Administration of Inhibitory Molecules through Nanoparticles in Breast Cancer Therapy


Cite item

Full Text

Abstract

According to Global Cancer Statistics, breast cancer is the second leading cause of mortality in women. While there are several treatments for breast cancer, they are not always effective. In most cases, after initial treatment, patients may present a low response to therapy, more severe relapses, and even drug resistance. Hence, more effective and targeted therapies are needed. Recently, the use of nanoparticles has emerged as a promising alternative that will allow the controlled release of drugs in response to stimuli, precise delivery to the site of action, lower levels of toxicity, and fewer side effects. In this review, we provide an overview of the recent evidence proposing the delivery of inhibitory molecules encapsulated in nanoparticles as a new therapy for breast cancer that targets the signaling pathways governing the processes of tumor formation, maintenance, and expansion.

About the authors

Christian Quijia

Department of Drugs and Medicines, School of Pharmaceutical Sciences of São Paulo State University (UNESP)

Author for correspondence.
Email: info@benthamscience.net

Andreina Enríquez

National Council for Scientific and Technical Research (CONICET), Institute of Pharmacological Research (ININFA),, University of Buenos Aires,

Email: info@benthamscience.net

Carlos Daniel Zappia

National Council for Scientific and Technical Research (CONICET), Institute of Pharmacological Research (ININFA),, University of Buenos Aires

Email: info@benthamscience.net

Roxana Peroni

Institute of Pharmacological Research (ININFA UBA-CONICET), Faculty of Pharmacy and Biochemistry,, University of Buenos Aires,

Email: info@benthamscience.net

Marlus Chorilli

Department of Drugs and Medicines, School of Pharmaceutical Sciences of São Paulo State University (UNESP)

