Bacterial Polyhydroxyalkanoates-based Therapeutics-delivery Nano-systems
- Authors: Durán-Lara E.1,2, Rafael D.3, Andrade F.3, G. O.4, Vijayakumar S.5
-
Affiliations:
- DuranLab
- Bio & Nanomaterials, Faculty Health of Science, Universidad de Talca
- Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona
- Departamento de Microbiología, Facultad de Ciencias de la Salud,, Universidad de Talca
- , Marine College, Shandong University
- Issue: Vol 31, No 36 (2024)
- Pages: 5884-5897
- Section: Anti-Infectives and Infectious Diseases
- URL: https://rjeid.com/0929-8673/article/view/645247
- DOI: https://doi.org/10.2174/0109298673268775231003111540
- ID: 645247
Cite item
Full Text
Abstract
:Microbial polyhydroxyalkanoates (PHAs) are bio-based aliphatic biopolyester produced by bacteria as an intracellular storage material of carbon and energy under stressed conditions. PHAs have been paid attention to due to their unique and impressive biological properties including high biodegradability, biocompatibility, low cytotoxicity, and different mechanical properties. Under this context, the development of drug-delivery nanosystems based on PHAs has been revealed to have numerous advantages compared with synthetic polymers that included biocompatibility, biodegradability, non-toxic, and low-cost production, among others. In this review article, we present the available state of the art of PHAs. Moreover, we discussed the potential benefits, weaknesses, and perspectives of PHAs to the develop drug delivery systems.
About the authors
Esteban Durán-Lara
DuranLab; Bio & Nanomaterials, Faculty Health of Science, Universidad de Talca
Author for correspondence.
Email: info@benthamscience.net
Diana Rafael
Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona
Email: info@benthamscience.net
Fernanda Andrade
Drug Delivery and Targeting Group, Molecular Biology and Biochemistry Research Centre for Nanomedicine (CIBBIM-Nanomedicine), Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona
Email: info@benthamscience.net
Olga G.
Departamento de Microbiología, Facultad de Ciencias de la Salud,, Universidad de Talca
Email: info@benthamscience.net
Sekar Vijayakumar
, Marine College, Shandong University
Email: info@benthamscience.net
References
- Coelho, J.F.; Ferreira, P.C.; Alves, P.; Cordeiro, R.; Fonseca, A.C.; Góis, J.R.; Gil, M.H. Drug delivery systems: Advanced technologies potentially applicable in personalized treatments. EPMA J., 2010, 1(1), 164-209. doi: 10.1007/s13167-010-0001-x PMID: 23199049
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71. doi: 10.1186/s12951-018-0392-8 PMID: 30231877
- Adepu, S.; Ramakrishna, S. Controlled drug delivery systems: Current status and future directions. Molecules, 2021, 26(19), 5905. doi: 10.3390/molecules26195905 PMID: 34641447
- Majumder, J.; Taratula, O.; Minko, T. Nanocarrier-based systems for targeted and site specific therapeutic delivery. Adv. Drug Deliv. Rev., 2019, 144, 57-77. doi: 10.1016/j.addr.2019.07.010 PMID: 31400350
