The Chemoprotective Potentials of Alpha-lipoic Acid against Cisplatin-induced Ototoxicity: A Systematic Review

  • Авторлар: Zabibah R.1, Gupta J.2, Iqbal M.3, Iswanto A.4, Farhood B.5, Lateef Al-Awsi G.6, Arshed U.7, Arif A.7, Ramírez-Coronel A.8, Alhassan M.9, Mustafa Y.10, Rahman F.11
  • Мекемелер:
    1. Medical Laboratory Technology Department, College of Medical Technology,, The Islamic University
    2. Institute of Pharmaceutical Research, GLA University
    3. Department of Clinical Pharmacy, College of Pharmacy,, Prince Sattam Bin Abdulaziz University
    4. Public Health Department, Faculty of Health Science,, University of Pembangunan Nasional Veteran Jakartaatan
    5. Department of Medical Physics and Radiology, Faculty of Paramedical Sciences,, Kashan University of Medical Sciences
    6. College of Science, University of Al-Qadisiyah
    7. , Gujranwala medical college
    8. Epidemiology and Biostatistics Research Group, CES University
    9. Division of Advanced Nanomaterial Technologiesentific Research Center, Scientific Research Center, Al-Ayen University
    10. Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul
    11. Public Health Department, Universitas Muhammadiyah Kalimantan Timur
  • Шығарылым: Том 31, № 23 (2024)
  • Беттер: 3588-3603
  • Бөлім: Anti-Infectives and Infectious Diseases
  • URL: https://rjeid.com/0929-8673/article/view/645223
  • DOI: https://doi.org/10.2174/0929867330666230509162513
  • ID: 645223

Дәйексөз келтіру

Толық мәтін

Аннотация

Purpose:Ototoxicity is one of the major adverse effects of cisplatin therapy which restrict its clinical application. Alpha-lipoic acid administration may mitigate cisplatin-induced ototoxicity. In the present study, we reviewed the protective potentials of alpha-lipoic acid against the cisplatin-mediated ototoxic adverse effects.

Methods:Based on the PRISMA guideline, we performed a systematic search for the identification of all relevant studies in various electronic databases up to June 2022. According to the inclusion and exclusion criteria, the obtained articles (n=59) were screened and 13 eligible articles were finally included in the present study.

Results:The findings of in-vitro experiments showed that cisplatin treatment significantly reduced the auditory cell viability in comparison with the control group; nevertheless, the alpha-lipoic acid co-administration protected the cells against the reduction of cell viability induced by cisplatin treatment. Moreover, the in-vivo results of the auditory brainstem response (ABR) and distortion product otoacoustic emission (DPOAE) tests revealed a decrease in DPOAE and an increase in ABR threshold of cisplatin-injected animals; however, it was shown that alpha-lipoic acid co-treatment had an opposite pattern on the evaluated parameters. Other findings demonstrated that cisplatin treatment could significantly induce the biochemical and histopathological alterations in inner ear cells/tissue; in contrast, alpha-lipoic acid co-treatment ameliorated the cisplatin-mediated biochemical and histological changes.

Conclusion:The findings of audiometry, biochemical parameters, and histological evaluation showed that alpha-lipoic acid co-administration alleviates the cisplatin-induced ototoxicity. The protective role of alpha-lipoic acid against the cisplatin-induced ototoxicity can be due to different mechanisms of anti-oxidant, anti-apoptotic, anti-inflammatory activities, and regulation of cell cycle progression.

Авторлар туралы

Rahman Zabibah

Medical Laboratory Technology Department, College of Medical Technology,, The Islamic University

Email: info@benthamscience.net

Jitendra Gupta

Institute of Pharmaceutical Research, GLA University

Email: info@benthamscience.net

Muhammad Iqbal

Department of Clinical Pharmacy, College of Pharmacy,, Prince Sattam Bin Abdulaziz University

Email: info@benthamscience.net

Acim Iswanto

Public Health Department, Faculty of Health Science,, University of Pembangunan Nasional Veteran Jakartaatan

Email: info@benthamscience.net

Bagher Farhood

Department of Medical Physics and Radiology, Faculty of Paramedical Sciences,, Kashan University of Medical Sciences

Хат алмасуға жауапты Автор.
Email: info@benthamscience.net

Ghaidaa Lateef Al-Awsi

College of Science, University of Al-Qadisiyah

Email: info@benthamscience.net

Uzma Arshed

, Gujranwala medical college

Email: info@benthamscience.net

Anam Arif

, Gujranwala medical college

Email: info@benthamscience.net

Andrés Ramírez-Coronel

Epidemiology and Biostatistics Research Group, CES University

Email: info@benthamscience.net

Muataz Alhassan

Division of Advanced Nanomaterial Technologiesentific Research Center, Scientific Research Center, Al-Ayen University

