Integrating Single-cell and Bulk RNA-seq to Construct a Metastasis-related Model for Evaluating Immunotherapy and Chemotherapy in Uveal Melanoma
- Authors: Du Y.1, Jiang X.2, Zhang Y.2, Ying J.2, Yi Q.2
-
Affiliations:
- Pharmacy Department of Ningbo Eye Hospital, Wenzhou Medical University
- Ophthalmology Department of Ningbo Eye Hospital, Wenzhou Medical University
- Issue: Vol 31, No 42 (2024)
- Pages: 7030-7042
- Section: Anti-Infectives and Infectious Diseases
- URL: https://rjeid.com/0929-8673/article/view/645155
- DOI: https://doi.org/10.2174/0109298673286355231222054226
- ID: 645155
Cite item
Full Text
Abstract
Background:Metastasis is a major cause of death in UM, highlighting the need to use highly specific and sensitive prognostic markers to identify patients with a risk of developing metastasis.
Aims:The aim of this study was to improve the current precision treatment for patients with metastatic uveal melanoma (UM).
Objective:The objective of this work was to investigate the heterogeneity between primary human UM and metastatic UM at the single-cell level and to discover potential molecules regulating UM metastasis.
Methods:Seurat R toolkit was employed to analyze single-cell sequencing data of UM and to identify differentially expressed genes (DEGs) between primary and metastatic UM. Least absolute shrinkage and selection operator (LASSO) and Cox regression analyses were performed on the DEGs from the bulk RNA-seq cohort to develop a prognostic model. Based on the model, patients were divided into high and low groups. The correlations among the risk score, immune indicators, immune checkpoint blockade (ICB) therapy, and anti-tumor drug therapy were analyzed.
Results:Cell types in primary UM and metastatic UM tumors include B/plasma cells, endothelial cells, melanocytes, monocytes/macrophages, photoreceptor cells, and T cells. Among 157 DEGs between the two tumor types, S100A4, PDE4B, CHCHD10, NSG1, and C4orf48 were selected to construct a prognostic model. The model could accurately and independently predict response to ICB treatment and sensitivity to antineoplastic drugs for UM patients as well as their immune infiltration levels, risk of death, and metastasis possibility.
Conclusions:This study analyzed the tumor ecosystem of primary and metastatic UM, providing a metastasis-related model that could be used to evaluate the prognosis, risk of metastasis, immunotherapy, and efficacy of antineoplastic drug treatment of UM.
About the authors
Yue Du
Pharmacy Department of Ningbo Eye Hospital, Wenzhou Medical University
Email: info@benthamscience.net
Xue Jiang
Ophthalmology Department of Ningbo Eye Hospital, Wenzhou Medical University
Email: info@benthamscience.net
Yanyan Zhang
Ophthalmology Department of Ningbo Eye Hospital, Wenzhou Medical University
Email: info@benthamscience.net
Jianing Ying
Ophthalmology Department of Ningbo Eye Hospital, Wenzhou Medical University
Email: info@benthamscience.net
Quanyong Yi
Ophthalmology Department of Ningbo Eye Hospital, Wenzhou Medical University
Author for correspondence.