- Kenchegowda, M.; Rahamathulla, M.; Hani, U.; Begum, M.Y.; Guruswamy, S.; Osmani, R.A.M.; Gowrav, M.P.; Alshehri, S.; Ghoneim, M.M.; Alshlowi, A.; Gowda, D.V. Smart nanocarriers as an emerging platform for cancer therapy: A review. Molecules, 2021, 27(1), 146. doi: 10.3390/molecules27010146 PMID: 35011376
- Sugumaran, A.; Mathialagan, V. Colloidal nanocarriers as versatile targeted delivery systems for cervical cancer. Curr. Pharm. Des., 2020, 26(40), 5174-5187. doi: 10.2174/1381612826666200625110950 PMID: 32586249
- Alves, V.D.; Torres, C.A.V.; Freitas, F. Bacterial polymers as materials for the development of micro/nanoparticles. Int. J. Polym. Mater., 2016, 65(5), 211-224. doi: 10.1080/00914037.2015.1103239
- Li, Z.; Loh, X.J. Recent advances of using polyhydroxyalkanoate-based nanovehicles as therapeutic delivery carriers. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2017, 9(3), e1429. doi: 10.1002/wnan.1429 PMID: 27595635
- Ige, O.O.; Umoru, L.E.; Aribo, S. Natural products: A minefield of biomaterials. ISRN Mat. Sci., 2012, 2012, 1-20. doi: 10.5402/2012/983062
- Chuah, J.A.; Yamada, M.; Taguchi, S.; Sudesh, K.; Doi, Y.; Numata, K. Biosynthesis and characterization of polyhydroxyalkanoate containing 5-hydroxyvalerate units: Effects of 5HV units on biodegradability, cytotoxicity, mechanical and thermal properties. Polym. Degrad. Stabil., 2013, 98(1), 331-338. doi: 10.1016/j.polymdegradstab.2012.09.008
- Castro-Mayorga, J.L.; Martínez-Abad, A.; Fabra, M.J.; Olivera, C.; Reis, M.; Lagarón, J.M. Stabilization of antimicrobial silver nanoparticles by a polyhydroxyalkanoate obtained from mixed bacterial culture. Int. J. Biol. Macromol., 2014, 71, 103-110. doi: 10.1016/j.ijbiomac.2014.06.059 PMID: 25043131
- Jesus, S.; Schmutz, M.; Som, C.; Borchard, G.; Wick, P.; Borges, O. Hazard assessment of polymeric nanobiomaterials for drug delivery: What can we learn from literature so far. Front. Bioeng. Biotechnol., 2019, 7, 261. doi: 10.3389/fbioe.2019.00261 PMID: 31709243
- Pulingam, T.; Appaturi, J.N.; Parumasivam, T.; Ahmad, A.; Sudesh, K. Biomedical applications of polyhydroxyalkanoate in tissue engineering. Polymers, 2022, 14(11), 2141. doi: 10.3390/polym14112141 PMID: 35683815
- Ponjavic, M.; Malagurski, I.; Lazic, J.; Jeremic, S.; Pavlovic, V.; Prlainovic, N.; Maksimovic, V.; Cosovic, V.; Atanase, L.I.; Freitas, F.; Matos, M.; Nikodinovic-Runic, J. Advancing PHBV biomedical potential with the incorporation of bacterial biopigment prodigiosin. Int. J. Mol. Sci., 2023, 24(3), 1906. doi: 10.3390/ijms24031906 PMID: 36768226
- Dinjaski, N.; Prieto, M.A. Smart polyhydroxyalkanoate nanobeads by protein based functionalization. Nanomedicine, 2015, 11(4), 885-899. doi: 10.1016/j.nano.2015.01.018 PMID: 25720989
- Dhania, S.; Bernela, M.; Rani, R.; Parsad, M.; Grewal, S.; Kumari, S.; Thakur, R. Scaffolds the backbone of tissue engineering: Advancements in use of polyhydroxyalkanoates (PHA). Int. J. Biol. Macromol., 2022, 208, 243-259. doi: 10.1016/j.ijbiomac.2022.03.030 PMID: 35278518