Author for correspondence.
Email: info@benthamscience.net

References

  1. Emens, L.A. Breast cancer immunotherapy: Facts and hopes. Clin. Cancer Res., 2018, 24(3), 511-520. doi: 10.1158/1078-0432.CCR-16-3001 PMID: 28801472
  2. Wang, Y.; Li, Y.; Liu, B.; Song, A. Identifying breast cancer subtypes associated modules and biomarkers by integrated bioinformatics analysis. Biosci. Rep., 2021, 41(1), BSR20203200. doi: 10.1042/BSR20203200 PMID: 33313822
  3. Wang, Y.; Minden, A. Current molecular combination therapies used for the treatment of breast cancer. Int. J. Mol. Sci., 2022, 23(19), 11046. doi: 10.3390/ijms231911046 PMID: 36232349
  4. Alves, R.C.; Perosa Fernandes, R.; Lira de Farias, R.; da Silva, P.B.; Santos Faria, R.; Quijia, C.R.; Galvão Frem, R.C.; Azevedo, R.B.; Chorilli, M. Fabrication of functional bioMOF-100 prototype as drug delivery system for breast cancer therapy. Pharmaceutics, 2022, 14(11), 2458. doi: 10.3390/pharmaceutics14112458 PMID: 36432650
  5. Alves, R.C.; Schulte, Z.M.; Luiz, M.T.; Bento da Silva, P.; Frem, R.C.G.; Rosi, N.L.; Chorilli, M. Breast cancer targeting of a drug delivery system through postsynthetic modification of curcumin@ N3-bio-MOF-100 via click chemistry. Inorg. Chem., 2021, 60(16), 11739-11744. doi: 10.1021/acs.inorgchem.1c00538 PMID: 34101467
  6. dos Santos, K.C.; dos Reis, L.R.; Rodero, C.F.; Sábio, R.M.; Junior, A.G.T.; Gremião, M.P.D.; Chorilli, M. Bioproperties, nanostructured system and analytical and bioanalytical methods for determination of rapamycin: A review. Crit. Rev. Anal. Chem., 2022, 52(5), 897-905. doi: 10.1080/10408347.2020.1839737 PMID: 33138632
  7. Luiz, M.T.; Dutra, J.A.P.; Ribeiro, T.C.; Carvalho, G.C.; Sábio, R.M.; Marchetti, J.M.; Chorilli, M.; Physicochemical, S.A.; Aspects, E. Folic acid-modified curcumin-loaded liposomes for breast cancer therapy. Colloids Surf. A Physicochem. Eng. Asp., 2022, 645, 128935. doi: 10.1016/j.colsurfa.2022.128935
  8. Quijia, C.R.; Tavares Luiz, M.; Fernandes, R.P.; Sábio, R.M.; Frem, R.; Chorilli, M. In situ synthesis of piperine-loaded MIL-100 (Fe) in microwave for breast cancer treatment. J. Drug Deliv. Sci. Technol., 2022, 75, 103718. doi: 10.1016/j.jddst.2022.103718
  9. Tsang, J.Y.S.; Tse, G.M. Molecular classification of breast cancer. Eur. J. Breast Health, 2020, 27(1), 27-35. PMID: 31045583
  10. Aumeeruddy, M.Z.; Mahomoodally, M.F. Combating breast cancer using combination therapy with 3 phytochemicals: Piperine, sulforaphane, and thymoquinone. Cancer, 2019, 125(10), 1600-1611. doi: 10.1002/cncr.32022 PMID: 30811596
  11. Chen, Y.; Shi, X.E.; Tian, J.H.; Yang, X.J.; Wang, Y.F.; Yang, K.H. Survival benefit of neoadjuvant chemotherapy for resectable breast cancer. Medicine, 2018, 97(20), e10634. doi: 10.1097/MD.0000000000010634 PMID: 29768327
  12. Mueller, C.; Haymond, A.; Davis, J.B.; Williams, A.; Espina, V. Protein biomarkers for subtyping breast cancer and implications for future research. Expert Rev. Proteomics, 2018, 15(2), 131-152. doi: 10.1080/14789450.2018.1421071 PMID: 29271260
  13. Samadi, P.; Saki, S.; Dermani, F.K.; Pourjafar, M.; Saidijam, M. Emerging ways to treat breast cancer: Will promises be met? Cell. Oncol., 2018, 41(6), 605-621. doi: 10.1007/s13402-018-0409-1 PMID: 30259416
  14. Zhang, X. Molecular classification of breast cancer: Relevance and challenges. Arch. Pathol. Lab. Med., 2023, 147(1), 46-51. doi: 10.5858/arpa.2022-0070-RA PMID: 36136295
  15. Rojo, F.; Albanell, J.; Rovira, A.; Corominas, J.M.; Manzarbeitia, F. Targeted therapies in breast cancer. Semin. Diagn. Pathol., 2008, 25(4), 245-261. doi: 10.1053/j.semdp.2008.08.001 PMID: 19013891
  16. An, J.; Peng, C.; Tang, H.; Liu, X.; Peng, F. New advances in the research of resistance to neoadjuvant chemotherapy in breast cancer. Int. J. Mol. Sci., 2021, 22(17), 9644. doi: 10.3390/ijms22179644 PMID: 34502549
  17. Lau, K.H.; Tan, A.M.; Shi, Y. New and emerging targeted therapies for advanced breast cancer. Int. J. Mol. Sci., 2022, 23(4), 2288. doi: 10.3390/ijms23042288 PMID: 35216405
  18. Márquez-Garbán, D.C.; Deng, G.; Comin-Anduix, B.; Garcia, A.J.; Xing, Y.; Chen, H.W.; Cheung-Lau, G.; Hamilton, N.; Jung, M.E.; Pietras, R.J. Antiestrogens in combination with immune checkpoint inhibitors in breast cancer immunotherapy. J. Steroid Biochem. Mol. Biol., 2019, 193, 105415. doi: 10.1016/j.jsbmb.2019.105415 PMID: 31226312
  19. Al-Mahayri, Z.N.; Patrinos, G.P.; Ali, B.R. Toxicity and pharmacogenomic biomarkers in breast cancer chemotherapy. Front. Pharmacol., 2020, 11, 445. doi: 10.3389/fphar.2020.00445 PMID: 32351390
  20. Ayana, G.; Ryu, J.; Choe, S. Ultrasound-responsive nanocarriers for breast cancer chemotherapy. micromachines, 2022, 13(9), 1508. doi: 10.3390/mi13091508 PMID: 36144131
  21. Tavakoli Dastjerd, N.; Gheibi, N.; Ahmadpour Yazdi, H.; Shariatifar, H.; Farasat, A. Design and characterization of liposomal methotrexate and its effect on BT-474 breast cancer cell line. Med. J. Islam. Repub. Iran, 2021, 35, 158. doi: 10.47176/mjiri.35.158 PMID: 35341082
  22. Zhong, L.; Li, Y.; Xiong, L.; Wang, W.; Wu, M.; Yuan, T.; Yang, W.; Tian, C.; Miao, Z.; Wang, T.; Yang, S. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives. Signal Transduct. Target. Ther., 2021, 6(1), 201. doi: 10.1038/s41392-021-00572-w PMID: 34054126
  23. Dong, K.; Zhao, Z.Z.; Kang, J.; Lin, L.R.; Chen, W.T.; Liu, J.X.; Wu, X.L.; Lu, T.L. Cinnamaldehyde and doxorubicin co-loaded graphene oxide wrapped mesoporous silica nanoparticles for enhanced MCF-7 cell apoptosis. Int. J. Nanomedicine, 2020, 15, 10285-10304. doi: 10.2147/IJN.S283981 PMID: 33376322
  24. Joseph, M.M.; Aswathy, G.; Manojkumar, T.K.; Sreelekha, T.T. Galactoxyloglucan-doxorubicin nanoparticles exerts superior cytotoxic effects on cancer cells-A mechanistic and in silico approach. Int. J. Biol. Macromol., 2016, 92, 20-29. doi: 10.1016/j.ijbiomac.2016.06.093 PMID: 27373427
  25. Misra, R.; Mohanty, S. Self-assembled liquid-crystalline folate nanoparticles for in vitro controlled release of doxorubicin. Biomed. Pharmacother., 2015, 69, 326-336. doi: 10.1016/j.biopha.2014.12.015 PMID: 25661378
  26. Shafei, A.; El-Bakly, W.; Sobhy, A.; Wagdy, O.; Reda, A.; Aboelenin, O.; Marzouk, A.; El Habak, K.; Mostafa, R.; Ali, M.A.; Ellithy, M. A review on the efficacy and toxicity of different doxorubicin nanoparticles for targeted therapy in metastatic breast cancer. Biomed. Pharmacother., 2017, 95, 1209-1218. doi: 10.1016/j.biopha.2017.09.059 PMID: 28931213
  27. Abu Samaan, T.M.; Samec, M.; Liskova, A.; Kubatka, P.; Büsselberg, D. Paclitaxel’s mechanistic and clinical effects on breast cancer. Biomolecules, 2019, 9(12), 789. doi: 10.3390/biom9120789 PMID: 31783552
  28. Foglietta, F.; Spagnoli, G.C.; Muraro, M.G.; Ballestri, M.; Guerrini, A.; Ferroni, C.; Aluigi, A.; Sotgiu, G.; Varchi, G. Anticancer activity of paclitaxel-loaded keratin nanoparticles in two-dimensional and perfused three-dimensional breast cancer models. Int. J. Nanomedicine, 2018, 13, 4847-4867. doi: 10.2147/IJN.S159942 PMID: 30214193
  29. Rivera-Rodriguez, A.; Chiu-Lam, A.; Morozov, V.M.; Ishov, A.M.; Rinaldi, C. Magnetic nanoparticle hyperthermia potentiates paclitaxel activity in sensitive and resistant breast cancer cells. Int. J. Nanomedicine, 2018, 13, 4771-4779. doi: 10.2147/IJN.S171130 PMID: 30197514
  30. Sharifi-Rad, J.; Quispe, C.; Patra, J.K.; Singh, Y.D.; Panda, M.K.; Das, G.; Adetunji, C.O.; Michael, O.S.; Sytar, O.; Polito, L. Živković, J.; Cruz-Martins, N.; Klimek-Szczykutowicz, M.; Ekiert, H.; Choudhary, M.I.; Ayatollahi, S.A.; Tynybekov, B.; Kobarfard, F.; Muntean, A.C.; Grozea, I.; Daştan, S.D.; Butnariu, M.; Szopa, A.; Calina, D. Paclitaxel: Application in modern oncology and nanomedicine-based cancer therapy. Oxid. Med. Cell. Longev., 2021, 2021, 1-24. doi: 10.1155/2021/3687700 PMID: 34707776