Email: info@benthamscience.net
References
- Smit, K.N.; Jager, M.J.; de Klein, A.; Kiliҫ, E. Uveal melanoma: Towards a molecular understanding. Prog. Retin. Eye Res., 2020, 75, 100800. doi: 10.1016/j.preteyeres.2019.100800 PMID: 31563544
- Sajan, A.; Fordyce, S.; Sideris, A.; Liou, C.; Toor, Z.; Filtes, J.; Krishnasamy, V.; Ahmad, N.; Reis, S.; Brejt, S.; Baig, A.; Khan, S.; Caplan, M.; Sperling, D.; Weintraub, J. Minimally invasive treatment options for hepatic uveal melanoma metastases. Diagnostics, 2023, 13(11), 1836. doi: 10.3390/diagnostics13111836 PMID: 37296688
- Banou, L.; Tsani, Z.; Arvanitogiannis, K.; Pavlaki, M.; Dastiridou, A.; Androudi, S. Radiotherapy in uveal melanoma: A review of ocular complications. Curr. Oncol., 2023, 30(7), 6374-6396. doi: 10.3390/curroncol30070470 PMID: 37504330
- Costanzo, R.; Parmar, V.; Marrone, S.; Gerardo, I.D.; Federico, N.G.; Emmanuele, U.G.; Scalia, G. Differential diagnosis between primary intracranial melanoma and cerebral cavernoma in Crohns disease: A case report and literature review. Oncologie, 2022, 24(4), 937-942. doi: 10.32604/oncologie.2022.027155
- Chattopadhyay, C.; Kim, D.W.; Gombos, D.S.; Oba, J.; Qin, Y.; Williams, M.D.; Esmaeli, B.; Grimm, E.A.; Wargo, J.A.; Woodman, S.E.; Patel, S.P. Uveal melanoma: From diagnosis to treatment and the science in between. Cancer, 2016, 122(15), 2299-2312. doi: 10.1002/cncr.29727 PMID: 26991400
- Paalić, D.; Nikueva-Martić, T.; Sekovanić, A.; Katelan, S. Genetic and epigenetic features of uveal melanoma - an overview and clinical implications. Int. J. Mol. Sci., 2023, 24(16), 12807. doi: 10.3390/ijms241612807 PMID: 37628989
- Rantala, E.S.; Hernberg, M.M.; Piperno-Neumann, S.; Grossniklaus, H.E.; Kivelä, T.T. Metastatic uveal melanoma: The final frontier. Prog. Retin. Eye Res., 2022, 90, 101041. doi: 10.1016/j.preteyeres.2022.101041 PMID: 34999237
- Jager, M.J.; Shields, C.L.; Cebulla, C.M.; Abdel-Rahman, M.H.; Grossniklaus, H.E.; Stern, M.H.; Carvajal, R.D.; Belfort, R.N.; Jia, R.; Shields, J.A.; Damato, B.E. Author correction: Uveal melanoma. Nat. Rev. Dis. Primers, 2022, 8(1), 4. doi: 10.1038/s41572-022-00339-9 PMID: 35039549
- Katelan, S.; Mrazovac Zimak, D.; Ivanković, M.; Marković, I.; Gverović Antunica, A. Liver metastasis in uveal melanoma - treatment options and clinical outcome. Front. Biosci.-Landmark, 2022, 27(2), 072. doi: 10.31083/j.fbl2702072 PMID: 35227015
- Wang, M.M.; Chen, C.; Lynn, M.N.; Figueiredo, C.R.; Tan, W.J.; Lim, T.S.; Coupland, S.E.; Chan, A.S.Y. Applying single-cell technology in uveal melanomas: Current trends and perspectives for improving uveal melanoma metastasis surveillance and tumor profiling. Front. Mol. Biosci., 2021, 7, 611584. doi: 10.3389/fmolb.2020.611584 PMID: 33585560
- Chen, Y.N.; Wang, Y.N.; Chen, M.X.; Zhang, K.; Chen, R.T.; Fang, R.; Wang, H.; Zhang, H.H.; Huang, Y.N.; Feng, Y.; Luo, J.T.; Lan, Y.J.; Liu, Y.M.; Li, Y.; Wei, W.B. Machine learning models for outcome prediction of Chinese uveal melanoma patients: A 15-year follow-up study. Cancer Commun., 2022, 42(3), 273-276. doi: 10.1002/cac2.12253 PMID: 35001563
- Wang, Y.; Xie, M.; Lin, F.; Sheng, X.; Zhao, X.; Zhu, X.; Wang, Y.; Lu, B.; Chen, J.; Zhang, T.; Wan, X.; Liu, W.; Sun, X. Nomogram of uveal melanoma as prediction model of metastasis risk. Heliyon, 2023, 9(8), e18956. doi: 10.1016/j.heliyon.2023.e18956 PMID: 37609406