- Rivero-Buceta, V.; Aguilar, M.R.; Hernández-Arriaga, A.M.; Blanco, F.G.; Rojas, A.; Tortajada, M.; Ramírez-Jiménez, R.A.; Vázquez-Lasa, B.; Prieto, A. Anti-staphylococcal hydrogels based on bacterial cellulose and the antimicrobial biopolyester poly(3-hydroxy-acetylthioalkanoate-co-3-hydroxyalkanoate). Int. J. Biol. Macromol., 2020, 162, 1869-1879. doi: 10.1016/j.ijbiomac.2020.07.289 PMID: 32777414
- Evangeline, S.; Sridharan, T.B. Biosynthesis and statistical optimization of polyhydroxyalkanoate (PHA) produced by Bacillus cereus VIT-SSR1 and fabrication of biopolymer films for sustained drug release. Int. J. Biol. Macromol., 2019, 135, 945-958. doi: 10.1016/j.ijbiomac.2019.05.163 PMID: 31128180
- Ang, S.L.; Sivashankari, R.; Shaharuddin, B.; Chuah, J.A.; Tsuge, T.; Abe, H.; Sudesh, K. Potential applications of polyhydroxyalkanoates as a biomaterial for the aging population. Polym. Degrad. Stabil., 2020, 181, 109371. doi: 10.1016/j.polymdegradstab.2020.109371
- Ansari, S.; Sami, N.; Yasin, D.; Ahmad, N.; Fatma, T. Biomedical applications of environmental friendly poly-hydroxyalkanoates. Int. J. Biol. Macromol., 2021, 183, 549-563. doi: 10.1016/j.ijbiomac.2021.04.171 PMID: 33932421
- Gonzalez-Miro, M.; Chen, S.; Gonzaga, Z.J.; Evert, B.; Wibowo, D.; Rehm, B.H.A. Polyester as antigen carrier toward particulate vaccines. Biomacromolecules, 2019, 20(9), 3213-3232. doi: 10.1021/acs.biomac.9b00509 PMID: 31122016
- Parlane, N.A.; Gupta, S.K.; Rubio-Reyes, P.; Chen, S.; Gonzalez-Miro, M.; Wedlock, D.N.; Rehm, B.H.A. Self-assembled protein-coated polyhydroxyalkanoate beads: Properties and biomedical applications. ACS Biomater. Sci. Eng., 2017, 3(12), 3043-3057. doi: 10.1021/acsbiomaterials.6b00355 PMID: 33445349
- Ke, Y.; Zhang, X.Y.; Ramakrishna, S.; He, L.M.; Wu, G. Reactive blends based on polyhydroxyalkanoates: Preparation and biomedical application. Mater. Sci. Eng. C, 2017, 70(Pt 2), 1107-1119. doi: 10.1016/j.msec.2016.03.114 PMID: 27772711
- Pryadko, A.; Surmeneva, M.A.; Surmenev, R.A. Review of hybrid materials based on polyhydroxyalkanoates for tissue engineering applications. Polymers, 2021, 13(11), 1738. doi: 10.3390/polym13111738 PMID: 34073335
- Vigneswari, S.; Abdul Khalil, H.P.S.; Amirul, A.A. Designing of collagen based poly(3-hydroxybutyrate- co -4-hydroxybutyrate) scaffolds for tissue engineering. Int. J. Polym. Sci., 2015, 2015, 1-10. doi: 10.1155/2015/731690
- Wei, D.X.; Dao, J.W.; Liu, H.W.; Chen, G.Q. Suspended polyhydroxyalkanoate microspheres as 3D carriers for mammalian cell growth. Artif. Cells Nanomed. Biotechnol., 2018, 46(sup2), 473-483. doi: 10.1080/21691401.2018.1459635 PMID: 29653500
- Rekhi, P.; Goswami, M.; Ramakrishna, S.; Debnath, M. Polyhydroxyalkanoates biopolymers toward decarbonizing economy and sustainable future. Crit. Rev. Biotechnol., 2022, 42(5), 668-692. doi: 10.1080/07388551.2021.1960265 PMID: 34645360
