简介

G. Tsypkin

Ishlinsky Institute for Problems in Mechanics RAS

编辑信件的主要联系方式.
Email: tsypkin@ipmnet.ru
俄罗斯联邦, Moscow

参考

  1. White D.E., Muffler L.J.P., Truesdell A.H. Vapor-dominated hydrothermal systems compared with hot water systems // Econ. Geol. 1971. V. 66. P. 75–97.
  2. Grant M.A. Geothermal reservoir modeling // Geothermics. 1983. V. 12. No 4. P. 251–263.
  3. Igwe Ch.I. Geothermal Energy: A Review // Int. J. Eng. Res. and Technol. 2021. V. 10 No 3. P. 655–661.
  4. Olasolo P., Juarez M.C., Morales M.P., et al. Enhanced geothermal systems (EGS: A review) // Renew. Sustain. Energy Rev. 2016. V.56. P. 133-–144.
  5. Chandrasekhar S. Hydrodynamic and Hydromagnetic Stability. Oxford University Press. New York. 1967.
  6. Schubert G., Straus J.M. Gravitational stability of water over steam in vapor-dominated geothermal system // J. Geoph. Res. 1980. V. 85. No B11. P. 6505–6512.
  7. Tsypkin G., Il’ichev A. Gravitational stability of the interface in water over steam geothermal reservoirs // Transp. Porous Media. 2004. V. 55. No 2. P. 183–199.
  8. Ильичев А.Т., Цыпкин Г.Г. Влияние конвективного переноса энергии на устойчивость слоя воды над слоем пара в геотермальных системах // Докл. РАН. 2011. Т. 437. № 4. С. 480–484.
  9. Ramesh P.S., Torrance K.E. Stability of boiling in porous media // Int. J. Heat Mass Transfer. 1990. V. 33. No 9. P. 1895–1908.
  10. McGuiness M.J. Steady solution selection and existence in geothermal heat pipes – I. The convective case // Int. J. Heat Mass Transfer. 1996. V. 39. No 2. P. 259–274.
  11. Pestov I. Stability of vapour–liquid counterflow in porous media // J. Fluid Mech. 1998. V. 364. P. 273–295.
  12. Amili P., Yortsos Y.C. Stability of heat pipes in vapor–dominated systems // Int. J. Heat Mass Transfer. 2004. V. 47. No 6–7. P. 1233–1246.
  13. O’Sullivan M.J. Geothermal reservoir simulation // Int. J. Energy Res., 1985. V. 9. P. 319–332.
  14. Lide D.R. CRC Handbook of Chemistry and Physics (82nd edn). 2001. CRC.
  15. Соболева Е.Б. Влияние конечных возмущений плотности на развитие неустойчивости Рэлея–Тейлора в пористой среде // ТМФ. 2022. Т. 211. № 2. С. 333–346.
  16. Il’ichev A.T., Tsypkin G.G. Stability of the interface in a porous medium in the framework of Darcy’s and Brinkman’s approximations // Transp. Porous Media. 2023. V.148. P. 317–333.
  17. Malkovsky V.I., Magri F. Thermal convection of temperature-dependent viscous fluids within three-dimensional faulted geothermal systems: Estimation from linear and numerical analyses // Water Res. Research. 2016. V.52. P. 2855–2867.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Positions of the phase transition surface depending on the pressure PL in the lower highly permeable layer. L = 400 m, ϕ = 0.2, k = 1.84⋅10–17 m2, TL = 540 K, P0 = 1 MPa: 1–2 – T0 = 440, 450 K. P = PL/PM, PM = 1 MPa.

下载 (52KB)
3. Fig. 2. Bifurcations of the basic solution. Positions of the interface depending on the pressure P0 in the upper highly permeable layer. L = 40 m, ϕ = 0.2, k = 10–16 m2, T0 = 450 K, TL = 468 K, PL = 1.175 MPa. P = P0/PM, PM = 1 MPa.

下载 (55KB)
4. Fig. 3. Stable (solid line) and unstable (dashed line) positions of the phase transition surface. T0 = 450 K. Other parameters as in Fig. 1.

下载 (52KB)
5. Fig. 4. Transition to instability with decreasing pressure in the lower permeable layer. Rate of growth (dashed line) and decay (solid line) at PL = 2.99 and 3 MPa, respectively. Parameters as in Fig. 1.

下载 (59KB)
6. Fig. 5. Stable (solid lines) and unstable (dashed lines) solutions. Parameters as in Fig. 2.

下载 (44KB)
7. Fig. 6. Transition to instability of the first solution with increasing pressure P0 at the upper boundary. The solid line is the stable state at P0 = 0.998464 MPa and the dotted line is the unstable state at P0 = 0.998463 MPa. The remaining parameters are as in Fig. 2.

下载 (50KB)
8. Fig. 7. Transition to instability of the third solution with decreasing pressure P0 at the upper boundary. Dispersion curves 1–3: P0 = 1.067, 1.06, 1.053 MPa. Other parameters as in Fig. 2

下载 (66KB)

版权所有 © Russian Academy of Sciences, 2024