- He, L.; Mou, P.; Yang, C.; Huang, C.; Shen, Y.; Zhang, J.; Wei, R. Single-cell sequencing in primary intraocular tumors: Understanding heterogeneity, the microenvironment, and drug resistance. Front. Immunol., 2023, 14, 1194590. doi: 10.3389/fimmu.2023.1194590 PMID: 37359513
- Butler, A.; Hoffman, P.; Smibert, P.; Papalexi, E.; Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat. Biotechnol., 2018, 36(5), 411-420. doi: 10.1038/nbt.4096 PMID: 29608179
- Zhang, X.; Lan, Y.; Xu, J.; Quan, F.; Zhao, E.; Deng, C.; Luo, T.; Xu, L.; Liao, G.; Yan, M.; Ping, Y.; Li, F.; Shi, A.; Bai, J.; Zhao, T.; Li, X.; Xiao, Y. CellMarker: A manually curated resource of cell markers in human and mouse. Nucleic Acids Res., 2019, 47(D1), D721-D728. doi: 10.1093/nar/gky900 PMID: 30289549
- Durante, M.A.; Rodriguez, D.A.; Kurtenbach, S.; Kuznetsov, J.N.; Sanchez, M.I.; Decatur, C.L.; Snyder, H.; Feun, L.G.; Livingstone, A.S.; Harbour, J.W. Single-cell analysis reveals new evolutionary complexity in uveal melanoma. Nat. Commun., 2020, 11(1), 496. doi: 10.1038/s41467-019-14256-1 PMID: 31980621
- Yoshihara, K.; Shahmoradgoli, M.; Martínez, E.; Vegesna, R.; Kim, H.; Torres-Garcia, W.; Treviño, V.; Shen, H.; Laird, P.W.; Levine, D.A.; Carter, S.L.; Getz, G.; Stemke-Hale, K.; Mills, G.B.; Verhaak, R.G.W. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun., 2013, 4(1), 2612. doi: 10.1038/ncomms3612 PMID: 24113773
- Becht, E.; Giraldo, N.A.; Lacroix, L.; Buttard, B.; Elarouci, N.; Petitprez, F.; Selves, J.; Laurent-Puig, P.; Sautès-Fridman, C.; Fridman, W.H.; de Reyniès, A. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol., 2016, 17(1), 218. doi: 10.1186/s13059-016-1070-5 PMID: 27765066
- Charoentong, P.; Finotello, F.; Angelova, M.; Mayer, C.; Efremova, M.; Rieder, D.; Hackl, H.; Trajanoski, Z. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell Rep., 2017, 18(1), 248-262. doi: 10.1016/j.celrep.2016.12.019 PMID: 28052254
- Hu, F.F.; Liu, C.J.; Liu, L.L.; Zhang, Q.; Guo, A.Y. Expression profile of immune checkpoint genes and their roles in predicting immunotherapy response. Brief. Bioinform., 2021, 22(3), bbaa176. doi: 10.1093/bib/bbaa176 PMID: 32814346
- Jiang, P.; Gu, S.; Pan, D.; Fu, J.; Sahu, A.; Hu, X.; Li, Z.; Traugh, N.; Bu, X.; Li, B.; Liu, J.; Freeman, G.J.; Brown, M.A.; Wucherpfennig, K.W.; Liu, X.S. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med., 2018, 24(10), 1550-1558. doi: 10.1038/s41591-018-0136-1 PMID: 30127393
- Geeleher, P.; Cox, N.; Huang, R.S. pRRophetic: An R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLoS One, 2014, 9(9), e107468. doi: 10.1371/journal.pone.0107468 PMID: 25229481
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; Mesirov, J.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci., 2005, 102(43), 15545-15550. doi: 10.1073/pnas.0506580102 PMID: 16199517
- Brănişteanu, D.E.; Porumb-Andrese, E.; Porumb, V.; Stărică, A.; Moraru, A.D.; Nicolescu, A.C.; Zemba, M.; Brănişteanu, C.I.; Brănişteanu, G.; Brănişteanu, D.C. New treatment horizons in uveal and cutaneous melanoma. Life, 2023, 13(8), 1666. doi: 10.3390/life13081666 PMID: 37629523