- Barouti, G.; Khalil, A.; Orione, C.; Jarnouen, K.; Cammas-Marion, S.; Loyer, P.; Guillaume, S.M. Poly(trimethylene carbonate)/poly(malic acid) amphiphilic diblock copolymers as biocompatible nanoparticles. Chemistry, 2016, 22(8), 2819-2830. doi: 10.1002/chem.201504824 PMID: 26791328
- Brelle, L.; Faÿ, F.; Ozturk, T.; Didier, N.; Renard, E.; Langlois, V. Hydrogel based on polyhydroxyalkanoate sulfonate: Control of the swelling rate by the ionic group content. Biomacromolecules, 2023, 24(4), 1871-1880. doi: 10.1021/acs.biomac.3c00059 PMID: 36967640
- Lukasiewicz, B.; Basnett, P.; Nigmatullin, R.; Matharu, R.; Knowles, J.C.; Roy, I. Binary polyhydroxyalkanoate systems for soft tissue engineering. Acta Biomater., 2018, 71, 225-234. doi: 10.1016/j.actbio.2018.02.027 PMID: 29501818
- Moroni, S.; Khorshid, S.; Aluigi, A.; Tiboni, M.; Casettari, L. Poly(3-hydroxybutyrate): A potential biodegradable excipient for direct 3D printing of pharmaceuticals. Int. J. Pharm., 2022, 623, 121960. doi: 10.1016/j.ijpharm.2022.121960 PMID: 35753539
- Sachin, K.; Karn, S.K. Microbial fabricated nanosystems: Applications in drug delivery and targeting. Front Chem., 2021, 9, 617353. doi: 10.3389/fchem.2021.617353 PMID: 33959586
- Fernandez-Bunster, G.; Pavez, P. Novel production methods of polyhydroxyalkanoates and their innovative uses in biomedicine and industry. Molecules, 2022, 27(23), 8351. doi: 10.3390/molecules27238351 PMID: 36500442
- Kwon, H.S.; Jung, S.G.; Kim, H.Y.; Parker, S.A.; Batt, C.A.; Kim, Y.R. A multi-functional polyhydroxybutyrate nanoparticle for theranostic applications. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(25), 3965-3971. doi: 10.1039/C4TB00304G PMID: 32261648
- Ma, Y.M.; Wei, D.X.; Yao, H.; Wu, L.P.; Chen, G.Q. Synthesis, characterization and application of thermoresponsive polyhydroxyalkanoate- graft -Poly( N -isopropylacrylamide). Biomacromolecules, 2016, 17(8), 2680-2690. doi: 10.1021/acs.biomac.6b00724 PMID: 27350125
- Insomphun, C.; Chuah, J.A.; Kobayashi, S.; Fujiki, T.; Numata, K. Influence of hydroxyl groups on the cell viability of polyhydroxyalkanoate (PHA) scaffolds for tissue engineering. ACS Biomater. Sci. Eng., 2017, 3(12), 3064-3075. doi: 10.1021/acsbiomaterials.6b00279 PMID: 33445351
- Michalak, M.; Kurcok, P.; Hakkarainen, M. Polyhydroxyalkanoate-based drug delivery systems. Polym. Int., 2017, 66(5), 617-622. doi: 10.1002/pi.5282
- Wei, D.X.; Dao, J.W.; Chen, G.Q. A micro-ark for cells: Highly open porous polyhydroxyalkanoate microspheres as injectable scaffolds for tissue regeneration. Adv. Mater., 2018, 30(31), 1802273. doi: 10.1002/adma.201802273 PMID: 29920804
- Zhang, J.; Cran, M.J. Production of polyhydroxyalkanoate nanoparticles using a green solvent. J. Appl. Polym. Sci., 2022, 139(23), 52319. doi: 10.1002/app.52319
- Zhang, X.; Li, Z.; Che, X.; Yu, L.; Jia, W.; Shen, R.; Chen, J.; Ma, Y.; Chen, G.Q. Synthesis and characterization of polyhydroxyalkanoate organo/hydrogels. Biomacromolecules, 2019, 20(9), 3303-3312. doi: 10.1021/acs.biomac.9b00479 PMID: 31094501