Email: info@benthamscience.net

Yasser Mustafa

Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul

Email: info@benthamscience.net

Ferry Rahman

Public Health Department, Universitas Muhammadiyah Kalimantan Timur

Email: info@benthamscience.net

Әдебиет тізімі

  1. Mortezaee, K.; Narmani, A.; Salehi, M.; Bagheri, H.; Farhood, B.; Haghi-Aminjan, H.; Najafi, M. Synergic effects of nanoparticles-mediated hyperthermia in radiotherapy/chemotherapy of cancer. Life Sci., 2021, 269, 119020. doi: 10.1016/j.lfs.2021.119020 PMID: 33450258
  2. Sheikholeslami, S.; Khodaverdian, S.; Dorri-Giv, M.; Mohammad Hosseini, S.; Souri, S.; Abedi-Firouzjah, R.; Zamani, H.; Dastranj, L.; Farhood, B. The radioprotective effects of alpha-lipoic acid on radiotherapy-induced toxicities: A systematic review. Int. Immunopharmacol., 2021, 96, 107741. doi: 10.1016/j.intimp.2021.107741 PMID: 33989970
  3. Sheikholeslami, S.; Aryafar, T.; Abedi-Firouzjah, R.; Banaei, A.; Dorri-Giv, M.; Zamani, H.; Ataei, G.; Majdaeen, M.; Farhood, B. The role of melatonin on radiation-induced pneumonitis and lung fibrosis: A systematic review. Life Sci., 2021, 281, 119721. doi: 10.1016/j.lfs.2021.119721 PMID: 34146555
  4. Farhood, B.; Bahreyni Toossi, M.T.; Soleymanifard, S.; Mohebbi, S.; Davenport, D. Assessment of accuracy of out of field dose calculations by TiGRT treatment planning system in radiotherapy. J. Cancer Res. Ther., 2018, 14(3), 634-639. doi: 10.4103/0973-1482.176423 PMID: 29893331
  5. Abdi Goushbolagh, N.; Abedi Firouzjah, R.; Ebrahimnejad Gorji, K.; Khosravanipour, M.; Moradi, S.; Banaei, A. Estimation of radiation dose-reduction factor for cerium oxide nanoparticles in MRC-5 human lung fibroblastic cells and MCF-7 breast-cancer cells. Artificial Cells, Nanomed., and Biotechnology., 2018, 46(sup3), S1215-s25.
  6. Abdi Goushbolagh, N.; Keshavarz, M.; Zare, M.H.; Bahreyni-Toosi, M.H.; Kargar, M.; Farhood, B. Photosensitizer effects of MWCNTs-COOH particles on CT26 fibroblastic cells exposed to laser irradiation. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1326-1334. doi: 10.1080/21691401.2019.1593997 PMID: 30964347
  7. Najafi, M.; Hooshangi Shayesteh, M.R.; Mortezaee, K.; Farhood, B.; Haghi-Aminjan, H. The role of melatonin on doxorubicin-induced cardiotoxicity: A systematic review. Life Sci., 2020, 241, 117173. doi: 10.1016/j.lfs.2019.117173 PMID: 31843530
  8. Nygren, P. What is cancer chemotherapy? Acta Oncol., 2001, 40(2-3), 166-174. doi: 10.1080/02841860151116204 PMID: 11441929
  9. Hariyanti, T.; Margiana, R.; Al-Gazally, M.E.; Patra, I.; Lateef Al-Awsi, G.R.; Hameed, N.M.; Kayumova, D.; Ansari, M.J.; Torres-Criollo, L.M.; Mustafa, Y.F.; Abedi- Firouzjah, R.; Farhood, B. The protective effects of silymarin on the reproductive toxicity: A comprehensive review. Curr. Med. Chem., 2023, 30(39), 4421-4449. PMID: 36717999
  10. Haghi-Aminjan, H.; Farhood, B.; Rahimifard, M.; Didari, T.; Baeeri, M.; Hassani, S.; Hosseini, R.; Abdollahi, M. The protective role of melatonin in chemotherapy-induced nephrotoxicity: A systematic review of non-clinical studies. Expert Opin. Drug Metab. Toxicol., 2018, 14(9), 937-950. doi: 10.1080/17425255.2018.1513492 PMID: 30118646
  11. Haghi-Aminjan, H.; Asghari, M.H.; Farhood, B.; Rahimifard, M.; Hashemi Goradel, N.; Abdollahi, M. The role of melatonin on chemotherapy-induced reproductive toxicity. J. Pharm. Pharmacol., 2018, 70(3), 291-306. doi: 10.1111/jphp.12855 PMID: 29168173
  12. Hu, L.F.; Lan, H.R.; Li, X.M.; Jin, K.T. A systematic review of the potential chemoprotective effects of resveratrol on doxorubicin-induced cardiotoxicity: Focus on the antioxidant, antiapoptotic, and anti-inflammatory activities. Oxid. Med. Cell. Longev., 2021, 2021, 1-19. doi: 10.1155/2021/2951697 PMID: 34471463
  13. Moutabian, H.; Ghahramani-Asl, R.; Mortezazadeh, T.; Laripour, R.; Narmani, A.; Zamani, H.; Ataei, G.; Bagheri, H.; Farhood, B.; Sathyapalan, T.; Sahebkar, A. The cardioprotective effects of nano-curcumin against doxorubicin-induced cardiotoxicity: A systematic review. Biofactors, 2022, 48(3), 597-610. doi: 10.1002/biof.1823 PMID: 35080781
  14. Wang, D.; Lippard, S.J. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov., 2005, 4(4), 307-320. doi: 10.1038/nrd1691 PMID: 15789122
  15. Cvitkovic, E. Cumulative toxicities from cisplatin therapy and current cytoprotective measures. Cancer Treat. Rev., 1998, 24(4), 265-281. doi: 10.1016/S0305-7372(98)90061-5 PMID: 9805507
  16. Hanigan, M.H.; Devarajan, P. Cisplatin nephrotoxicity: Molecular mechanisms. Cancer Ther., 2003, 1, 47-61. PMID: 18185852
  17. Santos, N.; Ferreira, R.S.; Santos, A.C.D. Overview of cisplatin-induced neurotoxicity and ototoxicity, and the protective agents. Food Chem. Toxicol., 2020, 136, 111079. doi: 10.1016/j.fct.2019.111079
  18. van den Berg, J.H.; Beijnen, J.H.; Balm, A.J.M.; Schellens, J.H.M. Future opportunities in preventing cisplatin induced ototoxicity. Cancer Treat. Rev., 2006, 32(5), 390-397. doi: 10.1016/j.ctrv.2006.04.011 PMID: 16781082
  19. Waissbluth, S.; Peleva, E.; Daniel, S.J. Platinum-induced ototoxicity: A review of prevailing ototoxicity criteria. Eur Arch Otorhinolaryngol., 2017, 274(3), 1187-1196.