  31. Masoud, V.; Pagès, G. Targeted therapies in breast cancer: New challenges to fight against resistance. World J. Clin. Oncol., 2017, 8(2), 120-134. doi: 10.5306/wjco.v8.i2.120 PMID: 28439493
  32. Demir Cetinkaya, B.; Biray Avci, C. Molecular perspective on targeted therapy in breast cancer: A review of current status. Med. Oncol., 2022, 39(10), 149. doi: 10.1007/s12032-022-01749-1 PMID: 35834030
  33. Drekolias, D.; Mamounas, E.P. Metaplastic breast carcinoma: Current therapeutic approaches and novel targeted therapies. Breast J., 2019, 25(6), 1192-1197. doi: 10.1111/tbj.13416 PMID: 31250492
  34. Harbeck, N.; Gnant, M. Breast cancer. Lancet, 2017, 389(10074), 1134-1150. doi: 10.1016/S0140-6736(16)31891-8 PMID: 27865536
  35. Shea, E.K.H.; Koh, V.C.Y.; Tan, P.H. Invasive breast cancer: Current perspectives and emerging views. Pathol. Int., 2020, 70(5), 242-252. doi: 10.1111/pin.12910 PMID: 32039524
  36. Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The different mechanisms of cancer drug resistance: A brief review. Adv. Pharm. Bull., 2017, 7(3), 339-348. doi: 10.15171/apb.2017.041 PMID: 29071215
  37. Singh, R.; Lillard, J.W. Jr Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol., 2009, 86(3), 215-223. doi: 10.1016/j.yexmp.2008.12.004 PMID: 19186176
  38. Bhattacharyya, A. Disaster, Risk and Vulnerablity Conference 2011, 2011, pp. 116-120.
  39. Sheoran, S.; Arora, S.; Samsonraj, R.; Govindaiah, P. vuree, S. Lipid-based nanoparticles for treatment of cancer. Heliyon, 2022, 8(5), e09403. doi: 10.1016/j.heliyon.2022.e09403 PMID: 35663739
  40. Guney Eskiler, G.; Cecener, G.; Egeli, U.; Tunca, B. Talazoparib nanoparticles for overcoming multidrug resistance in triple-negative breast cancer. J. Cell. Physiol., 2020, 235(9), 6230-6245. doi: 10.1002/jcp.29552 PMID: 32017076
  41. Bertrand, N.; Wu, J.; Xu, X.; Kamaly, N.; Farokhzad, O.C. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev., 2014, 66, 2-25. doi: 10.1016/j.addr.2013.11.009 PMID: 24270007
  42. Abedin, M.R.; Powers, K.; Aiardo, R.; Barua, D.; Barua, S. Antibody–drug nanoparticle induces synergistic treatment efficacies in HER2 positive breast cancer cells. Sci. Rep., 2021, 11(1), 7347. doi: 10.1038/s41598-021-86762-6 PMID: 33795712
  43. Al-saden, N.; Lam, K.; Chan, C.; Reilly, R.M. Positron-emission tomography of HER2-positive breast cancer xenografts in mice with 89 Zr-labeled trastuzumab-DM1: A comparison with 89 Zr-labeled trastuzumab. Mol. Pharm., 2018, 15(8), 3383-3393. doi: 10.1021/acs.molpharmaceut.8b00392 PMID: 29957952
  44. Cao, F.; Yao, Q.; Yang, T.; Zhang, Z.; Han, Y.; Feng, J.; Wang, X.H. Marriage of antibody–drug conjugate with gold nanorods to achieve multi-modal ablation of breast cancer cells and enhanced photoacoustic performance. RSC Advances, 2016, 6(52), 46594-46606. doi: 10.1039/C6RA01557C
  45. Cruz, E.; Kayser, V. Synthesis and enhanced cellular uptake in vitro of Anti-HER2 multifunctional gold nanoparticles. Cancers, 2019, 11(6), 870. doi: 10.3390/cancers11060870 PMID: 31234432
  46. Gu, S.; Ngamcherdtrakul, W.; Reda, M.; Hu, Z.; Gray, J.W.; Yantasee, W. Lack of acquired resistance in HER2-positive breast cancer cells after long-term HER2 siRNA nanoparticle treatment. PLoS One, 2018, 13(6), e0198141. doi: 10.1371/journal.pone.0198141 PMID: 29879129
  47. Hapuarachchige, S.; Kato, Y.; Artemov, D. Bioorthogonal two-component drug delivery in HER2(+) breast cancer mouse models. Sci. Rep., 2016, 6(1), 24298. doi: 10.1038/srep24298 PMID: 27068794
  48. Keyaerts, M.; Xavier, C.; Heemskerk, J.; Devoogdt, N.; Everaert, H.; Ackaert, C.; Vanhoeij, M.; Duhoux, F.P.; Gevaert, T.; Simon, P.; Schallier, D.; Fontaine, C.; Vaneycken, I.; Vanhove, C.; De Greve, J.; Lamote, J.; Caveliers, V.; Lahoutte, T.; Phase, I.; Phase, I. Study of 68 Ga-HER2-Nanobody for PET/CT assessment of HER2 expression in breast carcinoma. J. Nucl. Med., 2016, 57(1), 27-33. doi: 10.2967/jnumed.115.162024 PMID: 26449837
  49. Ngo Ndjock Mbong, G.; Lu, Y.; Chan, C.; Cai, Z.; Liu, P.; Boyle, A.J.; Winnik, M.A.; Reilly, R.M. Trastuzumab labeled to high specific activity with 111 in by site-specific conjugation to a metal-chelating polymer exhibits amplified auger electron-mediated cytotoxicity on her2-positive breast cancer cells. Mol. Pharm., 2015, 12(6), 1951-1960. doi: 10.1021/mp5007618 PMID: 25919639
  50. Owen, S.C.; Patel, N.; Logie, J.; Pan, G.; Persson, H.; Moffat, J.; Sidhu, S.S.; Shoichet, M.S. Targeting HER2 + breast cancer cells: Lysosomal accumulation of anti-HER2 antibodies is influenced by antibody binding site and conjugation to polymeric nanoparticles. J. Control. Release, 2013, 172(2), 395-404. doi: 10.1016/j.jconrel.2013.07.011 PMID: 23880472
  51. Rodallec, A.; Sicard, G.; Giacometti, S.; Carré, M.; Pourroy, B.; Bouquet, F.; Savina, A.; Lacarelle, B.; Ciccolini, J.; Fanciullino, R. From 3D spheroids to tumor bearing mice: Efficacy and distribution studies of trastuzumab-docetaxel immunoliposome in breast cancer. Int. J. Nanomedicine, 2018, 13, 6677-6688. doi: 10.2147/IJN.S179290 PMID: 30425482
  52. Rong, L.; Zhou, S.; Liu, X.; Li, A.; Jing, T.; Liu, X.; Zhang, Y.; Cai, S.; Tang, X. Trastuzumab-modified DM1-loaded nanoparticles for HER2+ breast cancer treatment: An in vitro and in vivo study. Artif. Cells Nanomed. Biotechnol., 2018, 46(8), 1708-1718. PMID: 29069935
  53. Roozbehi, S.; Dadashzadeh, S.; Mirshahi, M.; Sadeghizadeh, M.; Sajedi, R.H. Targeted anticancer prodrug therapy using dextran mediated enzyme–antibody conjugate and β-cyclodextrin-curcumin inclusion complex. Int. J. Biol. Macromol., 2020, 160, 1029-1041. doi: 10.1016/j.ijbiomac.2020.05.225 PMID: 32479931
  54. Tang, X.; Dai, H.; Zhu, Y.; Tian, Y.; Zhang, R.; Mei, R.; Li, D. Maytansine-loaded star-shaped folate-core PLA-TPGS nanoparticles enhancing anticancer activity. Am. J. Transl. Res., 2014, 6(5), 528-537. PMID: 25360217
  55. Tang, X.; Liang, Y.; Zhu, Y.; Cai, S.; Sun, L.; Chen, T. Enhanced anticancer activity of DM1-loaded star-shaped folate-core PLA-TPGS nanoparticles. Nanoscale Res. Lett., 2014, 9(1), 563. doi: 10.1186/1556-276X-9-563 PMID: 25339854
  56. Tang, X.; Lyu, Y.; Zhu, Y.; Hou, W.; Liang, Y.; Dai, J.; Cai, S.; Mei, R.; Zhang, C.; Fan, Q. Enhanced Anti-PDL1(+) cancer activity of DM1-loaded-PLA-TPGS nanoparticles mediated with MPDL3280A. J. Nanosci. Nanotechnol., 2016, 16(7), 7055-7063. doi: 10.1166/jnn.2016.11355
  57. Zhang, Y.; Yue, S.; Haag, R.; Sun, H.; Zhong, Z. An intelligent cell-selective polymersome-DM1 nanotoxin toward triple negative breast cancer. J. Control. Release, 2021, 340, 331-341. doi: 10.1016/j.jconrel.2021.11.014 PMID: 34774889
  58. Zhong, P. Gu, X.; Cheng, R.; Deng, C.; Meng, F.; Zhong, Z. αvβ3 integrin-targeted micellar mertansine prodrug effectively inhibits triple-negative breast cancer in vivo. Int. J. Nanomedicine, 2017, 12, 7913-7921. doi: 10.2147/IJN.S146505 PMID: 29138558
  59. Vodyashkin, A.A.; Kezimana, P.; Vetcher, A.A.; Stanishevskiy, Y.M. Biopolymeric nanoparticles–multifunctional materials of the future. polymers, 2022, 14(11), 2287. doi: 10.3390/polym14112287 PMID: 35683959
  60. Puri, A.; Loomis, K.; Smith, B.; Lee, J-H.; Yavlovich, A.; Heldman, E.; Blumenthal, R. Lipid-based nanoparticles as pharmaceutical drug carriers: From concepts to clinic. Crit. Rev. Ther. Drug Carrier Syst., 2009, 26(6), 523-580.
  61. Rahman, M.M.; Islam, M.R.; Akash, S.; Harun-Or-Rashid, M.; Ray, T.K.; Rahaman, M.S.; Islam, M.; Anika, F.; Hosain, M.K.; Aovi, F.I.; Hemeg, H.A.; Rauf, A.; Wilairatana, P. Recent advancements of nanoparticles application in cancer and neurodegenerative disorders: At a glance. Biomed. Pharmacother., 2022, 153, 113305. doi: 10.1016/j.biopha.2022.113305 PMID: 35717779