- Soleymani Eil Bakhtiari, S.; Karbasi, S.; Toloue, E.B. Modified poly(3-hydroxybutyrate)-based scaffolds in tissue engineering applications: A review. Int. J. Biol. Macromol., 2021, 166, 986-998. doi: 10.1016/j.ijbiomac.2020.10.255 PMID: 33152357
- Prakash, P.; Lee, W.H.; Loo, C.Y.; Wong, H.S.J.; Parumasivam, T. Advances in polyhydroxyalkanoate nanocarriers for effective drug delivery: An overview and challenges. Nanomaterials, 2022, 12(1), 175. doi: 10.3390/nano12010175 PMID: 35010124
- Li, M.C.; Liu, Q.Q.; Lu, X.Y.; Zhang, Y.L.; Wang, L.L. Heterologous expression of human costimulatory molecule B7-2 and construction of B7-2 immobilized polyhydroxyalkanoate nanoparticles for use as an immune activation agent. BMC Biotechnol., 2012, 12(1), 43. doi: 10.1186/1472-6750-12-43 PMID: 22846711
- Cañadas, O.; García-García, A.; Prieto, M.; Pérez-Gil, J. Polyhydroxyalkanoate nanoparticles for pulmonary drug delivery: Interaction with lung surfactant. Nanomaterials, 2021, 11(6), 1482. doi: 10.3390/nano11061482 PMID: 34204969
- Elmowafy, E.; Abdal-Hay, A.; Skouras, A.; Tiboni, M.; Casettari, L.; Guarino, V. Polyhydroxyalkanoate (PHA): Applications in drug delivery and tissue engineering. Expert Rev. Med. Devices, 2019, 16(6), 467-482. doi: 10.1080/17434440.2019.1615439 PMID: 31058550
- Parhiz, H.; Khoshnejad, M.; Myerson, J.W.; Hood, E.; Patel, P.N.; Brenner, J.S.; Muzykantov, V.R. Unintended effects of drug carriers: Big issues of small particles. Adv. Drug Deliv. Rev., 2018, 130, 90-112. doi: 10.1016/j.addr.2018.06.023 PMID: 30149885
- Mukheem, A.; Shahabuddin, S.; Akbar, N.; Ahmad, I.; Sudesh, K.; Sridewi, N. Development of biocompatible polyhydroxyalkanoate/chitosan-tungsten disulphide nanocomposite for antibacterial and biological applications. Polymers, 2022, 14(11), 2224. doi: 10.3390/polym14112224 PMID: 35683897
- Fan, F.; Wu, X.; Zhao, J.; Ran, G.; Shang, S.; Li, M.; Lu, X. A specific drug delivery system for targeted accumulation and tissue penetration in prostate tumors based on microbially synthesized PHBHHx biopolyester and iRGD peptide fused PhaP. ACS Appl. Bio Mater., 2018, 1(6), 2041-2053. doi: 10.1021/acsabm.8b00524 PMID: 34996266
- Samrot, A.V.; Sean, T.C.; Kudaiyappan, T.; Bisyarah, U.; Mirarmandi, A.; Faradjeva, E.; Abubakar, A.; Ali, H.H.; Angalene, J.L.A.; Suresh Kumar, S. Production, characterization and application of nanocarriers made of polysaccharides, proteins, bio-polyesters and other biopolymers: A review. Int. J. Biol. Macromol., 2020, 165(Pt B), 3088-3105. doi: 10.1016/j.ijbiomac.2020.10.104 PMID: 33098896
- Aguilar-Rabiela, A.E.; Leal-Egaña, A.; Nawaz, Q.; Boccaccini, A.R. Integration of mesoporous bioactive glass nanoparticles and curcumin into PHBV microspheres as biocompatible composite for drug delivery applications. Molecules, 2021, 26(11), 3177. doi: 10.3390/molecules26113177 PMID: 34073377