  20. Schaefer, S.D.; Post, J.D.; Close, L.G.; Wright, C.G. Ototoxicity of low- and moderate-dose cisplatin. Cancer, 1985, 56(8), 1934-1939. doi: 10.1002/1097-0142(19851015)56:83.0.CO;2-F PMID: 4040801
  21. Sheth, S.; Mukherjea, D.; Rybak, L.P.; Ramkumar, V. Mechanisms of cisplatin-induced ototoxicity and otoprotection. Front. Cell. Neurosci., 2017, 11, 338. doi: 10.3389/fncel.2017.00338 PMID: 29163050
  22. Gentilin, E.; Simoni, E.; Candito, M.; Cazzador, D.; Astolfi, L. Cisplatin-induced ototoxicity: Updates on molecular targets. Trends Mol. Med., 2019, 25(12), 1123-1132. doi: 10.1016/j.molmed.2019.08.002 PMID: 31473143
  23. Haghighatdoost, F.; Hariri, M. The effect of alpha-lipoic acid on inflammatory mediators: A systematic review and meta-analysis on randomized clinical trials. Eur. J. Pharmacol., 2019, 849, 115-123. doi: 10.1016/j.ejphar.2019.01.065 PMID: 30721699
  24. Bilska, A.; Włodek, L. Lipoic acid-the drug of the future? Pharmacol. Rep., 2005, 57(5), 570-577. PMID: 16227639
  25. Shay, K.P.; Moreau, R.F.; Smith, E.J.; Smith, A.R.; Hagen, T.M. Alpha-lipoic acid as a dietary supplement: Molecular mechanisms and therapeutic potential. Biochim. Biophys. Acta, Gen. Subj., 2009, 1790(10), 1149-1160. doi: 10.1016/j.bbagen.2009.07.026 PMID: 19664690
  26. Mirtaheri, E.; Pourghassem Gargari, B.; Kolahi, S.; Dehghan, P.; Asghari-Jafarabadi, M.; Hajalilou, M.; Shakiba Novin, Z.; Mesgari Abbasi, M. Effects of alpha-lipoic acid supplementation on inflammatory biomarkers and matrix metalloproteinase-3 in rheumatoid arthritis patients. J. Am. Coll. Nutr., 2015, 34(4), 310-317. doi: 10.1080/07315724.2014.910740 PMID: 25751300
  27. Malińska, D.; Winiarska, K.; Metabolizmu, Z.R. Kwas liponowy–charakterystyka i zastosowanie w terapii* Lipoic acid: Characteristics and therapeutic application. Postepy Hig. Med. Dosw., 2005, 59, 535-543.
  28. Martins, V.D.; Manfredini, V.; Peralba, M.C.; Benfato, M.S. Alpha-lipoic acid modifies oxidative stress parameters in sickle cell trait subjects and sickle cell patients. Clin.. Nutr., 2009, 28(2), 192-7. doi: 10.1016/j.clnu.2009.01.017
  29. Ergür, B.U.; Çilaker Mıcılı, S.; Yilmaz, O.; Akokay, P. The effects of α-lipoic acid on aortic injury and hypertension in the rat remnant kidney (5/6 nephrectomy) model. Anatol. J. Cardiol., 2015, 15(16), 443-449. doi: 10.5152/akd.2014.5483 PMID: 25430409
  30. Salinthone, S.; Yadav, V.; Schillace, R.V.; Bourdette, D.N.; Carr, D.W. Lipoic acid attenuates inflammation via cAMP and protein kinase A signaling. PLoS One, 2010, 5(9), e13058. doi: 10.1371/journal.pone.0013058 PMID: 20927401
  31. Ambrosi, N.; Guerrieri, D.; Caro, F.; Sanchez, F.; Haeublein, G.; Casadei, D.; Incardona, C.; Chuluyan, E. Alpha lipoic acid: A therapeutic strategy that tend to limit the action of free radicals in transplantation. Int. J. Mol. Sci., 2018, 19(1), 102. doi: 10.3390/ijms19010102 PMID: 29300330
  32. Holmquist, L.; Stuchbury, G.; Berbaum, K.; Muscat, S.; Young, S.; Hager, K.; Engel, J.; Münch, G. Lipoic acid as a novel treatment for Alzheimer’s disease and related dementias. Pharmacol. Ther., 2007, 113(1), 154-164. doi: 10.1016/j.pharmthera.2006.07.001 PMID: 16989905
  33. Şehirli, Ö.; Şener, E.; Çetinel, Ş.; Yüksel, M.; Gedik, N.; Şener, G. α-lipoic acid protects against renal ischaemia–reperfusion injury in rats. Clin. Exp. Pharmacol. Physiol., 2008, 35(3), 249-255. doi: 10.1111/j.1440-1681.2007.04810.x PMID: 17941895
  34. Ghibu, S.; Richard, C.; Vergely, C.; Zeller, M.; Cottin, Y.; Rochette, L. Antioxidant properties of an endogenous thiol: Alpha-lipoic acid, useful in the prevention of cardiovascular diseases. J. Cardiovasc. Pharmacol., 2009, 54(5), 391-398. doi: 10.1097/FJC.0b013e3181be7554 PMID: 19998523
  35. Golbidi, S.; Badran, M.; Laher, I. Diabetes and alpha lipoic Acid. Front. Pharmacol., 2011, 2, 69. doi: 10.3389/fphar.2011.00069 PMID: 22125537
  36. Baur, A.; Harrer, T.; Peukert, M.; Jahn, G.; Kalden, J.R.; Fleckenstein, B. Alpha-lipoic acid is an effective inhibitor of human immuno-deficiency virus (HIV-1) replication. Klin. Wochenschr., 1991, 69(15), 722-724. doi: 10.1007/BF01649442 PMID: 1724477
  37. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Annals Internal Med., 2009, 151(4), 264-9.
  38. Kim, J.; Cho, H.J.; Sagong, B.; Kim, S.J.; Lee, J.T.; So, H.S.; Lee, I.K.; Kim, U.K.; Lee, K.Y.; Choo, Y.S. Alpha-lipoic acid protects against cisplatin-induced ototoxicity via the regulation of MAPKs and proinflammatory cytokines. Biochem. Biophys. Res. Commun., 2014, 449(2), 183-189. doi: 10.1016/j.bbrc.2014.04.118 PMID: 24796665
  39. Koo, D.Y.; Lee, S.H.; Lee, S.; Chang, J.; Jung, H.H.; Im, G.J. Comparison of the effects of lipoic acid and glutathione against cisplatin-induced ototoxicity in auditory cells. Int. J. Pediatr. Otorhinolaryngol., 2016, 91, 30-36. doi: 10.1016/j.ijporl.2016.10.008 PMID: 27863638
  40. Kim, K.H.; Lee, B.; Kim, Y.R.; Kim, M.A.; Ryu, N.; Jung, D.J.; Kim, U.K.; Baek, J.I.; Lee, K.Y. Evaluating protective and therapeutic effects of alpha-lipoic acid on cisplatin-induced ototoxicity. Cell Death Dis., 2018, 9(8), 827. doi: 10.1038/s41419-018-0888-z PMID: 30068942