  62. Lawson, H.D.; Walton, S.P.; Chan, C. Interfaces, metal–organic frameworks for drug delivery: A design perspective. ACS Appl. Mater. Interfaces, 2021, 13(6), 7004-7020. doi: 10.1021/acsami.1c01089 PMID: 33554591
  63. O’Connor, M.J. Targeting the DNA damage response in cancer. Mol. Cell, 2015, 60(4), 547-560. doi: 10.1016/j.molcel.2015.10.040 PMID: 26590714
  64. Cortesi, L.; Rugo, H.S.; Jackisch, C. An overview of PARP inhibitors for the treatment of breast cancer. Target. Oncol., 2021, 16(3), 255-282. doi: 10.1007/s11523-021-00796-4 PMID: 33710534
  65. Farmer, H.; McCabe, N.; Lord, C.J.; Tutt, A.N.J.; Johnson, D.A.; Richardson, T.B.; Santarosa, M.; Dillon, K.J.; Hickson, I.; Knights, C.; Martin, N.M.B.; P., Jackson S.; Smith, G. C M.; Ashworth, A. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Letters, 2005, 434(7035), 917-921.
  66. Bryant, H.E.; Schultz, N.; Thomas, H.D.; Parker, K.M.; Flower, D.; Lopez, E.; Kyle, S.; Meuth, M.; Curtin, N.J.; Helleday, T. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature, 2005, 434(7035), 913-917.
  67. Mazzucchelli, S.; Truffi, M.; Baccarini, F.; Beretta, M.; Sorrentino, L.; Bellini, M.; Rizzuto, M.A.; Ottria, R.; Ravelli, A.; Ciuffreda, P.; Prosperi, D.; Corsi, F. H-Ferritin-nanocaged olaparib: A promising choice for both BRCA-mutated and sporadic triple negative breast cancer. Sci. Rep., 2017, 7(1), 7505. doi: 10.1038/s41598-017-07617-7 PMID: 28790402
  68. Hu, H.; Zhang, Y.; Ji, W.; Mei, H.; Wu, T.; He, Z.; Wang, K.; Shi, C. Hyaluronic acid-coated and Olaparib-loaded PEI - PLGA nanoparticles for the targeted therapy of triple negative breast cancer. J. Microencapsul., 2022, 39(1), 25-36. doi: 10.1080/02652048.2021.2014586 PMID: 34859741
  69. Zhang, Y.; Hu, H.; Tang, W.; Zhang, Q.; Li, M.; Jin, H.; Huang, Z.; Cui, Z.; Xu, J.; Wang, K.; Shi, C. A multifunctional magnetic nanosystem based on "two strikes" effect for synergistic anticancer therapy in triple-negative breast cancer. J. Control. Release, 2020, 322, 401-415. doi: 10.1016/j.jconrel.2020.03.036 PMID: 32246976
  70. Jung, K.O.; Jo, H.; Yu, J.H.; Gambhir, S.S.; Pratx, G. Development and MPI tracking of novel hypoxia-targeted theranostic exosomes. Biomaterials, 2018, 177, 139-148. doi: 10.1016/j.biomaterials.2018.05.048 PMID: 29890363
  71. Guney Eskiler, G.; Cecener, G.; Egeli, U.; Tunca, B. Synthetically lethal BMN 673 (Talazoparib) loaded solid lipid nanoparticles for BRCA1 mutant triple negative breast cancer. Pharm. Res., 2018, 35(11), 218. doi: 10.1007/s11095-018-2502-6 PMID: 30255456
  72. Eskiler, G.G.; Cecener, G.; Dikmen, G.; Egeli, U.; Tunca, B. Talazoparib loaded solid lipid nanoparticles: Preparation, characterization and evaluation of the therapeutic efficacy in vitro. Curr. Drug Deliv., 2019, 16(6), 511-529. doi: 10.2174/1567201816666190515105532 PMID: 31113350
  73. Zhang, D.; Baldwin, P.; Leal, A.S.; Carapellucci, S.; Sridhar, S.; Liby, K.T. A nano-liposome formulation of the PARP inhibitor talazoparib enhances treatment efficacy and modulates immune cell populations in mammary tumors of BRCA-deficient mice. Theranostics, 2019, 9(21), 6224-6238. doi: 10.7150/thno.36281 PMID: 31534547
  74. Mehra, N.K.; Tekmal, R.R.; Palakurthi, S. Development and evaluation of talazoparib nanoemulsion for systemic therapy of BRCA1-mutant cancer. Anticancer Res., 2018, 38(8), 4493-4503. doi: 10.21873/anticanres.12753 PMID: 30061215
  75. Brodie, S.G.; Xu, X.; Qiao, W.; Li, W.M.; Cao, L.; Deng, C.X. Multiple genetic changes are associated with mammary tumorigenesis in Brca1 conditional knockout mice. Oncogene, 2001, 20(51), 7514-7523. doi: 10.1038/sj.onc.1204929 PMID: 11709723
  76. Zhou, L.; Chen, J.; Sun, Y.; Chai, K.; Zhu, Z.; Wang, C.; Chen, M.; Han, W.; Hu, X.; Li, R.; Yao, T.; Li, H.; Dong, C.; Shi, S. A self-amplified nanocatalytic system for achieving "1 + 1 + 1 > 3" chemodynamic therapy on triple negative breast cancer. J. Nanobiotechnology, 2021, 19(1), 261. doi: 10.1186/s12951-021-00998-y PMID: 34481495
  77. Zhang, H.; Yu, N.; Chen, Y.; Yan, K.; Wang, X. Cationic liposome codelivering PI3K pathway regulator improves the response of BRCA1-deficient breast cancer cells to PARP1 inhibition. J. Cell. Biochem., 2019, 120(8), 13037-13045. doi: 10.1002/jcb.28574 PMID: 30873673
  78. Misra, R.; Patra, B.; Varadharaj, S.; Verma, R.S. Establishing the promising role of novel combination of triple therapeutics delivery using polymeric nanoparticles for Triple negative breast cancer therapy. Bioimpacts, 2020, 11(3), 199-207. doi: 10.34172/bi.2021.27 PMID: 34336608
  79. DuRoss, A.N.; Neufeld, M.J.; Landry, M.R.; Rosch, J.G.; Eaton, C.T.; Sahay, G.; Thomas, C.R., Jr; Sun, C. Micellar formulation of talazoparib and buparlisib for enhanced DNA damage in breast cancer chemoradiotherapy. ACS Appl. Mater. Interfaces, 2019, 11(13), 12342-12356. doi: 10.1021/acsami.9b02408 PMID: 30860347
  80. Neufeld, M.J.; DuRoss, A.N.; Landry, M.R.; Winter, H.; Goforth, A.M.; Sun, C. Co-delivery of PARP and PI3K inhibitors by nanoscale metal–organic frameworks for enhanced tumor chemoradiation. Nano Res., 2019, 12(12), 3003-3017. doi: 10.1007/s12274-019-2544-z
  81. Anwar, M.M.; Abd El-Karim, S.S.; Mahmoud, A.H.; Amr, A.E.G.E.; Al-Omar, M.A. A comparative study of the anticancer activity and PARP-1 inhibiting effect of benzofuran–pyrazole scaffold and its nano-sized particles in human breast cancer cells. Molecules, 2019, 24(13), 2413. doi: 10.3390/molecules24132413 PMID: 31261939
  82. Cheng, H.W.; Chiang, C.S.; Ho, H.Y.; Chou, S.H.; Lai, Y.H.; Shyu, W.C.; Chen, S.Y. Dextran-modified Quercetin-Cu(II)/hyaluronic acid nanomedicine with natural poly(ADP-ribose) polymerase inhibitor and dual targeting for programmed synthetic lethal therapy in triple-negative breast cancer. J. Control. Release, 2021, 329, 136-147. doi: 10.1016/j.jconrel.2020.11.061 PMID: 33278482
  83. Liu, J.; Yang, Y.; Zhu, W.; Yi, X.; Dong, Z.; Xu, X.; Chen, M.; Yang, K.; Lu, G.; Jiang, L.; Liu, Z. Nanoscale metal-organic frameworks for combined photodynamic & radiation therapy in cancer treatment. Biomaterials, 2016, 97, 1-9. doi: 10.1016/j.biomaterials.2016.04.034 PMID: 27155362
  84. Verret, B.; Cortes, J.; Bachelot, T.; Andre, F.; Arnedos, M. Efficacy of PI3K inhibitors in advanced breast cancer. Ann. Oncol., 2019, 30(S.10), x12-x20. doi: 10.1093/annonc/mdz381
  85. Carrera, A.C.; Anderson, R. The cell biology behind the oncogenic PIP3 lipids. J. Cell Sci., 2019, 132(1), jcs228395. doi: 10.1242/jcs.228395 PMID: 30602575
  86. Dowling, R.J.O.; Topisirovic, I.; Fonseca, B.D.; Sonenberg, N. Dissecting the role of mTOR: Lessons from mTOR inhibitors. Biochim. Biophys. Acta. Proteins Proteomics, 2010, 1804(3), 433-439. doi: 10.1016/j.bbapap.2009.12.001 PMID: 20005306
  87. Lee, J.J.; Loh, K.; Yap, Y.S. PI3K/Akt/mTOR inhibitors in breast cancer. Cancer Biol. Med., 2015, 12(4), 342-354. PMID: 26779371
  88. Zhu, K.; Wu, Y.; He, P.; Fan, Y.; Zhong, X.; Zheng, H.; Luo, T. PI3K/AKT/mTOR-targeted therapy for breast cancer. Cells, 2022, 11(16), 2508. doi: 10.3390/cells11162508 PMID: 36010585
  89. Gradishar, W.J.; Moran, M.S.; Abraham, J.; Aft, R.; Agnese, D.; Allison, K.H.; Blair, S.L.; Burstein, H.J.; Dang, C.; Elias, A.D.; Giordano, S.H.; Goetz, M.P.; Goldstein, L.J.; Hurvitz, S.A.; Isakoff, S.J.; Jankowitz, R.C.; Javid, S.H.; Krishnamurthy, J.; Leitch, M.; Lyons, J.; Matro, J.; Mayer, I.A.; Mortimer, J.; O’Regan, R.M.; Patel, S.A.; Pierce, L.J.; Rugo, H.S.; Sitapati, A.; Smith, K.L.; Smith, M.L.; Soliman, H.; Stringer-Reasor, E.M.; Telli, M.L.; Ward, J.H.; Wisinski, K.B.; Young, J.S.; Burns, J.L.; Kumar, R. NCCN Guidelines® Insights: Breast cancer, version 4.2021. J. Natl. Compr. Canc. Netw., 2021, 19(5), 484-493. doi: 10.6004/jnccn.2021.0023 PMID: 34794122