- Shah, M.; Ullah, N.; Choi, M.H.; Kim, M.O.; Yoon, S.C. Amorphous amphiphilic P(3HV-co-4HB)-b-mPEG block copolymer synthesized from bacterial copolyester via melt transesterification: Nanoparticle preparation, cisplatin-loading for cancer therapy and in vitro evaluation. Eur. J. Pharm. Biopharm., 2012, 80(3), 518-527. doi: 10.1016/j.ejpb.2011.11.014 PMID: 22178562
- Zhang, C.; Zhao, L.; Dong, Y.; Zhang, X.; Lin, J.; Chen, Z. Folate-mediated poly(3-hydroxybutyrate-co-3-hydroxyoctanoate) nanoparticles for targeting drug delivery. Eur. J. Pharm. Biopharm., 2010, 76(1), 10-16. doi: 10.1016/j.ejpb.2010.05.005 PMID: 20472060
- Babos, G.; Rydz, J.; Kawalec, M.; Klim, M.; Fodor-Kardos, A.; Trif, L.; Feczkó, T. Poly(3-Hydroxybutyrate)-based nanoparticles for sorafenib and doxorubicin anticancer drug delivery. Int. J. Mol. Sci., 2020, 21(19), 7312. doi: 10.3390/ijms21197312 PMID: 33022990
- Lee, S.Y.; Kim, S.Y.; Ku, S.H.; Park, E.J.; Jang, D.J.; Kim, S.T.; Kim, S.B. Polyhydroxyalkanoate decelerates the release of paclitaxel from poly(lactic-co-glycolic acid) nanoparticles. Pharmaceutics, 2022, 14(8), 1618. doi: 10.3390/pharmaceutics14081618 PMID: 36015244
- Faisalina, A.F.; Sonvico, F.; Colombo, P.; Amirul, A.A.; Wahab, H.A.; Majid, M.I.A. Docetaxel-Loaded Poly(3HB-co-4HB) biodegradable nanoparticles: Impact of copolymer composition. Nanomaterials, 2020, 10(11), 2123. doi: 10.3390/nano10112123 PMID: 33114572
- Masood, F.; Chen, P.; Yasin, T.; Fatima, N.; Hasan, F.; Hameed, A. Encapsulation of ellipticine in poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) based nanoparticles and its in vitro application. Mater. Sci. Eng. C, 2013, 33(3), 1054-1060. doi: 10.1016/j.msec.2012.11.025 PMID: 23827542
- Shah, M.; Naseer, M.I.; Choi, M.H.; Kim, M.O.; Yoon, S.C. Amphiphilic PHAmPEG copolymeric nanocontainers for drug delivery: Preparation, characterization and in vitro evaluation. Int. J. Pharm., 2010, 400(1-2), 165-175. doi: 10.1016/j.ijpharm.2010.08.008 PMID: 20713137
- Kılıçay, E.; Demirbilek, M.; Türk, M.; Güven, E.; Hazer, B.; Denkbas, E.B. Preparation and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHX) based nanoparticles for targeted cancer therapy. Eur. J. Pharm. Sci., 2011, 44(3), 310-320. doi: 10.1016/j.ejps.2011.08.013 PMID: 21884788
- Lu, X.Y.; Ciraolo, E.; Stefenia, R.; Chen, G.Q.; Zhang, Y.; Hirsch, E. Sustained release of PI3K inhibitor from PHA nanoparticles and in vitro growth inhibition of cancer cell lines. Appl. Microbiol. Biotechnol., 2011, 89(5), 1423-1433. doi: 10.1007/s00253-011-3101-1 PMID: 21286711
- Erdal, E.; Kavaz, D.; Şam, M.; Demirbilek, M.; Demirbilek, M.E.; Sağlam, N.; Denkbaş, E.B. Preparation and characterization of magnetically responsive bacterial polyester based nanospheres for cancer therapy. J. Biomed. Nanotechnol., 2012, 8(5), 800-808. doi: 10.1166/jbn.2012.1431 PMID: 22888751
- Kapoor, S.; Gupta, D.; Kumar, M.; Sharma, S.; Gupta, A.K.; Misro, M.M.; Singh, H. Intracellular delivery of peptide cargos using polyhydroxybutyrate based biodegradable nanoparticles: Studies on antitumor efficacy of BCL-2 converting peptide, NuBCP-9. Int. J. Pharm., 2016, 511(2), 876-889. doi: 10.1016/j.ijpharm.2016.07.077 PMID: 27492021