  41. Lee, J.; Jung, S.Y.; Yang, K.J.; Kim, Y.; Lee, D.; Lee, M.H.; Kim, D.K. α-Lipoic acid prevents against cisplatin cytotoxicity via activation of the NRF2/HO-1 antioxidant pathway. PLoS One, 2019, 14(12), e0226769. doi: 10.1371/journal.pone.0226769 PMID: 31877176
  42. Curcio, M.; Cirillo, G.; Amato, R.; Guidotti, L.; Amantea, D.; De Luca, M.; Nicoletta, F.P.; Iemma, F.; Garcia-Gil, M. Encapsulation of alpha-lipoic acid in functional hybrid liposomes: Promising tool for the reduction of cisplatin-induced ototoxicity. Pharmaceuticals, 2022, 15(4), 394. doi: 10.3390/ph15040394 PMID: 35455391
  43. Rybak, LP; Husain, K; Whitworth, C; Somani, SM Dose dependent protection by lipoic acid against cisplatin-induced ototoxicity in rats: antioxidant defense system. Toxicol Sci., 1999, 47(2), 195-202. doi: 10.1093/toxsci/47.2.195
  44. Rybak, L.P.; Somani, S. Ototoxicity. Amelioration by protective agents. Ann. N. Y. Acad. Sci., 1999, 884, 143-151. PMID: 10842591
  45. Rybak, L.P.; Whitworth, C.; Somani, S. Application of antioxidants and other agents to prevent cisplatin ototoxicity. Laryngoscope, 1999, 109(11), 1740-1744. doi: 10.1097/00005537-199911000-00003 PMID: 10569399
  46. Mukherjea, D.; Jajoo, S.; Whitworth, C.; Bunch, J.R.; Turner, J.G.; Rybak, L.P.; Ramkumar, V. Short interfering RNA against transient receptor potential vanilloid 1 attenuates cisplatin-induced hearing loss in the rat. J. Neurosci., 2008, 28(49), 13056-13065. doi: 10.1523/JNEUROSCI.1307-08.2008 PMID: 19052196
  47. Altintoprak, N.; Aydin, S.; Sanli, A.; Bilmez, Z.E.; Kösemihal, E. The protective effect of intratympanic alpha lipoic acid on cisplatin-induced ototoxicity on rats. J. Int. Adv. Otol., 2015, 10(3), 217-221. doi: 10.5152/iao.2014.369
  48. Ozkul, Y.; Songu, M.; Basoglu, M.S.; Ozturkcan, S.; Katilmis, H. Evaluation of the protective effect of α-lipoic acid on cisplatin ototoxicity using distortion-product otoacoustic emission measurements: An experimental animal study. J. Craniofac. Surg., 2014, 25(4), 1515-1518. doi: 10.1097/SCS.0000000000000881 PMID: 24905944
  49. Mukherjea, D.; Whitworth, C.A.; Nandish, S.; Dunaway, G.A.; Rybak, L.P.; Ramkumar, V. Expression of the kidney injury molecule 1 in the rat cochlea and induction by cisplatin. Neuroscience, 2006, 139(2), 733-740. doi: 10.1016/j.neuroscience.2005.12.044 PMID: 16464536
  50. Aydin, S.; Demir, M.; Oguztüzün, S.; Altintoprak, N.; Bilmez, E.; Gül, A.; Kocdogan, A.K. GSTP1 levels in cisplatin-induced rat cochlea after alpha lipoic acid and oxytocin treatment. Indian J. Otology, 2017, 23(4), 237. doi: 10.4103/indianjotol.INDIANJOTOL_137_16
  51. Florea, A.M.; Büsselberg, D. Cisplatin as an anti-tumor drug: Cellular mechanisms of activity, drug resistance and induced side effects. Cancers, 2011, 3(1), 1351-1371. doi: 10.3390/cancers3011351 PMID: 24212665
  52. Rezvanfar, M.A.; Rezvanfar, M.A.; Shahverdi, A.R.; Ahmadi, A.; Baeeri, M.; Mohammadirad, A.; Abdollahi, M. Protection of cisplatin-induced spermatotoxicity, DNA damage and chromatin abnormality by selenium nano-particles. Toxicol. Appl. Pharmacol., 2013, 266(3), 356-365. doi: 10.1016/j.taap.2012.11.025 PMID: 23260366
  53. Galluzzi, L.; Senovilla, L.; Vitale, I.; Michels, J.; Martins, I.; Kepp, O.; Castedo, M.; Kroemer, G. Molecular mechanisms of cisplatin resistance. Oncogene, 2012, 31(15), 1869-1883. doi: 10.1038/onc.2011.384 PMID: 21892204
  54. Yasui, K; Takashima, H; Miyagawa, M; Miyazawa, K; Ochiai, T; Mukaisho, K Selective accumulation of platinum and formation of platinum-DNA adducts in hepatocellular carcinoma after transarterial chemoembolization with miriplatin. Hepato. Res., 2013, 43(10), 1093-9. doi: 10.1111/hepr.12059
  55. Brown, A.; Kumar, S.; Tchounwou, P.B. Cisplatin-based chemotherapy of human cancers. J. Cancer Sci. Ther., 2019, 11(4), 97. PMID: 32148661
  56. Dasari, S.; Bernard Tchounwou, P. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol., 2014, 740, 364-378. doi: 10.1016/j.ejphar.2014.07.025 PMID: 25058905
  57. Kumar, S.; Tchounwou, P.B. Molecular mechanisms of cisplatin cytotoxicity in acute promyelocytic leukemia cells. Oncotarget, 2015, 6(38), 40734-40746. doi: 10.18632/oncotarget.5754 PMID: 26486083
  58. Cepeda, V.; Fuertes, M.A.; Castilla, J.; Alonso, C.; Quevedo, C.; Pérez, J.M. Biochemical mechanisms of cisplatin cytotoxicity. Anticancer. Agents Med. Chem., 2007, 7(1), 3-18. doi: 10.2174/187152007779314044 PMID: 17266502
  59. Fuertes, M.; Castilla, J.; Alonso, C.; Pérez, J. Cisplatin biochemical mechanism of action: from cytotoxicity to induction of cell death through interconnections between apoptotic and necrotic pathways. Curr. Med. Chem., 2003, 10(3), 257-266. doi: 10.2174/0929867033368484 PMID: 12570712
  60. McKeage, M.J. Comparative adverse effect profiles of platinum drugs. Drug Saf., 1995, 13(4), 228-244. doi: 10.2165/00002018-199513040-00003 PMID: 8573296
  61. Huang, S.; Xu, A.; Sun, X.; Shang, W.; Zhou, B.; Xie, Y.; Zhao, M.; Li, P.; Lu, P.; Liu, T.; Han, F. Otoprotective effects of α-lipoic acid on A/J mice with age-related hearing loss. Otol. Neurotol., 2020, 41(6), e648-e654. doi: 10.1097/MAO.0000000000002643