- Bustamante, P.; Piquet, L.; Landreville, S.; Burnier, J.V. Uveal melanoma pathobiology: Metastasis to the liver. Semin. Cancer Biol., 2021, 71, 65-85. doi: 10.1016/j.semcancer.2020.05.003 PMID: 32450140
- Koseoglu, N.D.; Corrêa, Z.M.; Liu, T.Y.A. Artificial intelligence for ocular oncology. Curr. Opin. Ophthalmol., 2023, 34(5), 437-440. doi: 10.1097/ICU.0000000000000982 PMID: 37326226
- Krishna, Y.; McCarthy, C.; Kalirai, H.; Coupland, S.E. Inflammatory cell infiltrates in advanced metastatic uveal melanoma. Hum. Pathol., 2017, 66, 159-166. doi: 10.1016/j.humpath.2017.06.005 PMID: 28655639
- Doak, G.R.; Schwertfeger, K.L.; Wood, D.K. Distant relations: Macrophage functions in the metastatic niche. Trends Cancer, 2018, 4(6), 445-459. doi: 10.1016/j.trecan.2018.03.011 PMID: 29860988
- Qian, B.Z. Inflammation fires up cancer metastasis. Semin. Cancer Biol., 2017, 47, 170-176. doi: 10.1016/j.semcancer.2017.08.006 PMID: 28838845
- Gu, Y.; Liu, Y.; Fu, L.; Zhai, L.; Zhu, J.; Han, Y.; Jiang, Y.; Zhang, Y.; Zhang, P.; Jiang, Z.; Zhang, X.; Cao, X. Tumor-educated B cells selectively promote breast cancer lymph node metastasis by HSPA4-targeting IgG. Nat. Med., 2019, 25(2), 312-322. doi: 10.1038/s41591-018-0309-y PMID: 30643287
- Preuss, S.F.; Grieshober, D.; Augustin, H.G. Systemic reprogramming of endothelial cell signaling in metastasis and cachexia. Physiology, 2023, 38(4), 0. doi: 10.1152/physiol.00001.2023
- Dahlmann, M.; Kobelt, D.; Walther, W.; Mudduluru, G.; Stein, U. S100A4 in cancer metastasis: Wnt signaling-driven interventions for metastasis restriction. Cancers, 2016, 8(6), 59. doi: 10.3390/cancers8060059 PMID: 27331819
- Su, Y.; Ding, J.; Yang, F.; He, C.; Xu, Y.; Zhu, X.; Zhou, H.; Li, H. The regulatory role of PDE4B in the progression of inflammatory function study. Front. Pharmacol., 2022, 13, 982130. doi: 10.3389/fphar.2022.982130 PMID: 36278172
- Zheng, Q.; Zhang, L.; Tu, M.; Yin, X.; Cai, L.; Zhang, S.; Yu, L.; Pan, X.; Huang, Y. Development of a panel of autoantibody against NSG1 with CEA, CYFRA21-1, and SCC-Ag for the diagnosis of esophageal squamous cell carcinoma. Clin. Chim. Acta, 2021, 520, 126-132. doi: 10.1016/j.cca.2021.06.013 PMID: 34119530
- Saura, C.; Oliveira, M.; Feng, Y.H.; Dai, M.S.; Chen, S.W.; Hurvitz, S.A.; Kim, S.B.; Moy, B.; Delaloge, S.; Gradishar, W.; Masuda, N.; Palacova, M.; Trudeau, M.E.; Mattson, J.; Yap, Y.S.; Hou, M.F.; De Laurentiis, M.; Yeh, Y.M.; Chang, H.T.; Yau, T.; Wildiers, H.; Haley, B.; Fagnani, D.; Lu, Y.S.; Crown, J.; Lin, J.; Takahashi, M.; Takano, T.; Yamaguchi, M.; Fujii, T.; Yao, B.; Bebchuk, J.; Keyvanjah, K.; Bryce, R.; Brufsky, A. Neratinib plus capecitabine versus lapatinib plus capecitabine in HER2-positive metastatic breast cancer previously treated with ≥ 2 HER2-directed regimens: Phase III NALA trial. J. Clin. Oncol., 2020, 38(27), 3138-3149. doi: 10.1200/JCO.20.00147 PMID: 32678716
- Rodrigues, L.L.V.; Moura, Y.B.F.; Viana, J.V.S.; Oliveira, L.R.M.; Praxedes, É.A.; Vieira Neto, J.B.; Sales, S.L.A.; Silva, H.V.R.; Luciano, M.C.S.; Pessoa, C.; Pereira, A.F. Full confluency, serum starvation, and roscovitine for inducing arrest in the G0/G1 phase of the cell cycle in puma skin-derived fibroblast lines. Anim. Reprod., 2023, 20(1), e20230017. doi: 10.1590/1984-3143-ar2023-0017 PMID: 37101424
Supplementary files