  90. Sharma, V.; Sharma, A.K.; Punj, V.; Priya, P. Recent nanotechnological interventions targeting PI3K/Akt/mTOR pathway: A focus on breast cancer. Semin. Cancer Biol., 2019, 59, 133-146. doi: 10.1016/j.semcancer.2019.08.005 PMID: 31408722
  91. Steelman, L.S.; Martelli, A.M.; Cocco, L.; Libra, M.; Nicoletti, F.; Abrams, S.L.; McCubrey, J.A. The therapeutic potential of mTOR inhibitors in breast cancer. Br. J. Clin. Pharmacol., 2016, 82(5), 1189-1212. doi: 10.1111/bcp.12958 PMID: 27059645
  92. Iwase, Y.; Maitani, Y. Preparation and in vivo evaluation of liposomal everolimus for lung carcinoma and thyroid carcinoma. Biol. Pharm. Bull., 2012, 35(6), 975-979. doi: 10.1248/bpb.35.975 PMID: 22687542
  93. Bonizzi, A.; Truffi, M.; Sevieri, M.; Allevi, R.; Sitia, L.; Ottria, R.; Sorrentino, L.; Sottani, C.; Negri, S.; Grignani, E.; Mazzucchelli, S.; Corsi, F. everolimus nanoformulation in biological nanoparticles increases drug responsiveness in resistant and low-responsive breast cancer cell lines. Pharmaceutics, 2019, 11(8), 384. doi: 10.3390/pharmaceutics11080384 PMID: 31382388
  94. Quagliariello, V.; Iaffaioli, R.V.; Armenia, E.; Clemente, O.; Barbarisi, M.; Nasti, G.; Berretta, M.; Ottaiano, A.; Barbarisi, A. Hyaluronic acid nanohydrogel loaded with quercetin alone or in combination to a macrolide derivative of rapamycin RAD001 (Everolimus) as a new treatment for hormone-responsive human breast cancer. J. Cell. Physiol., 2017, 232(8), 2063-2074. doi: 10.1002/jcp.25587 PMID: 27607841
  95. Houdaihed, L.; Evans, J.C.; Allen, C. Codelivery of paclitaxel and everolimus at the optimal synergistic ratio: A promising solution for the treatment of breast cancer. Mol. Pharm., 2018, 15(9), 3672-3681. doi: 10.1021/acs.molpharmaceut.8b00217 PMID: 29863881
  96. Sottani, C.; Grignani, E.; Mazzucchelli, S.; Bonizzi, A.; Corsi, F.; Negri, S.; Prati, F.; Calleri, E.; Cottica, D. Development and validation of a simple and versatile method for the quantification of everolimus loaded in H-ferritin nanocages using UHPLC-MS/MS. J. Pharm. Biomed. Anal., 2020, 191, 113644. doi: 10.1016/j.jpba.2020.113644 PMID: 32987250
  97. Houdaihed, L.; Evans, J.C.; Allen, C. In vivo evaluation of dual-targeted nanoparticles encapsulating paclitaxel and everolimus. Cancers, 2019, 11(6), 752. doi: 10.3390/cancers11060752 PMID: 31146485
  98. Lee, D.Y.; Lee, K.P.; Beak, S.; Park, J.S.; Kim, Y.J.; Kim, K.N.; Kim, S.R.; Yoon, M.S. Antibreast cancer activity of aspirin-conjugated chalcone polymeric micelles. Macromol. Res., 2021, 29(1), 105-110. doi: 10.1007/s13233-021-9010-y
  99. Abu-Dief, A.M.; Nassar, I.F.; Elsayed, W.H. Magnetic NiFe2 O4 nanoparticles: Efficient, heterogeneous and reusable catalyst for synthesis of acetylferrocene chalcones and their anti-tumour activity. Appl. Organomet. Chem., 2016, 30(11), 917-923. doi: 10.1002/aoc.3521
  100. Zhao, Y.; Zhang, T.; Duan, S.; Davies, N.M.; Forrest, M.L. CD44-tropic polymeric nanocarrier for breast cancer targeted rapamycin chemotherapy. Nanomedicine, 2014, 10(6), 1221-1230. doi: 10.1016/j.nano.2014.02.015 PMID: 24637218
  101. Behrouz, H.; Esfandyari-Manesh, M.; Khoeeniha, M.K.; Amini, M.; Shiri Varnamkhasti, B.; Atyabi, F.; Dinarvand, R. Enhanced cytotoxicity to cancer cells by codelivery and controlled release of paclitaxel-loaded sirolimus-conjugated albumin nanoparticles. Chem. Biol. Drug Des., 2016, 88(2), 230-240. doi: 10.1111/cbdd.12750 PMID: 26913996
  102. Nandi, U.; Onyesom, I.; Douroumis, D. An in vitro evaluation of antitumor activity of sirolimus-encapsulated liposomes in breast cancer cells. J. Pharm. Pharmacol., 2021, 73(3), 300-309. doi: 10.1093/jpp/rgaa061 PMID: 33793879
  103. Nandi, U.; Onyesom, I.; Douroumis, D. Transferrin conjugated Stealth liposomes for sirolimus active targeting in breast cancer. J. Drug Deliv. Sci. Technol., 2021, 66, 102900. doi: 10.1016/j.jddst.2021.102900
  104. Onyesom, I.; Lamprou, D.A.; Sygellou, L.; Owusu-Ware, S.K.; Antonijevic, M.; Chowdhry, B.Z.; Douroumis, D. Sirolimus encapsulated liposomes for cancer therapy: Physicochemical and mechanical characterization of sirolimus distribution within liposome bilayers. Mol. Pharm., 2013, 10(11), 4281-4293. doi: 10.1021/mp400362v PMID: 24099044
  105. Blanco, E.; Sangai, T.; Wu, S.; Hsiao, A.; Ruiz-Esparza, G.U.; Gonzalez-Delgado, C.A.; Cara, F.E.; Granados-Principal, S.; Evans, K.W.; Akcakanat, A.; Wang, Y.; Do, K.A.; Meric-Bernstam, F.; Ferrari, M. Colocalized delivery of rapamycin and paclitaxel to tumors enhances synergistic targeting of the PI3K/Akt/mTOR pathway. Mol. Ther., 2014, 22(7), 1310-1319. doi: 10.1038/mt.2014.27 PMID: 24569835
  106. Dai, W.; Yang, F.; Ma, L.; Fan, Y.; He, B.; He, Q.; Wang, X.; Zhang, H.; Zhang, Q. Combined mTOR inhibitor rapamycin and doxorubicin-loaded cyclic octapeptide modified liposomes for targeting integrin α3 in triple-negative breast cancer. Biomaterials, 2014, 35(20), 5347-5358. doi: 10.1016/j.biomaterials.2014.03.036 PMID: 24726747
  107. Liu, P.; Liu, X.; Cheng, Y.; Zhong, S.; Shi, X.; Wang, S.; Liu, M.; Ding, J.; Zhou, W. Core–shell nanosystems for self-activated drug–gene combinations against triple-negative breast cancer. ACS Appl. Mater. Interfaces, 2020, 12(48), 53654-53664. doi: 10.1021/acsami.0c15089 PMID: 33205940
  108. Peddi, S.; Roberts, S.K.; MacKay, J.A. Nanotoxicology of an elastin-like polypeptide rapamycin formulation for breast cancer. Biomacromolecules, 2020, 21(3), 1091-1102. doi: 10.1021/acs.biomac.9b01431 PMID: 31927993
  109. Tam, Y.T.; Repp, L.; Ma, Z.X.; Feltenberger, J.B.; Kwon, G.S. Oligo (lactic acid)8-rapamycin prodrug-loaded poly(ethylene glycol)-block-poly(lactic acid) micelles for injection. Pharm. Res., 2019, 36(5), 70. doi: 10.1007/s11095-019-2600-0 PMID: 30888509
  110. Houdaihed, L.; Evans, J.C.; Allen, C. Dual-targeted delivery of nanoparticles encapsulating paclitaxel and everolimus: A novel strategy to overcome breast cancer receptor heterogeneity. Pharm. Res., 2020, 37(3), 39. doi: 10.1007/s11095-019-2684-6 PMID: 31965330
  111. Karthikeyan, C.; Narayana Moorthy, N.S.H.; Ramasamy, S.; Vanam, U.; Manivannan, E.; Karunagaran, D.; Trivedi, P. Advances in chalcones with anticancer activities. Recent Patents Anticancer Drug Discov., 2014, 10(1), 97-115. doi: 10.2174/1574892809666140819153902 PMID: 25138130
  112. Gao, F.; Huang, G.; Xiao, J. Chalcone hybrids as potential anticancer agents: Current development, mechanism of action, and structure-activity relationship. Med. Res. Rev., 2020, 40(5), 2049-2084. doi: 10.1002/med.21698 PMID: 32525247
  113. Dewi, C.; Fristiohady, A.; Amalia, R.; Khairul Ikram, N.K.; Ibrahim, S.; Muchtaridi, M. Signaling pathways and natural compounds in triple-negative breast cancer cell line. Molecules, 2022, 27(12), 3661. doi: 10.3390/molecules27123661 PMID: 35744786
  114. Benjamin, D.; Colombi, M.; Moroni, C.; Hall, M.N. Rapamycin passes the torch: A new generation of mTOR inhibitors. Nat. Rev. Drug Discov., 2011, 10(11), 868-880. doi: 10.1038/nrd3531 PMID: 22037041
  115. Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic: An update. Bioeng. Transl. Med., 2019, 4(3), e10143. doi: 10.1002/btm2.10143 PMID: 31572799
  116. Li, Y.; Seto, E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb. Perspect. Med., 2016, 6(10), a026831.
  117. Pramanik, S.D.; Kumar Halder, A.; Mukherjee, U.; Kumar, D.; Dey, Y.N. R, M. Potential of histone deacetylase inhibitors in the control and regulation of prostate, breast and ovarian cancer. Front Chem., 2022, 10, 948217. doi: 10.3389/fchem.2022.948217 PMID: 36034650