  62. Han, J.S.; Kim, Y.L.; Yu, H.J.; Park, J.M.; Kim, Y.; Park, S.Y. Safety and efficacy of intratympanic alpha-lipoic acid injection in a mouse model of noise-induced hearing loss. Antioxidants, 2022, 11(8) doi: 10.3390/antiox11081423
  63. Conlon, B.J.; Aran, J.M.; Erre, J.P.; Smith, D.W. Attenuation of aminoglycoside-induced cochlear damage with the metabolic antioxidant α-lipoic acid. Hear. Res., 1999, 128(1-2), 40-44. doi: 10.1016/S0378-5955(98)00195-6 PMID: 10082281
  64. Wang, A.; Hou, N.; Bao, D.; Liu, S.; Xu, T. Mechanism of alpha-lipoic acid in attenuating kanamycin-induced ototoxicity. Neural Regen. Res., 2012, 7(35), 2793-2800. PMID: 25317129
  65. Husain, K.; Whitworth, C.; Somani, S.M.; Rybak, L.P. Partial protection by lipoic acid against carboplantin-induced ototoxicity in rats. Biomed. Environ. Sci., 2005, 18(3), 198-206. PMID: 16131024
  66. Xu, A.; Shang, W.; Wang, Y.; Sun, X.; Zhou, B.; Xie, Y.; Xu, X.; Liu, T.; Han, F. ALA protects against ERS-mediated apoptosis in a cochlear cell model with low citrate synthase expression. Arch. Biochem. Biophys., 2020, 688, 108402. doi: 10.1016/j.abb.2020.108402 PMID: 32418909
  67. Astolfi, L.; Ghiselli, S.; Guaran, V.; Chicca, M.; Simoni, E.; Olivetto, E.; Lelli, G.; Martini, A. Correlation of adverse effects of cisplatin administration in patients affected by solid tumours: A retrospective evaluation. Oncol. Rep., 2013, 29(4), 1285-1292. doi: 10.3892/or.2013.2279 PMID: 23404427
  68. Borse, V.; Al Aameri, R.F.H.; Sheehan, K.; Sheth, S.; Kaur, T.; Mukherjea, D.; Tupal, S.; Lowy, M.; Ghosh, S.; Dhukhwa, A.; Bhatta, P.; Rybak, L.P.; Ramkumar, V. Epigallocatechin-3-gallate, a prototypic chemopreventative agent for protection against cisplatin-based ototoxicity. Cell Death Dis., 2017, 8(7), e2921. doi: 10.1038/cddis.2017.314 PMID: 28703809
  69. Mukherjea, D.; Jajoo, S.; Kaur, T.; Sheehan, K.E.; Ramkumar, V.; Rybak, L.P. Transtympanic administration of short interfering (si)RNA for the NOX3 isoform of NADPH oxidase protects against cisplatin-induced hearing loss in the rat. Antioxid. Redox Signal., 2010, 13(5), 589-598. doi: 10.1089/ars.2010.3110 PMID: 20214492
  70. Kim, H.J.; Lee, J.H.; Kim, S.J.; Oh, G.S.; Moon, H.D.; Kwon, K.B.; Park, C.; Park, B.H.; Lee, H.K.; Chung, S.Y.; Park, R.; So, H.S. Roles of NADPH oxidases in cisplatin-induced reactive oxygen species generation and ototoxicity. J. Neurosci., 2010, 30(11), 3933-3946. doi: 10.1523/JNEUROSCI.6054-09.2010 PMID: 20237264
  71. Bánfi, B.; Malgrange, B.; Knisz, J.; Steger, K.; Dubois- Dauphin, M.; Krause, K.H. NOX3, a superoxide-generating NADPH oxidase of the inner ear. J. Biol. Chem., 2004, 279(44), 46065-46072. doi: 10.1074/jbc.M403046200 PMID: 15326186
  72. Juarez, J.C.; Manuia, M.; Burnett, M.E.; Betancourt, O.; Boivin, B.; Shaw, D.E.; Tonks, N.K.; Mazar, A.P.; Doñate, F. Superoxide dismutase 1 (SOD1) is essential for H2O2 -mediated oxidation and inactivation of phosphatases in growth factor signaling. Proc. Natl. Acad. Sci. USA, 2008, 105(20), 7147-7152. doi: 10.1073/pnas.0709451105 PMID: 18480265
  73. Ma, W.; Hu, J.; Cheng, Y.; Wang, J.; Zhang, X.; Xu, M. Ginkgolide B protects against cisplatin-induced ototoxicity: Enhancement of Akt–Nrf2–HO-1 signaling and reduction of NADPH oxidase. Cancer Chemother. Pharmacol., 2015, 75(5), 949-959. doi: 10.1007/s00280-015-2716-9 PMID: 25749575
  74. El-Beshbishy, H.A.; Bahashwan, S.A.; Aly, H.A.A.; Fakher, H.A. Abrogation of cisplatin-induced nephrotoxicity in mice by alpha lipoic acid through ameliorating oxidative stress and enhancing gene expression of antioxidant enzymes. Eur. J. Pharmacol., 2011, 668(1-2), 278-284. doi: 10.1016/j.ejphar.2011.06.051 PMID: 21763304
  75. Werida, R.H.; Elshafiey, R.A.; Ghoneim, A.; Elzawawy, S.; Mostafa, T.M. Role of alpha-lipoic acid in counteracting paclitaxel- and doxorubicin-induced toxicities: a randomized controlled trial in breast cancer patients. Supportive Care Cancer, 2022, 30(9), 7281-7292.
  76. He, J.; Yu, J.J.; Xu, Q.; Wang, L.; Zheng, J.Z.; Liu, L.Z.; Jiang, B.H. Downregulation of ATG14 by EGR1-MIR152 sensitizes ovarian cancer cells to cisplatin-induced apoptosis by inhibiting cyto-protective autophagy. Autophagy, 2015, 11(2), 373-384. doi: 10.1080/15548627.2015.1009781 PMID: 25650716
  77. Najafi, M.; Mortezaee, K.; Rahimifard, M.; Farhood, B.; Haghi-Aminjan, H. The role of curcumin/curcuminoids during gastric cancer chemotherapy: A systematic review of non-clinical study. Life Sci., 2020, 257, 118051. doi: 10.1016/j.lfs.2020.118051 PMID: 32634426
  78. Mortezaee, K.; Najafi, M.; Farhood, B.; Ahmadi, A.; Potes, Y.; Shabeeb, D.; Musa, A.E. Modulation of apoptosis by melatonin for improving cancer treatment efficiency: An updated review. Life Sci., 2019, 228, 228-241. doi: 10.1016/j.lfs.2019.05.009 PMID: 31077716
  79. Sogwagwa, N.; Davison, G.; Khan, S.; Solomon, W. P9. Correlation of radiation induced apoptosis with Bax and Bcl-2 protein expression. Physica Medica. European J. Med. Phy., 2016, 32, 163.
  80. Huerta, S.; Gao, X.; Dineen, S.; Kapur, P.; Saha, D.; Meyer, J. Role of p53, Bax, p21, and DNA-PKcs in radiation sensitivity of HCT-116 cells and xenografts. Surgery, 2013, 154(2), 143-151. doi: 10.1016/j.surg.2013.03.012 PMID: 23889944