- Pramual, S.; Assavanig, A.; Bergkvist, M.; Batt, C.A.; Sunintaboon, P.; Lirdprapamongkol, K.; Svasti, J.; Niamsiri, N. Development and characterization of bio-derived polyhydroxyalkanoate nanoparticles as a delivery system for hydrophobic photodynamic therapy agents. J. Mater. Sci. Mater. Med., 2016, 27(2), 40. doi: 10.1007/s10856-015-5655-4 PMID: 26712706
- Radu, I.C.; Hudita, A.; Zaharia, C.; Galateanu, B.; Iovu, H.; Tanasa, E.V.; Georgiana Nitu, S.; Ginghina, O.; Negrei, C.; Tsatsakis, A.; Velonia, K.; Shtilman, M.; Costache, M. Poly(3-hydroxybutyrate-CO-3-hydroxyvalerate) PHBHV biocompatible nanocarriers for 5-FU delivery targeting colorectal cancer. Drug Deliv., 2019, 26(1), 318-327. doi: 10.1080/10717544.2019.1582729 PMID: 30896267
- Lu, X.Y.; Li, M.C.; Zhu, X.L.; Fan, F.; Wang, L.L.; Ma, J.G. Microbial synthesized biodegradable PHBHHxPEG hybrid copolymer as an efficient intracellular delivery nanocarrier for kinase inhibitor. BMC Biotechnol., 2014, 14(1), 4. doi: 10.1186/1472-6750-14-4 PMID: 24438107
- Ezzeddine, Z.; Ghssein, G. Towards new antibiotics classes targeting bacterial metallophores. Microb. Pathog., 2023, 182, 106221. doi: 10.1016/j.micpath.2023.106221
- Gregory, D.A.; Taylor, C.S.; Fricker, A.T.R.; Asare, E.; Tetali, S.S.V.; Haycock, J.W.; Roy, I. Polyhydroxyalkanoates and their advances for biomedical applications. Trends Mol. Med., 2022, 28(4), 331-342. doi: 10.1016/j.molmed.2022.01.007 PMID: 35232669
- Li, H.; Chang, J. Preparation, characterization and in vitro release of gentamicin from PHBV/wollastonite composite microspheres. J. Control. Release, 2005, 107(3), 463-473. doi: 10.1016/j.jconrel.2005.05.019 PMID: 16154657
- Perveen, K.; Masood, F.; Hameed, A. Preparation, characterization and evaluation of antibacterial properties of epirubicin loaded PHB and PHBV nanoparticles. Int. J. Biol. Macromol., 2020, 144, 259-266. doi: 10.1016/j.ijbiomac.2019.12.049 PMID: 31821825
- Ojha, N.; Das, N. Green formulation of microbial biopolyesteric nanocarriers toward in vitro drug delivery and its characterization. Curr. Microbiol., 2021, 78(5), 2061-2070. doi: 10.1007/s00284-021-02464-2 PMID: 33787978
- Pavic, A.; Stojanovic, Z.; Pekmezovic, M.; Veljović, Đ.; OConnor, K.; Malagurski, I.; Nikodinovic-Runic, J. Polyenes in medium chain length polyhydroxyalkanoate (mcl-PHA) biopolymer microspheres with reduced toxicity and improved therapeutic effect against Candida infection in zebrafish model. Pharmaceutics, 2022, 14(4), 696. doi: 10.3390/pharmaceutics14040696 PMID: 35456530
- Pekmezovic, M.; Kalagasidis Krusic, M.; Malagurski, I.; Milovanovic, J.; Stępień, K.; Guzik, M.; Charifou, R.; Babu, R.; OConnor, K.; Nikodinovic-Runic, J. Polyhydroxyalkanoate/antifungal polyene formulations with monomeric hydroxyalkanoic acids for improved antifungal efficiency. Antibiotics, 2021, 10(6), 737. doi: 10.3390/antibiotics10060737 PMID: 34207011