  118. Robert, T.; Vanoli, F.; Chiolo, I.; Shubassi, G.; Bernstein, K.A.; Rothstein, R.; Botrugno, O.A.; Parazzoli, D.; Oldani, A.; Minucci, S.; Foiani, M. HDACs link the DNA damage response, processing of double-strand breaks and autophagy. Nature, 2011, 471(7336), 74-79. doi: 10.1038/nature09803 PMID: 21368826
  119. Wang, C.; Henkes, L.M.; Doughty, L.B.; He, M.; Wang, D.; Meyer-Almes, F.J.; Cheng, Y.Q. Thailandepsins: Bacterial products with potent histone deacetylase inhibitory activities and broad-spectrum antiproliferative activities. J. Nat. Prod., 2011, 74(10), 2031-2038. doi: 10.1021/np200324x PMID: 21793558
  120. Xiao, K.; Li, Y.P.; Wang, C.; Ahmad, S.; Vu, M.; Kuma, K.; Cheng, Y.Q.; Lam, K.S. Disulfide cross-linked micelles of novel HDAC inhibitor thailandepsin A for the treatment of breast cancer. Biomaterials, 2015, 67, 183-193. doi: 10.1016/j.biomaterials.2015.07.033 PMID: 26218744
  121. Marks, P.A.; Xu, W.S. Histone deacetylase inhibitors: Potential in cancer therapy. J. Cell. Biochem., 2009, 107(4), 600-608. doi: 10.1002/jcb.22185 PMID: 19459166
  122. Yuan, Y.G.; Peng, Q.L.; Gurunathan, S. Combination of palladium nanoparticles and tubastatin-A potentiates apoptosis in human breast cancer cells: A novel therapeutic approach for cancer. Int. J. Nanomedicine, 2017, 12, 6503-6520. doi: 10.2147/IJN.S136142 PMID: 28919751
  123. Rompicharla, S.V.K.; Trivedi, P.; Kumari, P.; Muddineti, O.S.; Theegalapalli, S.; Ghosh, B.; Biswas, S. Evaluation of anti-tumor efficacy of vorinostat encapsulated self-assembled polymeric micelles in solid tumors. AAPS PharmSciTech, 2018, 19(7), 3141-3151. doi: 10.1208/s12249-018-1149-2 PMID: 30132129
  124. Alp, E.; Damkaci, F.; Guven, E.; Tenniswood, M. Starch nanoparticles for delivery of the histone deacetylase inhibitor CG-1521 in breast cancer treatment. Int. J. Nanomedicine, 2019, 14, 1335-1346. doi: 10.2147/IJN.S191837 PMID: 30863064
  125. Abdel-Ghany, S.; Raslan, S.; Tombuloglu, H.; Shamseddin, A.; Cevik, E.; Said, O.A.; Madyan, E.F.; Senel, M.; Bozkurt, A.; Rehman, S.; Sabit, H. Vorinostat-loaded titanium oxide nanoparticles (anatase) induce G2/M cell cycle arrest in breast cancer cells via PALB2 upregulation. 3 Biotech,, 2020, 10(9), 40. doi: 10.1007/s13205-020-02391-2
  126. Ma, W.; Sun, J.; Xu, J.; Luo, Z.; Diao, D.; Zhang, Z.; Oberly, P.J.; Minnigh, M.B.; Xie, W.; Poloyac, S.M.; Huang, Y.; Li, S. Sensitizing triple negative breast cancer to tamoxifen chemotherapy via a redox-responsive vorinostat-containing polymeric prodrug nanocarrier. Theranostics, 2020, 10(6), 2463-2478. doi: 10.7150/thno.38973 PMID: 32194813
  127. Farooq, M.A.; Xinyu, H.; Jabeen, A.; Ahsan, A.; Seidu, T.A.; Kutoka, P.T.; Wang, B. Enhanced cellular uptake and cytotoxicity of vorinostat through encapsulation in TPGS-modified liposomes. Colloids Surf. B Biointerfaces, 2021, 199, 111523. doi: 10.1016/j.colsurfb.2020.111523 PMID: 33360624
  128. Jindal, S.; Ghosh, S.S.; Gopinath, P. Core-shell nanofibre scaffold mediated co-delivery of connexin-43 gene and histone deacetylase inhibitor for anticancer therapy. Mater. Today Commun., 2021, 29, 102886. doi: 10.1016/j.mtcomm.2021.102886
  129. Kim, B.; Hebert, J.M.; Liu, D.; Auguste, D.T. A Lipid targeting, pH-responsive nanoemulsion encapsulating a DNA intercalating agent and HDAC inhibitor reduces tnbc tumor burden. Adv. Ther., 2021, 4(3), 2000211. doi: 10.1002/adtp.202000211
  130. Sherr, C.J.; Beach, D.; Shapiro, G.I. Targeting CDK4 and CDK6: From discovery to therapy. Cancer Discov., 2016, 6(4), 353-367. doi: 10.1158/2159-8290.CD-15-0894 PMID: 26658964
  131. Rocca, A.; Schirone, A.; Maltoni, R.; Bravaccini, S.; Cecconetto, L.; Farolfi, A.; Bronte, G.; Andreis, D. Progress with palbociclib in breast cancer: Latest evidence and clinical considerations. Ther. Adv. Med. Oncol., 2017, 9(2), 83-105. doi: 10.1177/1758834016677961 PMID: 28203301
  132. Xiang, Y.; Liu, C.; Chen, L.; Li, L.; Huang, Y. Active targeting nanoparticle self-assembled from cisplatin-palbociclib amphiphiles ensures optimal drug ratio for combinatorial chemotherapy. Adv. Ther., 2021, 4(6), 2000261. doi: 10.1002/adtp.202000261
  133. Rajan, M.; Praphakar, R.A.; Govindaraj, D.; Arulselvan, P.; Kumar, S.S. Cytotoxicity assessment of palbociclib-loaded chitosan-polypropylene glycol nano vehicles for cancer chemotherapy. Mater. Today Chem., 2017, 6, 26-33. doi: 10.1016/j.mtchem.2017.08.002
  134. McKeage, K.; Curran, M.P.; Plosker, G.L. Fulvestrant. Drugs, 2004, 64(6), 633-648. doi: 10.2165/00003495-200464060-00009 PMID: 15018596
  135. Hascicek, C.; Sengel-Turk, C.T.; Gumustas, M.; Ozkan, A.S.; Bakar, F.; Das-Evcimen, N.; Savaser, A.; Ozkan, Y. Fulvestrant-loaded polymer-based nanoparticles for local drug delivery: Preparation and in vitro characterization. J. Drug Deliv. Sci. Technol., 2017, 40, 73-82. doi: 10.1016/j.jddst.2017.06.001
  136. Lee, S.Y.; Jang, C.; Lee, K.A. Polo-like kinases (plks), a key regulator of cell cycle and new potential target for cancer therapy. Balsaeng’gwa Saengsig, 2014, 18(1), 65-71. doi: 10.12717/DR.2014.18.1.065 PMID: 25949173
  137. Ganesh, A.N.; McLaughlin, C.K.; Duan, D.; Shoichet, B.K.; Shoichet, M.S. A new spin on antibody–drug conjugates: Trastuzumab-fulvestrant colloidal drug aggregates target HER2-positive cells. ACS Appl. Mater. Interfaces, 2017, 9(14), 12195-12202. doi: 10.1021/acsami.6b15987 PMID: 28319364
  138. Zuo, Z.Q.; Chen, K.G.; Yu, X.Y.; Zhao, G.; Shen, S.; Cao, Z.T.; Luo, Y.L.; Wang, Y.C.; Wang, J. Promoting tumor penetration of nanoparticles for cancer stem cell therapy by TGF-β signaling pathway inhibition. Biomaterials, 2016, 82, 48-59. doi: 10.1016/j.biomaterials.2015.12.014 PMID: 26751819
  139. Zhang, J. Wang, Y.; Li, J.; Zhao, W.; Yang, Z.; Feng, Y. α-Santalol functionalized chitosan nanoparticles as efficient inhibitors of polo-like kinase in triple negative breast cancer. RSC Advances, 2020, 10(9), 5487-5501. doi: 10.1039/C9RA09084C PMID: 35498298
  140. Peng, J.; Xiao, Y.; Li, W.; Yang, Q.; Tan, L.; Jia, Y.; Qu, Y.; Qian, Z. Photosensitizer micelles together with IDO inhibitor enhance cancer photothermal therapy and immunotherapy. Adv. Sci., 2018, 5(5), 1700891. doi: 10.1002/advs.201700891 PMID: 29876215
  141. Wang, Y.; Song, W.; Hu, M.; An, S.; Xu, L.; Li, J.; Kinghorn, K.A.; Liu, R.; Huang, L. Nanoparticle-mediated HMGA1 silencing promotes lymphocyte infiltration and boosts checkpoint blockade immunotherapy for cancer. Adv. Funct. Mater., 2018, 28(36), 1802847. doi: 10.1002/adfm.201802847
  142. Zhang, R.; Zhu, Z.; Lv, H.; Li, F.; Sun, S.; Li, J.; Lee, C.S. Immune checkpoint blockade mediated by a small-molecule nanoinhibitor targeting the PD-1/PD-L1 pathway synergizes with photodynamic therapy to elicit antitumor immunity and antimetastatic effects on breast cancer. Small, 2019, 15(49), 1903881. doi: 10.1002/smll.201903881 PMID: 31702880
  143. Gong, T.; Cai, Y.; Sun, F.; Chen, J.; Su, Z.; Shuai, X.; Shan, H. A nanodrug incorporating siRNA PD-L1 and Birinapant for enhancing tumor immunotherapy. Biomater. Sci., 2021, 9(23), 8007-8018. doi: 10.1039/D1BM01299A PMID: 34714906
  144. Pacheco-Torres, J.; Penet, M.F.; Krishnamachary, B.; Mironchik, Y.; Chen, Z.; Bhujwalla, Z.M. PD-L1 siRNA theranostics with a dextran nanoparticle highlights the importance of nanoparticle delivery for effective tumor PD-L1 downregulation. Front. Oncol., 2021, 10, 614365. doi: 10.3389/fonc.2020.614365 PMID: 33718115
  145. Wang, Y.; Yu, J.; Li, D.; Zhao, L.; Sun, B.; Wang, J.; Wang, Z.; Zhou, S.; Wang, M.; Yang, Y.; Liu, H.; Zhang, H.; Lv, Q.; Jiang, Q.; He, Z.; Wang, Y. Paclitaxel derivative-based liposomal nanoplatform for potentiated chemo-immunotherapy. J. Control. Release, 2022, 341, 812-827. doi: 10.1016/j.jconrel.2021.12.023 PMID: 34953979