  81. Werner, L.R.; Huang, S.; Francis, D.M.; Armstrong, E.A.; Ma, F.; Li, C.; Iyer, G.; Canon, J.; Harari, P.M. Small molecule inhibition of mdm2–p53 interaction augments radiation response in human tumors. Mol. Cancer Ther., 2015, 14(9), 1994-2003. doi: 10.1158/1535-7163.MCT-14-1056-T PMID: 26162687
  82. Csuka, O.; RemenÁr, É.; Koronczay, K.; Doleschall, Z.; NÉmeth, G. Predictive value of p53, Bcl2 and bax in the radiotherapy of head and neck cancer. Pathol. Oncol. Res., 1997, 3(3), 204-210. doi: 10.1007/BF02899922 PMID: 18470731
  83. Maebayashi, K.; Mitsuhashi, N.; Takahashi, T.; Sakurai, H.; Niibe, H. P53 mutation decreased radiosensitivity in rat yolk sac tumor cell lines. Int. J. Radiat. Oncol. Biol. Phys., 1999, 44(3), 677-682. doi: 10.1016/S0360-3016(99)00025-5 PMID: 10348299
  84. Sugihara, T.; Murano, H.; Nakamura, M.; Ichinohe, K.; Tanaka, K. p53-Mediated gene activation in mice at high doses of chronic low-dose-rate γ radiation. Radiat. Res., 2010, 175(3), 328-335. doi: 10.1667/RR2446.1 PMID: 21388276
  85. Punnoose, E.A.; Leverson, J.D.; Peale, F.; Boghaert, E.R.; Belmont, L.D.; Tan, N.; Young, A.; Mitten, M.; Ingalla, E.; Darbonne, W.C.; Oleksijew, A.; Tapang, P.; Yue, P.; Oeh, J.; Lee, L.; Maiga, S.; Fairbrother, W.J.; Amiot, M.; Souers, A.J.; Sampath, D. Expression profile of BCL-2, BCL-XL, and MCL-1 predicts pharmacological response to the BCL-2 selective antagonist venetoclax in multiple myeloma models. Mol. Cancer Ther., 2016, 15(5), 1132-1144. doi: 10.1158/1535-7163.MCT-15-0730 PMID: 26939706
  86. Haimovitz-Friedman, A.; Kolesnick, R.N.; Fuks, Z. Ceramide signaling in apoptosis. Br. Med. Bull., 1997, 53(3), 539-553. doi: 10.1093/oxfordjournals.bmb.a011629 PMID: 9374036
  87. Kim, H.; Yoo, W.S.; Jung, J.H.; Jeong, B.K.; Woo, S.H.; Kim, J.H.; Kim, S.J. Alpha-lipoic acid ameliorates radiation-induced lacrimal gland injury through NFAT5-dependent signaling. Int. J. Mol. Sci., 2019, 20(22), 5691. doi: 10.3390/ijms20225691 PMID: 31766286
  88. Yue, J.; López, J.M. Understanding MAPK signaling pathways in apoptosis. Int. J. Mol. Sci., 2020, 21(7), 2346. doi: 10.3390/ijms21072346 PMID: 32231094
  89. Wu, X.Y.; Zhai, J.; Huan, X.K.; Xu, W.W.; Tian, J.; Farhood, B. A systematic review of the therapeutic potential of resveratrol during colorectal cancer chemotherapy. Mini Rev. Med. Chem., 2023, 23(10), 1137-1152. PMID: 36173048
  90. Oben, K.Z.; Gachuki, B.W.; Alhakeem, S.S.; McKenna, M.K.; Liang, Y.; St Clair, D.K.; Rangnekar, V.M.; Bondada, S. Radiation induced apoptosis of murine bone marrow cells is independent of Early Growth Response 1 (EGR1). PLoS One, 2017, 12(1), e0169767. doi: 10.1371/journal.pone.0169767 PMID: 28081176
  91. Komarova, E.A.; Kondratov, R.V.; Wang, K.; Christov, K.; Golovkina, T.V.; Goldblum, J.R.; Gudkov, A.V. Dual effect of p53 on radiation sensitivity in vivo: p53 promotes hematopoietic injury, but protects from gastro-intestinal syndrome in mice. Oncogene, 2004, 23(19), 3265-3271. doi: 10.1038/sj.onc.1207494 PMID: 15064735
  92. Olgun, Y.; Altun, Z.; Aktas, S.; Ercetin, P.; Kirkim, G.; Kiray, M. Molecular mechanisms of protective effect of resveratrol against cisplatinium induced ototoxicity. J. Int. Adv. Otol., 2013, 9(2), 145.
  93. Olgun, Y.; Kırkım, G.; Kolatan, E.; Kıray, M.; Bagrıyanık, A.; Olgun, A.; Kızmazoglu, D.C.; Ellıdokuz, H.; Serbetcıoglu, B.; Altun, Z.; Aktas, S.; Yılmaz, O.; Günerı, E.A. Friend or foe? Effect of oral resveratrol on cisplatin ototoxicity. Laryngoscope, 2014, 124(3), 760-766. doi: 10.1002/lary.24323 PMID: 23900991
  94. Freitas, M.R.D.; Figueiredo, A.A.; Brito, G.A.C.; Leitao, R.F.C.; Carvalho Junior, J.V.; Gomes Junior, R.M.; Ribeiro, R.A. The role of apoptosis in cisplatin-induced ototoxicity in rats. Rev. Bras. Otorrinolaringol., 2009, 75(5), 745-752. doi: 10.1590/S1808-86942009000500022 PMID: 19893946
  95. Guo, X.; Bai, X.; Li, L.; Li, J.; Wang, H. Forskolin protects against cisplatin-induced ototoxicity by inhibiting apoptosis and ROS production. Biomedicine & pharmacotherapy, 2018, 99, 530-6. doi: 10.1016/j.biopha.2018.01.080
  96. Rybak, L.P.; Whitworth, C.A.; Mukherjea, D.; Ramkumar, V. Mechanisms of cisplatin-induced ototoxicity and prevention. Hear. Res., 2007, 226(1-2), 157-167. doi: 10.1016/j.heares.2006.09.015 PMID: 17113254
  97. Casares, C.; Ramírez-Camacho, R.; Trinidad, A.; Roldán, A.; Jorge, E.; García-Berrocal, J.R. Reactive oxygen species in apoptosis induced by cisplatin: Review of physiopathological mechanisms in animal models. Eur. Arch. Otorhinolaryngol., 2012, 269(12), 2455-2459.
  98. Callejo, A.; Sedó-Cabezón, L.; Juan, I.; Llorens, J. Cisplatin-induced ototoxicity: Effects, mechanisms and protection strategies. Toxics, 2015, 3(3), 268-293. doi: 10.3390/toxics3030268 PMID: 29051464
  99. Shi, D.; Liu, H.; Stern, J.S.; Yu, P.; Liu, S. Alpha-lipoic acid induces apoptosis in hepatoma cells via the PTEN/Akt pathway. FEBS Lett., 2008, 582(12), 1667-1671. doi: 10.1016/j.febslet.2008.04.021 PMID: 18435927
  100. Dozio, E.; Ruscica, M.; Passafaro, L.; Dogliotti, G.; Steffani, L.; Pagani, A.; Demartini, G.; Esposti, D.; Fraschini, F.; Magni, P.; Magni, P. The natural antioxidant alpha-lipoic acid induces p27Kip1-dependent cell cycle arrest and apoptosis in MCF-7 human breast cancer cells. Eur. J. Pharmacol., 2010, 641(1), 29-34. doi: 10.1016/j.ejphar.2010.05.009 PMID: 20580704