- Umesh, M.; Priyanka, K.; Thazeem, B.; Preethi, K. Biogenic PHA nanoparticle synthesis and characterization from Bacillus subtilis NCDC0671 using orange peel medium. Int. J. Polym. Mater., 2018, 67(17), 996-1004. doi: 10.1080/00914037.2017.1417284
- Hu, J.; Wang, M.; Xiao, X.; Zhang, B.; Xie, Q.; Xu, X.; Li, S.; Zheng, Z.; Wei, D.; Zhang, X. A novel long-acting azathioprine polyhydroxyalkanoate nanoparticle enhances treatment efficacy for systemic lupus erythematosus with reduced side effects. Nanoscale, 2020, 12(19), 10799-10808. doi: 10.1039/D0NR01308K PMID: 32391836
- Rezaie Shirmard, L.; Bahari Javan, N.; Khoshayand, M.R.; Kebriaee-zadeh, A.; Dinarvand, R.; Dorkoosh, F.A. Nanoparticulate fingolimod delivery system based on biodegradable poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV): Design, optimization, characterization and in-vitro evaluation. Pharm. Dev. Technol., 2017, 22(7), 860-870. doi: 10.3109/10837450.2015.1108982 PMID: 26555615
- Dourado, L.F.N.; Pierucci, A.; Roa, J.P.B.; Carvalho Júnior, Á.D.d. Assessment of implantable drug delivery technology: poly (3-hydroxybutyrate)/polypropylene glycol films containing simvastatin. Matéria, 2022, 26(4)
- Vijayendra, S. Microbial biopolymers: The exopolysaccharides; Springer: New Delhi, 2015, pp. 113-125. doi: 10.1007/978-81-322-2595-9_8
- Urtuvia, V.; Villegas, P.; González, M.; Seeger, M. Bacterial production of the biodegradable plastics polyhydroxyalkanoates. Int. J. Biol. Macromol., 2014, 70, 208-213. doi: 10.1016/j.ijbiomac.2014.06.001 PMID: 24974981
- Pacheco-Leyva, I.; Guevara Pezoa, F.; Díaz-Barrera, A. Alginate biosynthesis in Azotobacter vinelandii : Overview of molecular mechanisms in connection with the oxygen availability. Int. J. Polym. Sci., 2016, 2016, 1-12. doi: 10.1155/2016/2062360
- Moradali, M.F.; Rehm, B.H.A. Bacterial biopolymers: From pathogenesis to advanced materials. Nat. Rev. Microbiol., 2020, 18(4), 195-210. doi: 10.1038/s41579-019-0313-3 PMID: 31992873
- Mokhtarzadeh, A.; Alibakhshi, A.; Hejazi, M.; Omidi, Y.; Ezzati Nazhad Dolatabadi, J. Bacterial-derived biopolymers: Advanced natural nanomaterials for drug delivery and tissue engineering. Trends Analyt. Chem., 2016, 82, 367-384. doi: 10.1016/j.trac.2016.06.013
- Usurelu, C.D.; Badila, S.; Frone, A.N.; Panaitescu, D.M. Poly(3-hydroxybutyrate) nanocomposites with cellulose nanocrystals. Polymers, 2022, 14(10), 1974. doi: 10.3390/polym14101974 PMID: 35631856
- Pagliano, G.; Ventorino, V.; Panico, A.; Pepe, O. Integrated systems for biopolymers and bioenergy production from organic waste and by-products: A review of microbial processes. Biotechnol. Biofuels, 2017, 10(1), 113. doi: 10.1186/s13068-017-0802-4 PMID: 28469708
- Muneer, F.; Rasul, I.; Qasim, M.; Sajid, A.; Nadeem, H. Optimization, production and characterization of polyhydroxyalkanoate (PHA) from indigenously isolated novel bacteria. J. Polym. Environ., 2022, 30(8), 3523-3533. doi: 10.1007/s10924-022-02444-y
Supplementary files