  146. Tian, Y.; Wang, X.; Zhao, S.; Liao, X.; Younis, M.R.; Wang, S.; Zhang, C.; Lu, G. JQ1-loaded polydopamine nanoplatform inhibits c-MYC/Programmed cell death ligand 1 to enhance photothermal therapy for triple-negative breast cancer. ACS Appl. Mater. Interfaces, 2019, 11(50), 46626-46636. doi: 10.1021/acsami.9b18730 PMID: 31751121
  147. Cimas, F.J.; Niza, E.; Juan, A.; Noblejas-López, M.M.; Bravo, I.; Lara-Sanchez, A.; Alonso-Moreno, C.; Ocaña, A. Controlled Delivery of BET-PROTACs: in vitro evaluation of MZ1-loaded polymeric antibody conjugated nanoparticles in breast cancer. Pharmaceutics, 2020, 12(10), 986. doi: 10.3390/pharmaceutics12100986 PMID: 33086530
  148. Maggisano, V.; Celano, M.; Malivindi, R.; Barone, I.; Cosco, D.; Mio, C.; Mignogna, C.; Panza, S.; Damante, G.; Fresta, M.; Andò, S.; Russo, D.; Catalano, S.; Bulotta, S. Nanoparticles loaded with the BET inhibitor JQ1 block the growth of triple negative breast cancer cells in vitro and in vivo. cancers, 2019, 12(1), 91. doi: 10.3390/cancers12010091 PMID: 31905936
  149. Zhou, F.; Gao, J.; Xu, Z.; Li, T.; Gao, A.; Sun, F.; Wang, F.; Wang, W.; Geng, Y.; Zhang, F.; Xu, Z.P.; Yu, H. Overcoming immune resistance by sequential prodrug nanovesicles for promoting chemoimmunotherapy of cancer. Nano Today, 2021, 36, 101025. doi: 10.1016/j.nantod.2020.101025
  150. Yang, X.Z.; Dou, S.; Sun, T.M.; Mao, C.Q.; Wang, H.X.; Wang, J. Systemic delivery of siRNA with cationic lipid assisted PEG-PLA nanoparticles for cancer therapy. J. Control. Release, 2011, 156(2), 203-211. doi: 10.1016/j.jconrel.2011.07.035 PMID: 21839126
  151. Alsaab, H.O.; Sau, S.; Alzhrani, R.; Tatiparti, K.; Bhise, K.; Kashaw, S.K.; Iyer, A.K. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: Mechanism, combinations, and clinical outcome. Front. Pharmacol., 2017, 8, 561. doi: 10.3389/fphar.2017.00561 PMID: 28878676
  152. Wang, J.; Li, G.L.; Ming, S.L.; Wang, C.F.; Shi, L.J.; Su, B.Q.; Wu, H.T.; Zeng, L.; Han, Y.Q.; Liu, Z.H.; Jiang, D.W.; Du, Y.K.; Li, X.D.; Zhang, G.P.; Yang, G.Y.; Chu, B.B. BRD4 inhibition exerts anti-viral activity through DNA damage-dependent innate immune responses. PLoS Pathog., 2020, 16(3), e1008429. doi: 10.1371/journal.ppat.1008429 PMID: 32208449
  153. Ban, M. Petrić, Miše, B.; Vrdoljak, E. Early HER2-positive breast cancer: Current treatment and novel approaches. Breast Care, 2020, 15(6), 560-569. doi: 10.1159/000511883 PMID: 33447229
  154. Venetis, K.; Crimini, E.; Sajjadi, E.; Corti, C.; Guerini-Rocco, E. viale, G.; Curigliano, G.; Criscitiello, C.; Fusco, N. HER2 low, ultra-low, and novel complementary biomarkers: Expanding the spectrum of HER2 positivity in breast cancer. Front. Mol. Biosci., 2022, 9, 834651. doi: 10.3389/fmolb.2022.834651 PMID: 35372498
  155. Zhang, L.; Zhang, S.; Ruan, S.; Zhang, Q.; He, Q.; Gao, H. Lapatinib-incorporated lipoprotein-like nanoparticles: Preparation and a proposed breast cancer-targeting mechanism. Acta Pharmacol. Sin., 2014, 35(6), 846-852. doi: 10.1038/aps.2014.26 PMID: 24902791
  156. Shokooh Saremi, S.; Nikpoor, A.R.; Sadri, K.; Mehrabian, A.; Karimi, M.; Mansouri, A.; Jafari, M.R.; Badiee, A. Development of a stable and high loaded liposomal formulation of lapatinib with enhanced therapeutic effects for breast cancer in combination with Caelyx®: in vitro and in vivo evaluations. Colloids Surf. B Biointerfaces, 2021, 207, 112012. doi: 10.1016/j.colsurfb.2021.112012 PMID: 34352656
  157. Zajdel, A.; Wilczok, A.; Jelonek, K. Musiał-Kulik, M.; Foryś, A.; Li, S.; Kasperczyk, J. Cytotoxic effect of paclitaxel and lapatinib Co-delivered in polylactide-co-Poly(ethylene glycol) micelles on HER-2-negative breast cancer cells. Pharmaceutics, 2019, 11(4), 169. doi: 10.3390/pharmaceutics11040169 PMID: 30959904
  158. Wan, X.; Zheng, X.; Pang, X.; Zhang, Z.; Zhang, Q. Incorporation of lapatinib into human serum albumin nanoparticles with enhanced anti-tumor effects in HER2-positive breast cancer. Colloids Surf. B Biointerfaces, 2015, 136, 817-827. doi: 10.1016/j.colsurfb.2015.10.018 PMID: 26539808
  159. Agrawal, S.; Dwivedi, M.; Ahmad, H.; Chadchan, S.B.; Arya, A.; Sikandar, R.; Kaushik, S.; Mitra, K.; Jha, R.K.; Dwivedi, A.K. CD44 targeting hyaluronic acid coated lapatinib nanocrystals foster the efficacy against triple-negative breast cancer. Nanomedicine, 2018, 14(2), 327-337. doi: 10.1016/j.nano.2017.10.010 PMID: 29129754
  160. Aleanizy, F.S.; Alqahtani, F.Y.; Setó, S.; Khalil, N.; Aleshaiwi, L.; Alghamdi, M.; Alquadeib, B.; Alkahtani, H.; Aldarwesh, A.; Alqahtani, Q.H.; Abdelhady, H.G.; Alsarra, I. Trastuzumab targeted neratinib loaded poly-amidoamine dendrimer nanocapsules for breast cancer therapy. Int. J. Nanomedicine, 2020, 15, 5433-5443. doi: 10.2147/IJN.S256898 PMID: 32801698
  161. Komarova, T.V.; Kosorukov, V.S.; Frolova, O.Y.; Petrunia, I.V.; Skrypnik, K.A.; Gleba, Y.Y.; Dorokhov, Y.L. Plant-made trastuzumab (herceptin) inhibits HER2/Neu+ cell proliferation and retards tumor growth. PLoS One, 2011, 6(3), e17541. doi: 10.1371/journal.pone.0017541 PMID: 21390232
  162. Truffi, M.; Colombo, M.; Sorrentino, L.; Pandolfi, L.; Mazzucchelli, S.; Pappalardo, F.; Pacini, C.; Allevi, R.; Bonizzi, A.; Corsi, F.; Prosperi, D. Multivalent exposure of trastuzumab on iron oxide nanoparticles improves antitumor potential and reduces resistance in HER2-positive breast cancer cells. Sci. Rep., 2018, 8(1), 6563. doi: 10.1038/s41598-018-24968-x PMID: 29700387
  163. Gao, H.; Cao, S.; Chen, C.; Cao, S.; Yang, Z.; Pang, Z.; Xi, Z.; Pan, S.; Zhang, Q.; Jiang, X. Incorporation of lapatinib into lipoprotein-like nanoparticles with enhanced water solubility and anti-tumor effect in breast cancer. Nanomedicine, 2013, 8(9), 1429-1442. doi: 10.2217/nnm.12.180 PMID: 23451915
  164. Hu, H.; Lin, Z.; He, B.; Dai, W.; Wang, X.; Wang, J.; Zhang, X.; Zhang, H.; Zhang, Q. A novel localized codelivery system with lapatinib microparticles and paclitaxel nanoparticles in a peritumorally injectable in situ hydrogel. J. Control. Release, 2015, 220(Pt A), 189-200. doi: 10.1016/j.jconrel.2015.10.018 PMID: 26474677
  165. Huo, Z.J.; Wang, S.J.; Wang, Z.Q.; Zuo, W.S.; Liu, P.; Pang, B.; Liu, K. Novel nanosystem to enhance the antitumor activity of lapatinib in breast cancer treatment: Therapeutic efficacy evaluation. Cancer Sci., 2015, 106(10), 1429-1437. doi: 10.1111/cas.12737 PMID: 26177628
  166. Wei, Y.; Xu, S.; Wang, F.; Zou, A.; Zhang, S.; Xiong, Y.; Cao, S.; Zhang, Q.; Wang, Y.; Jiang, X. A novel combined micellar system of lapatinib and Paclitaxel with enhanced antineoplastic effect against human epidermal growth factor receptor-2 positive breast tumor in vitro. J. Pharm. Sci., 2015, 104(1), 165-177. doi: 10.1002/jps.24234 PMID: 25421492
  167. Wan, X.; Zheng, X.; Pang, X.; Pang, Z.; Zhao, J.; Zhang, Z.; Jiang, T.; Xu, W.; Zhang, Q.; Jiang, X. Lapatinib-loaded human serum albumin nanoparticles for the prevention and treatment of triple-negative breast cancer metastasis to the brain. Oncotarget, 2016, 7(23), 34038-34051. doi: 10.18632/oncotarget.8697 PMID: 27086917
  168. Wang, S.; Zhang, J.; Wang, Y.; Chen, M. Hyaluronic acid-coated PEI-PLGA nanoparticles mediated co-delivery of doxorubicin and miR-542-3p for triple negative breast cancer therapy. Nanomedicine, 2016, 12(2), 411-420. doi: 10.1016/j.nano.2015.09.014 PMID: 26711968
  169. Eloy, J.O.; Petrilli, R.; Chesca, D.L.; Saggioro, F.P.; Lee, R.J.; Marchetti, J.M. Anti-HER2 immunoliposomes for co-delivery of paclitaxel and rapamycin for breast cancer therapy. Eur. J. Pharm. Biopharm., 2017, 115, 159-167. doi: 10.1016/j.ejpb.2017.02.020 PMID: 28257810
  170. Lee, S.Y.; Cho, H.J. Mitochondria targeting and destabilizing hyaluronic acid derivative-based nanoparticles for the delivery of lapatinib to triple-negative breast cancer. Biomacromolecules, 2019, 20(2), 835-845. doi: 10.1021/acs.biomac.8b01449 PMID: 30566834