  101. Yue, L.; Ren, Y.; Yue, Q.; Ding, Z.; Wang, K.; Zheng, T.; Chen, G.; Chen, X.; Li, M.; Fan, L. α-lipoic acid targeting PDK1/NRF2 axis contributes to the apoptosis effect of lung cancer cells. Oxid. Med. Cell. Longev., 2021, 2021, 1-16. doi: 10.1155/2021/6633419 PMID: 34211631
  102. Simbula, G; Columbano, A; Ledda-Columbano, GM; Sanna, L; Deidda, M; Diana, A Increased ROS generation and p53 activation in alpha-lipoic acid-induced apoptosis of hepatoma cells. Apoptosis, 2007, 12(1), 113-23.
  103. Lee, Y.M.; Bae, S.Y.; Won, N.H.; Pyo, H.J.; Kwon, Y.J. Alpha-lipoic acid attenuates cisplatin-induced tubulointerstitial injuries through inhibition of mitochondrial bax translocation in rats. Nephron, Exp. Nephrol., 2009, 113(4), e104-e112. doi: 10.1159/000235754 PMID: 19713707
  104. El-Sayed, E.S.M.; Mansour, A.M.; El-Sawy, W.S. Alpha lipoic acid prevents doxorubicin-induced nephrotoxicity by mitigation of oxidative stress, inflammation, and apoptosis in rats. J. Biochem. Mol. Toxicol., 2017, 31(9), e21940. doi: 10.1002/jbt.21940 PMID: 28598563
  105. Erdem Guzel, E.; Kaya Tektemur, N.; Tektemur, A. Alpha-lipoic acid may ameliorate testicular damage by targeting dox-induced altered antioxidant parameters, mitofusin-2 and apoptotic gene expression. Andrologia, 2021, 53(3), e13990. doi: 10.1111/and.13990 PMID: 33529370
  106. Latacela, G.A.; Ramaiah, P.; Patra, I.; Jalil, A.T.; Gupta, R.; Madaminov, F.A.; Shaker Shafik, S.; Al-Gazally, M.E.; Ansari, M.J.; Kandeel, M.; Mustafa, Y.F.; Farhood, B. The radioprotective potentials of silymarin/silibinin against radiotherapy-induced toxicities: A systematic review of clinical and experimental studies. Curr. Med. Chem., 2023, 30(33), 3775-3797. PMID: 36424777
  107. Al-Saikhan, F.I. Anti-inflammatory potentials of fibraurea tinctoria leaves extract in experimental rats or animals. J. Pharma. Res. Int., 2020, 32(8), 79-83. doi: 10.9734/jpri/2020/v32i830474
  108. Vyas, D.; Laput, G.; Vyas, A. Chemotherapy-enhanced inflammation may lead to the failure of therapy and metastasis. OncoTargets Ther., 2014, 7, 1015-1023. doi: 10.2147/OTT.S60114 PMID: 24959088
  109. Farhood, B.; Mortezaee, K.; Goradel, N.H.; Khanlarkhani, N.; Salehi, E.; Nashtaei, M.S.; Najafi, M.; Sahebkar, A. Curcumin as an anti-inflammatory agent: Implications to radiotherapy and chemotherapy. J. Cell. Physiol., 2019, 234(5), 5728-5740. doi: 10.1002/jcp.27442 PMID: 30317564
  110. Moutabian, H.; Majdaeen, M.; Ghahramani-Asl, R.; Yadollahi, M.; Gharepapagh, E.; Ataei, G.; Falahatpour, Z.; Bagheri, H.; Farhood, B. A systematic review of the therapeutic effects of resveratrol in combination with 5-fluorouracil during colorectal cancer treatment: With a special focus on the oxidant, apoptotic, and anti-inflammatory activities. Cancer Cell Int., 2022, 22(1), 142. doi: 10.1186/s12935-022-02561-7 PMID: 35366874
  111. So, H.; Kim, H.; Lee, J.H.; Park, C.; Kim, Y.; Kim, E.; Kim, J.K.; Yun, K.J.; Lee, K.M.; Lee, H.Y.; Moon, S.K.; Lim, D.J.; Park, R. Cisplatin cytotoxicity of auditory cells requires secretions of proinflammatory cytokines via activation of ERK and NF-kappaB. J. Assoc. Res. Otolaryngol., 2007, 8(3), 338-355. doi: 10.1007/s10162-007-0084-9 PMID: 17516123
  112. Kim, S.J.; Kwak, H.J.; Kim, D.S.; Choi, H.M.; Sim, J.E.; Kim, S.H.; Um, J.Y.; Hong, S.H. Protective mechanism of Korean Red Ginseng in cisplatin-induced ototoxicity through attenuation of nuclear factor-κB and caspase-1 activation. Mol. Med. Rep., 2015, 12(1), 315-322. doi: 10.3892/mmr.2015.3396 PMID: 25738645
  113. Levano, S.; Bodmer, D. Loss of STAT1 protects hair cells from ototoxicity through modulation of STAT3, c-Jun, Akt, and autophagy factors. Cell Death Dis., 2015, 6(12), e2019. doi: 10.1038/cddis.2015.362 PMID: 26673664
  114. Sethi, G.; Tergaonkar, V. Potential pharmacological control of the NF-κB pathway. Trends Pharmacol. Sci., 2009, 30(6), 313-321. doi: 10.1016/j.tips.2009.03.004 PMID: 19446347
  115. Nafees, S.; Rashid, S.; Ali, N.; Hasan, S.K.; Sultana, S. Rutin ameliorates cyclophosphamide induced oxidative stress and inflammation in Wistar rats: Role of NFκB/MAPK pathway. Chem. Biol. Interact., 2015, 231, 98-107. doi: 10.1016/j.cbi.2015.02.021 PMID: 25753322
  116. Kandemir, F.M.; Kucukler, S.; Caglayan, C.; Gur, C.; Batil, A.A.; Gülçin, İ. Therapeutic effects of silymarin and naringin on methotrexate-induced nephrotoxicity in rats: Biochemical evaluation of anti-inflammatory, antiapoptotic, and antiautophagic properties. J. Food Biochem., 2017, 41(5), e12398. doi: 10.1111/jfbc.12398
  117. Kaur, T.; Mukherjea, D.; Sheehan, K.; Jajoo, S.; Rybak, L.P.; Ramkumar, V. Short interfering RNA against STAT1 attenuates cisplatin-induced ototoxicity in the rat by suppressing inflammation. Cell Death Dis., 2011, 2(7), e180. doi: 10.1038/cddis.2011.63 PMID: 21776018
  118. Previati, M.; Lanzoni, I.; Astolfi, L.; Fagioli, F.; Vecchiati, G.; Pagnoni, A.; Martini, A.; Capitani, S. Cisplatin cytotoxicity in organ of corti-derived immortalized cells. J. Cell. Biochem., 2007, 101(5), 1185-1197. doi: 10.1002/jcb.21239 PMID: 17243113
  119. Deveci, H.A.; Akyuva, Y.; Nur, G.; Nazıroğlu, M. Alpha lipoic acid attenuates hypoxia-induced apoptosis, inflammation and mitochondrial oxidative stress via inhibition of TRPA1 channel in human glioblastoma cell line. Biomed. Pharmacother., 2019, 111, 292-304. doi: 10.1016/j.biopha.2018.12.077
  120. Rahimifard, M.; Navaei-Nigjeh, M.; Baeeri, M.; Maqbool, F.; Abdollahi, M. Multiple protective mechanisms of alpha-lipoic acid in oxidation, apoptosis and inflammation against hydrogen peroxide induced toxicity in human lymphocytes. Mol. Cell. Biochem., 2015, 403(1-2), 179-186. doi: 10.1007/s11010-015-2348-8 PMID: 25673508
  121. Azmoonfar, R.; Amini, P.; Yahyapour, R.; Rezaeyan, A.; Tavassoli, A.; Motevaseli, E.; Khodamoradi, E.; Shabeeb, D.; Musa, A.E.; Najafi, M. Mitigation of radiation-induced pneumonitis and lung fibrosis using alpha-lipoic acid and resveratrol. Antiinflamm. Antiallergy Agents Med. Chem., 2020, 19(2), 149-157. doi: 10.2174/1871523018666190319144020 PMID: 30892165
  122. Farhood, B.; Hassanzadeh, G.; Amini, P.; Shabeeb, D.; Musa, A.E.; Khodamoradi, E.; Mohseni, M.; Aliasgharzadeh, A.; Moradi, H.; Najafi, M. Mitigation of radiation-induced gastrointestinal system injury using resveratrol or alpha-lipoic acid: A pilot histopathological study. Antiinflamm. Antiallergy Agents Med. Chem., 2020, 19(4), 413-424. doi: 10.2174/1871523018666191111124028 PMID: 31713500
  123. Yahyapour, R.; Amini, P.; Saffar, H.; Motevaseli, E.; Farhood, B.; Pooladvand, V.; Shabeeb, D.; Musa, A.E.; Najafi, M. Protective effect of metformin, resveratrol and alpha-lipoic acid on radiation-induced pneumonitis and fibrosis: A histopathological study. Curr. Drug Res. Rev., 2019, 11(2), 111-117. doi: 10.2174/2589977511666191018180758 PMID: 31875783
  124. Li, G.; Fu, J.; Zhao, Y.; Ji, K.; Luan, T.; Zang, B. Alpha-lipoic acid exerts anti-inflammatory effects on lipopolysaccharide-stimulated rat mesangial cells via inhibition of nuclear factor kappa B (NF-κB) signaling pathway. Inflammation, 2015, 38(2), 510-519. doi: 10.1007/s10753-014-9957-3 PMID: 24962643
  125. Alanazi, A.M.; Fadda, L.; Alhusaini, A.; Ahmad, R.; Hasan, I.H.; Mahmoud, A.M. Liposomal resveratrol and/or carvedilol attenuate doxorubicin-induced cardiotoxicity by modulating inflammation, oxidative stress and S100A1 in rats. Antioxidants, 2020, 9(2), 159.
  126. Mortezaee, K.; Najafi, M.; Farhood, B.; Ahmadi, A.; Shabeeb, D.; Musa, A.E. Resveratrol as an adjuvant for normal tissues protection and tumor sensitization. Curr. Cancer Drug Targets, 2020, 20(2), 130-145. doi: 10.2174/1568009619666191019143539 PMID: 31738153
  127. Alarcón de la Lastra, C.; Villegas, I. Resveratrol as an anti-inflammatory and anti-aging agent: Mechanisms and clinical implications. Mol. Nutr. Food Res., 2005, 49(5), 405-430. doi: 10.1002/mnfr.200500022 PMID: 15832402
  128. Udenigwe, C.C.; Ramprasath, V.R.; Aluko, R.E.; Jones, P.J.H. Potential of resveratrol in anticancer and anti-inflammatory therapy. Nutr. Rev., 2008, 66(8), 445-454. doi: 10.1111/j.1753-4887.2008.00076.x PMID: 18667005
  129. de Sá Coutinho, D.; Pacheco, M.; Frozza, R.; Bernardi, A. Anti-inflammatory effects of resveratrol: Mechanistic insights. Int. J. Mol. Sci., 2018, 19(6), 1812. doi: 10.3390/ijms19061812 PMID: 29925765
  130. Das, S.; Das, D. Anti-inflammatory responses of resveratrol. Inflamm. Allergy Drug Targets, 2007, 6(3), 168-173. doi: 10.2174/187152807781696464 PMID: 17897053
  131. Tripathy, J.; Chowdhury, A.R.; Prusty, M.; Muduli, K.; Priyadarshini, N.; Reddy, K.S.; Banerjee, B.; Elangovan, S. α-Lipoic acid prevents the ionizing radiation-induced epithelial-mesenchymal transition and enhances the radiosensitivity in breast cancer cells. Eur. J. Pharmacol., 2020, 871, 172938. doi: 10.1016/j.ejphar.2020.172938 PMID: 31958458
  132. Choi, H.S.; Kim, J.H.; Jang, S.J.; Yun, J.W.; Kang, K.M.; Jeong, H.; Ha, I.B.; Jeong, B.K. Synergistic tumoricidal effects of alpha-lipoic acid and radiotherapy on human breast cancer cells via HMGB1. Cancer Res. Treat., 2021, 53(3), 685-694. doi: 10.4143/crt.2020.1015 PMID: 33321563
  133. Puchsaka, P.; Chaotham, C.; Chanvorachote, P. α-Lipoic acid sensitizes lung cancer cells to chemotherapeutic agents and anoikis via integrin β1/β3 downregulation. Int. J. Oncol., 2016, 49(4), 1445-1456. doi: 10.3892/ijo.2016.3624 PMID: 27431988
  134. Nur, G.; Nazıroğlu, M.; Deveci, H.A. Synergic prooxidant, apoptotic and TRPV1 channel activator effects of alpha-lipoic acid and cisplatin in MCF-7 breast cancer cells. J. Recept. Signal Transduct. Res., 2017, 37(6), 569-577. doi: 10.1080/10799893.2017.1369121 PMID: 28849985
  135. Ramachandran, L.; Nair, C.K.K. Therapeutic potentials of silver nanoparticle complex of α-lipoic acid. Nanomater. Nanotechnol., 2011, 1, 14. doi: 10.5772/50956
  136. McConnell, D.; McGreevy, J.; Williams, M.; Litofsky, N. Do anti-oxidants vitamin D3, melatonin, and alpha-lipoic acid have synergistic effects with temozolomide on cultured glioblastoma cells? Medicines, 2018, 5(2), 58. doi: 10.3390/medicines5020058 PMID: 29925764

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Bentham Science Publishers, 2024