  171. Niza, E.; Noblejas-López, M.M.; Bravo, I.; Nieto-Jiménez, C.; Castro-Osma, J.A.; Canales-Vázquez, J.; Lara-Sanchez, A.; Galán Moya, E.M.; Burgos, M.; Ocaña, A.; Alonso-Moreno, C. Trastuzumab-targeted biodegradable nanoparticles for enhanced delivery of dasatinib in HER2+ metastasic breast cancer. nanomaterials, 2019, 9(12), 1793. doi: 10.3390/nano9121793 PMID: 31888247
  172. Tanaka, S.; Matsunami, N.; Morishima, H.; Oda, N.; Takashima, T.; Noda, S.; Kashiwagi, S.; Tauchi, Y.; Asano, Y.; Kimura, K.; Fujioka, H.; Terasawa, R.; Kawaguchi, K.; Ikari, A.; Morimoto, T.; Michishita, S.; Kobayashi, T.; Sakane, J.; Nitta, T.; Sato, N.; Hokimoto, N.; Nishida, Y.; Iwamoto, M. De-escalated neoadjuvant therapy with nanoparticle albumin-bound paclitaxel and trastuzumab for low-risk pure HER2 breast cancer. Cancer Chemother. Pharmacol., 2019, 83(6), 1099-1104. doi: 10.1007/s00280-019-03836-z PMID: 30963212
  173. Bonde, G.V.; Ajmal, G.; Yadav, S.K.; Mittal, P.; Singh, J.; Bakde, B.V.; Mishra, B. Assessing the viability of Soluplus® self-assembled nanocolloids for sustained delivery of highly hydrophobic lapatinib (anticancer agent): Optimisation and in vitro characterisation. Colloids Surf. B Biointerfaces, 2020, 185, 110611. doi: 10.1016/j.colsurfb.2019.110611 PMID: 31704609
  174. Guo, Z.; Liang, E.; Sui, J.; Ma, M.; Yang, L.; Wang, J.; Hu, J.; Sun, Y.; Fan, Y. Lapatinib-loaded acidity-triggered charge switchable polycarbonate-doxorubicin conjugate micelles for synergistic breast cancer chemotherapy. Acta Biomater., 2020, 118, 182-195. doi: 10.1016/j.actbio.2020.09.051 PMID: 33045399
  175. Guo, Z.; Sui, J.; Ma, M.; Hu, J.; Sun, Y.; Yang, L.; Fan, Y.; Zhang, X. pH-Responsive charge switchable PEGylated ε-poly-l-lysine polymeric nanoparticles-assisted combination therapy for improving breast cancer treatment. J. Control. Release, 2020, 326, 350-364. doi: 10.1016/j.jconrel.2020.07.030 PMID: 32707209
  176. Mohammadian, M.; Kouchakzadeh, H.; Rahmandoust, M.; Mohammadian, T. Targeted albumin nanoparticles for the enhancement of gemcitabine toxicity on cancerous cells. J. Drug Deliv. Sci. Technol., 2020, 56, 101503. doi: 10.1016/j.jddst.2020.101503
  177. Peyvand, P.; Vaezi, Z.; Sedghi, M.; Dalir, N.; Ma’mani, L.; Naderi-Manesh, H. Imidazolium-based ionic liquid functionalized mesoporous silica nanoparticles as a promising nano-carrier: Response surface strategy to investigate and optimize loading and release process for Lapatinib delivery. Pharm. Dev. Technol., 2020, 25(9), 1150-1161. doi: 10.1080/10837450.2020.1803909 PMID: 32746669
  178. Shu, M.; Gao, F.; Yu, C.; Zeng, M.; He, G.; Wu, Y.; Su, Y.; Hu, N.; Zhou, Z.; Yang, Z.; Xu, L. Dual-targeted therapy in HER2-positive breast cancer cells with the combination of carbon dots/HER3 siRNA and trastuzumab. Nanotechnology, 2020, 31(33), 335102. doi: 10.1088/1361-6528/ab8a8a PMID: 32303014
  179. Sui, J.; He, M.; Yang, Y.; Ma, M.; Guo, Z.; Zhao, M.; Liang, J.; Sun, Y.; Fan, Y.; Zhang, X. Reversing P-glycoprotein-associated multidrug resistance of breast cancer by targeted acid-cleavable polysaccharide nanoparticles with lapatinib sensitization. ACS Appl. Mater. Interfaces, 2020, 12(46), 51198-51211. doi: 10.1021/acsami.0c13986 PMID: 33147005
  180. Wang, J.; Lv, F.M.; Wang, D.L.; Du, J.L.; Guo, H.Y.; Chen, H.N.; Zhao, S.J.; Liu, Z.P.; Liu, Y. Synergistic antitumor effects on drug-resistant breast cancer of paclitaxel/lapatinib composite nanocrystals. Molecules, 2020, 25(3), 604. doi: 10.3390/molecules25030604 PMID: 32019194
  181. Bitay, E.; Gergely, A.L.; Balint, I.; Molnar, K.; Fulop, I.; Fogarasi, E.; Szabo, Z.I. Preparation and characterization of lapatinib-loaded PVP nanofiber amorphous solid dispersion by electrospinning. Express Polym. Lett., 2021, 15(11), 1041-1050. doi: 10.3144/expresspolymlett.2021.84
  182. He, W.; Evans, A.C.; Hynes, W.F.; Coleman, M.A.; Robertson, C. Nanolipoprotein-mediated HER2 protein transfection induces malignant transformation in human breast acinar cultures. ACS Omega, 2021, 6(44), 29416-29423. doi: 10.1021/acsomega.1c03086 PMID: 34778614
  183. Prabhu, P.P. Prathvi; Gujaran, T.V.; Mehta, C.H.; Suresh, A.; Koteshwara, K.B.; Pai, K.G.; Nayak, U.Y. Development of lapatinib nanosponges for enhancing bioavailability. J. Drug Deliv. Sci. Technol., 2021, 65, 102684. doi: 10.1016/j.jddst.2021.102684
  184. Nieto, C.; Centa, A.; Rodríguez-Rodríguez, J.A.; Pandiella, A.; Martín del Valle, E.M. Paclitaxel-trastuzumab mixed nanovehicle to target HER2-overexpressing tumors. nanomaterials, 2019, 9(7), 948. doi: 10.3390/nano9070948 PMID: 31261957
  185. Gong, Y.; Gai, L.; Tang, J.; Fu, J.; Wang, Q.; Zeng, E.Y. Reduction of Cr(VI) in simulated groundwater by FeS-coated iron magnetic nanoparticles. Sci. Total Environ., 2017, 595, 743-751. doi: 10.1016/j.scitotenv.2017.03.282 PMID: 28407591
  186. Park, I.H.; Sohn, J.H.; Kim, S.B.; Lee, K.S.; Chung, J.S.; Lee, S.H.; Kim, T.Y.; Jung, K.H.; Cho, E.K.; Kim, Y.S.; Song, H.S.; Seo, J.H.; Ryoo, H.M.; Lee, S.A.; Yoon, S.Y.; Kim, C.S.; Kim, Y.T.; Kim, S.Y.; Jin, M.R.; Ro, J. An open-label, randomized, parallel, phase III trial evaluating the efficacy and safety of polymeric micelle-formulated paclitaxel compared to conventional cremophor el-based paclitaxel for recurrent or metastatic HER2-negative breast cancer. Cancer Res. Treat., 2017, 49(3), 569-577. doi: 10.4143/crt.2016.289 PMID: 27618821
  187. Huang, L.; Chen, S.; Yao, L.; Liu, G.; Wu, J.; Shao, Z. Phase II trial of weekly nab-paclitaxel and carboplatin treatment with or without trastuzumab as nonanthracycline neoadjuvant chemotherapy for locally advanced breast cancer. Int. J. Nanomedicine, 2015, 10, 1969-1975. PMID: 25792830
  188. Tezuka, K.; Takashima, T.; Kashiwagi, S.; Kawajiri, H.; Tokunaga, S.; Tei, S.; Nishimura, S.; Yamagata, S.; Noda, S.; Nishimori, T.; Mizuyama, Y.; Sunami, T.; Ikeda, K.; Ogawa, Y.; Onoda, N.; Ishikawa, T.; Kudoh, S.; Takada, M.; Hirakawa, K. Phase I study of nanoparticle albumin-bound paclitaxel, carboplatin and trastuzumab in women with human epidermal growth factor receptor 2-overexpressing breast cancer. Mol. Clin. Oncol., 2017, 6(4), 534-538. doi: 10.3892/mco.2017.1176 PMID: 28413662
  189. Conlin, A.K.; Seidman, A.D.; Bach, A.; Lake, D.; Dickler, M.; D’Andrea, G.; Traina, T.; Danso, M.; Brufsky, A.M.; Saleh, M.; Clawson, A.; Hudis, C.A. Phase II trial of weekly nanoparticle albumin-bound paclitaxel with carboplatin and trastuzumab as first-line therapy for women with HER2-overexpressing metastatic breast cancer. Clin. Breast Cancer, 2010, 10(4), 281-287. doi: 10.3816/CBC.2010.n.036 PMID: 20705560
  190. Mrózek, E.; Layman, R.; Ramaswamy, B.; Lustberg, M.; Vecchione, A.; Knopp, M.V.; Shapiro, C.L. Phase II trial of neoadjuvant weekly nanoparticle albumin-bound paclitaxel, carboplatin, and biweekly bevacizumab therapy in women with clinical stage II or III HER2-negative breast cancer. Clin. Breast Cancer, 2014, 14(4), 228-234. doi: 10.1016/j.clbc.2014.02.005 PMID: 24703985
  191. Yin, Y.; Li, W.; Zha, X.; Wang, J. 105P Lower-dose apatinib combined with nanoparticle albumin-bound paclitaxel and carboplatin as a neoadjuvant regimen for triple negative breast cancer: A prospective, single-arm, phase II study. Ann. Oncol., 2020, 31, S52. doi: 10.1016/j.annonc.2020.03.044
  192. Chan, S.; Davidson, N.; Juozaityte, E.; Erdkamp, F.; Pluzanska, A.; Azarnia, N.; Lee, L.W. Phase III trial of liposomal doxorubicin and cyclophosphamide compared with epirubicin and cyclophosphamide as first-line therapy for metastatic breast cancer. Ann. Oncol., 2004, 15(10), 1527-1534. doi: 10.1093/annonc/mdh393 PMID: 15367414

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers