Activation of Stimulator of Interferon Genes (STING): Promising Strategy to Overcome Immune Resistance in Prostate Cancer
- Authors: Alnukhali M.1, Altabbakh O.2, Farooqi A.3, Pollack A.4, Daunert S.1, Deo S.1, Tao W.4
-
Affiliations:
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami
- College of Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University
- National Institute for Genomics and Advanced Biotechnology, Institute of Biomedical and Genetic Engineering (IBGE)
- Department of Radiation Oncology, Miller School of Medicine, University of Miami
- Issue: Vol 31, No 40 (2024)
- Pages: 6556-6571
- Section: Anti-Infectives and Infectious Diseases
- URL: https://rjeid.com/0929-8673/article/view/645125
- DOI: https://doi.org/10.2174/0109298673273303231208071403
- ID: 645125
Cite item
Full Text
Abstract
:Prostate cancer (PCa) is the most frequent and second-lethal cancer among men. Despite considerable efforts to explore treatments like autologous cellular immunotherapy and immune checkpoint inhibitors, their success remains limited. The intricate tumor microenvironment (TME) and its interaction with the immune system pose significant challenges in PCa treatment. Consequently, researchers have directed their focus on augmenting the immune system's anti-tumor response by targeting the STimulator of the Interferon Genes (STING) pathway. The STING pathway is activated when foreign DNA is detected in the cytoplasm of innate immune cells, resulting in the activation of endoplasmic reticulum (ER) STING. This, in turn, triggers an augmentation of signaling, leading to the production of type I interferon (IFN) and other pro-inflammatory cytokines. Numerous studies have demonstrated that activation of the STING pathway induces immune system rejection and targeted elimination of PCa cells. Researchers have been exploring various methods to activate the STING pathway, including the use of bacterial vectors to deliver STING agonists and the combination of radiation therapy with STING agonists. Achieving effective radiation therapy with minimal side effects and optimal anti-tumor immune responses necessitates precise adjustments to radiation dosing and fractionation schedules. This comprehensive review discusses promising findings from studies focusing on activating the STING pathway to combat PCa. The STING pathway exhibits the potential to serve as an effective treatment modality for PCa, offering new hope for improving the lives of those affected by this devastating disease.
About the authors
Mohammed Alnukhali
Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami
Email: info@benthamscience.net
Omar Altabbakh
College of Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University
Email: info@benthamscience.net
Ammad Farooqi
National Institute for Genomics and Advanced Biotechnology, Institute of Biomedical and Genetic Engineering (IBGE)
Email: info@benthamscience.net
Alan Pollack
Department of Radiation Oncology, Miller School of Medicine, University of Miami
Email: info@benthamscience.net
Sylvia Daunert
Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami
Email: info@benthamscience.net
Sapna Deo
Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami
Author for correspondence.
Email: info@benthamscience.net
Wensi Tao
Department of Radiation Oncology, Miller School of Medicine, University of Miami
Author for correspondence.
Email: info@benthamscience.net
References
- Noone, A.M. Cancer statistics review 1975-2017 - SEER Statistics, 2018. Available from: https://seer.cancer.gov/archive/csr/1975_2017/ cited 2023 Apr 26.
- Deb, P.; Dai, J.; Singh, S.; Kalyoussef, E.; Fitzgerald-Bocarsly, P. Triggering of the cGASSTING pathway in human plasmacytoid dendritic cells inhibits tlr9-mediated ifn production. J. Immunol., 2020, 205(1), 223-236. doi: 10.4049/jimmunol.1800933 PMID: 32471881
- Pu, F.; Chen, F.; Liu, J.; Zhang, Z.; Shao, Z. Immune regulation of the cgas-sting signaling pathway in the tumor microenvironment and its clinical application. OncoTargets Ther., 2021, 14, 1501-1516. doi: 10.2147/OTT.S298958 PMID: 33688199
- Stultz, J.; Fong, L. How to turn up the heat on the cold immune microenvironment of metastatic prostate cancer; Prostate Cancer and Prostatic Diseases. Springer Nature, 2021, 24, pp. 697-717.
- Xu, Y.; Li, H.; Fan, Y. Progression patterns, treatment, and prognosis beyond resistance of responders to immunotherapy in advanced non-small cell lung cancer. Front. Oncol., 2021, 11, 642883. doi: 10.3389/fonc.2021.642883 PMID: 33747966
- Vogelzang, N.J.; Beer, T.M.; Gerritsen, W.; Oudard, S.; Wiechno, P.; Kukielka-Budny, B.; Samal, V.; Hajek, J.; Feyerabend, S.; Khoo, V.; Stenzl, A.; Csöszi, T.; Filipovic, Z.; Goncalves, F.; Prokhorov, A.; Cheung, E.; Hussain, A.; Sousa, N.; Bahl, A.; Hussain, S.; Fricke, H.; Kadlecova, P.; Scheiner, T.; Korolkiewicz, R.P.; Bartunkova, J.; Spisek, R.; Stadler, W.; Berg, A.S.; Kurth, K-H.; Higano, C.S.; Aapro, M.; Krainer, M.; Hruby, S.; Meran, J.; Polyakov, S.; Machiels, J-P.; Roumeguere, T.; Ackaert, K.; Lumen, N.; Gil, T.; Minchev, V.; Tomova, A.; Dimitrov, B.; Koleva, M.; Juretic, A.; Fröbe, A.; Vojnovic, Z.; Drabek, M.; Jarolim, L.; Buchler, T.; Kindlova, E.; Schraml, J.; Zemanova, M.; Prausova, J.; Melichar, B.; Chodacka, M.; Jansa, J.; Daugaard, G.; Delonchamps, N.; Duclos, B.; Culine, S.; Deplanque, G.; Le Moulec, S.; Hammerer, P.; Rodemer, G.; Ritter, M.; Merseburger, A.; Grimm, M-O.; Damjanoski, I.; Wirth, M.; Burmester, M.; Miller, K.; Herden, J.; Keck, B.; Wuelfing, C.; Winter, A.; Boegemann, M.; von Schmeling, I.K.; Fornara, P.; Jaeger, E.; Bodoky, G.; Pápai, Z.; Böszörményi-Nagy, G.; Vanella, P.; SotoParra, H.; Passalacqua, R.; Ferrau, F.; Maio, M.; Fratino, L.; Cortesi, E.; Purkalne, G.; Asadauskiene, J.; Janciauskiene, R.; Tulyte, S.; Cesas, A.; Polee, M.; Haberkorn, B.; van de Eertwegh, F.; van den Berg, P.; Beeker, A.; Nieboer, P.; Zdrojowy, R.; Staroslawska, E.; Fijuth, J.; Sikora-Kupis, B.; Karaszewska, B.; Fernandes, I.; Sousa, G.; Rodrigues, T.; Dzamic, Z.; Babovic, N.; Cvetkovic, B.; Sokol, R.; Mikulá, J.; Gajdos, M.; Brezovsky, M.; Mincik, I.; Breza, J.; Arranz, J.A.; Calvo, V.; Rubio, G.; Chapado, M.S.; Boreu, P.G.; Montesa, A.; Olmos, D.; Mellado, B.; Castellano, D.; Puente, J.; Karlsson, E.T.; Ahlgren, J.; Pandha, H.; Mazhar, D.; Vilarino-Varela, M.; Elliott, T.; Pedley, I.; Zarkar, A.; Law, A.; Slater, D.; Karlin, G.; Bilusic, M.; Redfern, C.; Gaur, R.; McCroskey, R.; Clarkson, D.; Agrawal, M.; Shtivelband, M.; Nordquist, L.; Karim, N.; Hauke, R.; Flaig, T.; Jhangiani, H.; Singal, R.; Choi, B.; Reyes, E.; Corman, J.; Hwang, C.; Appleman, L.; McClay, E.; Fleming, M.; Gunuganti, V.; Cheung, E.; Gartrell, B.; Sartor, A.; Williamson, S.; Gandhi, J.; Schnadig, I.; Burke, J.; Bloom, S.; Shore, N.; Mayer, T.; Oh, W.; Bryce, A.; Belkoff, L.; Vaishampayan, U.; Agarwala, S.; Kucuk, O.; Agrawal, A.; Walsh, W.; Poiesz, B.; Harshman, L.; Dawson, N.; Sharma, S. Efficacy and safety of autologous dendritic cellbased immunotherapy, docetaxel, and prednisone vs placebo in patients with metastatic castration-resistant prostate cancer. JAMA Oncol., 2022, 8(4), 546-552. doi: 10.1001/jamaoncol.2021.7298 PMID: 35142815
- Wang, Y.; Xiang, Y.; Xin, V.W.; Wang, X.W.; Peng, X.C.; Liu, X.Q.; Wang, D.; Li, N.; Cheng, J.T.; Lyv, Y.N.; Cui, S.Z.; Ma, Z.; Zhang, Q.; Xin, H.W. Dendritic cell biology and its role in tumor immunotherapy. J. Hematol. Oncol., 2020, 13(1), 107. doi: 10.1186/s13045-020-00939-6 PMID: 32746880
- Venkatachalam, S.; McFarland, T.R.; Agarwal, N.; Swami, U. Immune checkpoint inhibitors in prostate cancer. Cancers, 2021, 13(9), 2187. doi: 10.3390/cancers13092187 PMID: 34063238
- Kim, T.J.; Koo, K.C. Current status and future perspectives of checkpoint inhibitor immunotherapy for prostate cancer: A comprehensive review. Int. J. Mol. Sci., 2020, 21(15), 5484. doi: 10.3390/ijms21155484 PMID: 32751945
- Madan, R.A.; Antonarakis, E.S.; Drake, C.G.; Fong, L.; Yu, E.Y.; McNeel, D.G.; Lin, D.W.; Chang, N.N.; Sheikh, N.A.; Gulley, J.L. Putting the pieces together: Completing the mechanism of action jigsaw for sipuleucel-T. J. Natl. Cancer Inst., 2020, 112(6), 562-573. doi: 10.1093/jnci/djaa021 PMID: 32145020
- Kwon, J.; Bakhoum, S.F. The cytosolic dna-sensing cGASSTING pathway in cancer. Cancer Discov., 2020, 10(1), 26-39. doi: 10.1158/2159-8290.CD-19-0761 PMID: 31852718
- Dou, Z.; Ghosh, K.; Vizioli, M.G.; Zhu, J.; Sen, P.; Wangensteen, K.J.; Simithy, J.; Lan, Y.; Lin, Y.; Zhou, Z.; Capell, B.C.; Xu, C.; Xu, M.; Kieckhaefer, J.E.; Jiang, T.; Shoshkes-Carmel, M.; Tanim, K.M.A.A.; Barber, G.N.; Seykora, J.T.; Millar, S.E.; Kaestner, K.H.; Garcia, B.A.; Adams, P.D.; Berger, S.L. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature, 2017, 550(7676), 402-406. doi: 10.1038/nature24050 PMID: 28976970
- Chen, Q.; Sun, L.; Chen, Z.J. Regulation and function of the cGASSTING pathway of cytosolic DNA sensing. Nat. Immunol., 2016, 17(10), 1142-1149. doi: 10.1038/ni.3558 PMID: 27648547
- Jiang, M.; Chen, P.; Wang, L.; Li, W.; Chen, B.; Liu, Y.; Wang, H.; Zhao, S.; Ye, L.; He, Y.; Zhou, C. cGAS-STING, an important pathway in cancer immunotherapy. J. Hematol. Oncol., 2020, 13(1), 81. doi: 10.1186/s13045-020-00916-z PMID: 32571374
- Suter, M.A.; Tan, N.Y.; Thiam, C.H.; Khatoo, M.; MacAry, P.A.; Angeli, V.; Gasser, S.; Zhang, Y.L. cGASSTING cytosolic DNA sensing pathway is suppressed by JAK2-STAT3 in tumor cells. Sci. Rep., 2021, 11(1), 7243. doi: 10.1038/s41598-021-86644-x PMID: 33790360
- Sen, T.; Rodriguez, B.L.; Chen, L.; Corte, C.M.D.; Morikawa, N.; Fujimoto, J.; Cristea, S.; Nguyen, T.; Diao, L.; Li, L.; Fan, Y.; Yang, Y.; Wang, J.; Glisson, B.S.; Wistuba, I.I.; Sage, J.; Heymach, J.V.; Gibbons, D.L.; Byers, L.A. Targeting DNA damage response promotes antitumor immunity through sting-mediated t-cell activation in small cell lung cancer. Cancer Discov., 2019, 9(5), 646-661. doi: 10.1158/2159-8290.CD-18-1020 PMID: 30777870
- Maleki Vareki, S. High and low mutational burden tumors versus immunologically hot and cold tumors and response to immune checkpoint inhibitors. J. Immunother. Cancer, 2018, 6(1), 157. doi: 10.1186/s40425-018-0479-7 PMID: 30587233
- Liu, Y.T.; Sun, Z.J. Turning cold tumors into hot tumors by improving T-cell infiltration. Theranostics, 2021, 11(11), 5365-5386. doi: 10.7150/thno.58390 PMID: 33859752
- Han, G.; Yang, G.; Hao, D.; Lu, Y.; Thein, K.; Simpson, B.S.; Chen, J.; Sun, R.; Alhalabi, O.; Wang, R.; Dang, M.; Dai, E.; Zhang, S.; Nie, F.; Zhao, S.; Guo, C.; Hamza, A.; Czerniak, B.; Cheng, C.; Siefker-Radtke, A.; Bhat, K.; Futreal, A.; Peng, G.; Wargo, J.; Peng, W.; Kadara, H.; Ajani, J.; Swanton, C.; Litchfield, K.; Ahnert, J.R.; Gao, J.; Wang, L. 9p21 loss confers a cold tumor immune microenvironment and primary resistance to immune checkpoint therapy. Nat. Commun., 2021, 12(1), 5606. doi: 10.1038/s41467-021-25894-9 PMID: 34556668
- Bonaventura, P.; Shekarian, T.; Alcazer, V.; Valladeau-Guilemond, J.; Valsesia-Wittmann, S.; Amigorena, S.; Caux, C.; Depil, S. Cold tumors: A therapeutic challenge for immunotherapy. Front. Immunol., 2019, 10(FEB), 168. doi: 10.3389/fimmu.2019.00168 PMID: 30800125
- Nair, S.S.; Weil, R.; Dovey, Z.; Davis, A.; Tewari, A.K. The tumor microenvironment and immunotherapy in prostate and bladder cancer. Urol. Clin. North Am., 2020, 47(4), e17-e54. doi: 10.1016/j.ucl.2020.10.005 PMID: 33446323
- Drake, C.G.; Doody, A.D.H.; Mihalyo, M.A.; Huang, C.T.; Kelleher, E.; Ravi, S.; Hipkiss, E.L.; Flies, D.B.; Kennedy, E.P.; Long, M.; McGary, P.W.; Coryell, L.; Nelson, W.G.; Pardoll, D.M.; Adler, A.J. Androgen ablation mitigates tolerance to a prostate/prostate cancer-restricted antigen. Cancer Cell, 2005, 7(3), 239-249. doi: 10.1016/j.ccr.2005.01.027 PMID: 15766662
- Zitvogel, L.; Galluzzi, L.; Kepp, O.; Smyth, M.J.; Kroemer, G. Type I interferons in anticancer immunity. Nat. Rev. Immunol., 2015, 15(7), 405-414. doi: 10.1038/nri3845 PMID: 26027717
- Anderson, M.J.; Shafer-Weaver, K.; Greenberg, N.M.; Hurwitz, A.A. Tolerization of tumor-specific T cells despite efficient initial priming in a primary murine model of prostate cancer. J. Immunol., 2007, 178(3), 1268-1276. doi: 10.4049/jimmunol.178.3.1268 PMID: 17237372
- Ebelt, K.; Babaryka, G.; Figel, A.M.; Pohla, H.; Buchner, A.; Stief, C.G.; Eisenmenger, W.; Kirchner, T.; Schendel, D.J.; Noessner, E. Dominance of CD4+ lymphocytic infiltrates with disturbed effector cell characteristics in the tumor microenvironment of prostate carcinoma. Prostate, 2008, 68(1), 1-10. doi: 10.1002/pros.20661 PMID: 17948280
- Owen, K.L.; Gearing, L.J.; Zanker, D.J.; Brockwell, N.K.; Khoo, W.H.; Roden, D.L.; Cmero, M.; Mangiola, S.; Hong, M.K.; Spurling, A.J.; McDonald, M.; Chan, C.L.; Pasam, A.; Lyons, R.J.; Duivenvoorden, H.M.; Ryan, A.; Butler, L.M.; Mariadason, J.M.; Giang Phan, T.; Hayes, V.M.; Sandhu, S.; Swarbrick, A.; Corcoran, N.M.; Hertzog, P.J.; Croucher, P.I.; Hovens, C.; Parker, B.S. Prostate cancer cell-intrinsic interferon signaling regulates dormancy and metastatic outgrowth in bone. EMBO Rep., 2020, 21(6), e50162. doi: 10.15252/embr.202050162 PMID: 32314873
- Sanaei, M.J.; Salimzadeh, L.; Bagheri, N. Crosstalk between myeloid-derived suppressor cells and the immune system in prostate cancer. J. Leukoc. Biol., 2020, 107(1), 43-56. doi: 10.1002/JLB.4RU0819-150RR PMID: 31721301
- Fleming, V.; Hu, X.; Weber, R.; Nagibin, V.; Groth, C.; Altevogt, P.; Utikal, J.; Umansky, V. Targeting myeloid-derived suppressor cells to bypass tumor-induced immunosuppression. Front. Immunol., 2018, 9(MAR), 398. doi: 10.3389/fimmu.2018.00398 PMID: 29552012
- Lopez-Bujanda, Z.; Drake, C.G. Myeloid-derived cells in prostate cancer progression: phenotype and prospective therapies. J. Leukoc. Biol., 2017, 102(2), 393-406. doi: 10.1189/jlb.5VMR1116-491RR PMID: 28550116
- Idorn, M.; Køllgaard, T.; Kongsted, P.; Sengeløv, L.; thor Straten, P. Correlation between frequencies of blood monocytic myeloid-derived suppressor cells, regulatory T cells and negative prognostic markers in patients with castration-resistant metastatic prostate cancer. Cancer Immunol. Immunother., 2014, 63(11), 1177-1187. doi: 10.1007/s00262-014-1591-2 PMID: 25085000
- Muthuswamy, R.; Corman, J.M.; Dahl, K.; Chatta, G.S.; Kalinski, P. Functional reprogramming of human prostate cancer to promote local attraction of effector CD8+ T cells. Prostate, 2016, 76(12), 1095-1105. doi: 10.1002/pros.23194 PMID: 27199259
- Vitkin, N.; Nersesian, S.; Siemens, D.R.; Koti, M. The tumor immune contexture of prostate cancer. In: Frontiers in Immunology; Frontiers Media S.A., 2019. 10.
- Vidotto, T.; Saggioro, F.P.; Jamaspishvili, T.; Chesca, D.L.; Picanço de Albuquerque, C.G.; Reis, R.B.; Graham, C.H.; Berman, D.M.; Siemens, D.R.; Squire, J.A.; Koti, M. PTEN-deficient prostate cancer is associated with an immunosuppressive tumor microenvironment mediated by increased expression of IDO1 and infiltrating FoxP3+ T regulatory cells. Prostate, 2019, 79(9), 969-979. doi: 10.1002/pros.23808 PMID: 30999388
- Garcia-Lora, A.; Algarra, I.; Garrido, F. MHC class I antigens, immune surveillance, and tumor immune escape. J. Cell. Physiol., 2003, 195(3), 346-355. doi: 10.1002/jcp.10290 PMID: 12704644
- Sanda, M.G.; Restifo, N.P.; Walsh, J.C.; Kawakami, Y.; Nelson, W.G.; Pardoll, D.M.; Simons, J.W. Molecular characterization of defective antigen processing in human prostate cancer. J. Natl. Cancer Inst., 1995, 87(4), 280-285. doi: 10.1093/jnci/87.4.280 PMID: 7707419
- Shen, Y.C.; Ghasemzadeh, A.; Kochel, C.M.; Nirschl, T.R.; Francica, B.J.; Lopez-Bujanda, Z.A. Combining intratumoral Treg depletion with androgen deprivation therapy (ADT): Preclinical activity in the Myc-CaP model. Prost. Cancer Prost. Dis., 2017, 21(1), 113-125.
- Lei, Q.; Wang, D.; Sun, K.; Wang, L.; Zhang, Y. Resistance mechanisms of Anti-PD1/PDL1 therapy in solid tumors. Front. Cell Dev. Biol., 2020, 8, 672. doi: 10.3389/fcell.2020.00672 PMID: 32793604
- Ribas, A. Adaptive immune resistance: How cancer protects from immune attack. Cancer Discov., 2015, 5(9), 915-919. doi: 10.1158/2159-8290.CD-15-0563 PMID: 26272491
- Montoya, M.; Schiavoni, G.; Mattei, F.; Gresser, I.; Belardelli, F.; Borrow, P.; Tough, D.F. Type I interferons produced by dendritic cells promote their phenotypic and functional activation. Blood, 2002, 99(9), 3263-3271. doi: 10.1182/blood.V99.9.3263 PMID: 11964292
- Isaacs, A.; Lindenmann, J. Virus interference. I. The interferon. Proc. R. Soc. Lond. B Biol. Sci., 1957, 147(927), 258-267. doi: 10.1098/rspb.1957.0048 PMID: 13465720
- Yu, R.; Zhu, B.; Chen, D. Type I interferon-mediated tumor immunity and its role in immunotherapy. Cell. Mol. Life Sci., 2022, 79(3), 191. doi: 10.1007/s00018-022-04219-z PMID: 35292881
- Diamond, M.S.; Kinder, M.; Matsushita, H.; Mashayekhi, M.; Dunn, G.P.; Archambault, J.M.; Lee, H.; Arthur, C.D.; White, J.M.; Kalinke, U.; Murphy, K.M.; Schreiber, R.D. Type I interferon is selectively required by dendritic cells for immune rejection of tumors. J. Exp. Med., 2011, 208(10), 1989-2003. doi: 10.1084/jem.20101158 PMID: 21930769
- Wan, D.; Jiang, W.; Hao, J. Research advances in how the cGAS-STING pathway controls the cellular inflammatory response. Front. Immunol., 2020, 11, 615. doi: 10.3389/fimmu.2020.00615 PMID: 32411126
- Sun, W.; Li, Y.; Chen, L.; Chen, H.; You, F.; Zhou, X.; Zhou, Y.; Zhai, Z.; Chen, D.; Jiang, Z. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proc. Natl. Acad. Sci. USA, 2009, 106(21), 8653-8658. doi: 10.1073/pnas.0900850106 PMID: 19433799
- Lv, M.; Chen, M.; Zhang, R.; Zhang, W.; Wang, C.; Zhang, Y.; Wei, X.; Guan, Y.; Liu, J.; Feng, K.; Jing, M.; Wang, X.; Liu, Y.C.; Mei, Q.; Han, W.; Jiang, Z. Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy. Cell Res., 2020, 30(11), 966-979. doi: 10.1038/s41422-020-00395-4 PMID: 32839553
- Li, T.; Chen, Z.J. The cGAScGAMPSTING pathway connects DNA damage to inflammation, senescence, and cancer. J. Exp. Med., 2018, 215(5), 1287-1299. doi: 10.1084/jem.20180139 PMID: 29622565
- Baird, J.R.; Friedman, D.; Cottam, B.; Dubensky, T.W., Jr; Kanne, D.B.; Bambina, S.; Bahjat, K.; Crittenden, M.R.; Gough, M.J. Radiotherapy combined with novel sting-targeting oligonucleotides results in regression of established tumors. Cancer Res., 2016, 76(1), 50-61. doi: 10.1158/0008-5472.CAN-14-3619 PMID: 26567136
- Gajewski, T.F.; Schreiber, H.; Fu, Y.X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol., 2013, 14(10), 1014-1022. doi: 10.1038/ni.2703 PMID: 24048123
- Kumar, S.; Han, J.A.; Michael, I.J.; Ki, D.; Sunkara, V.; Park, J.; Gautam, S.; Ha, H.K.; Zhang, L.; Cho, Y-K. Human platelet membrane functionalized microchips with plasmonic codes for cancer detection. Adv. Funct. Mater., 2019, 29(30), 1902669. doi: 10.1002/adfm.201902669
- Gao, P.; Ascano, M.; Wu, Y.; Barchet, W.; Gaffney, B.L.; Zillinger, T.; Serganov, A.A.; Liu, Y.; Jones, R.A.; Hartmann, G.; Tuschl, T.; Patel, D.J. Cyclic G(2′,5′)pA(3′,5′)p is the metazoan second messenger produced by DNA-activated cyclic GMP-AMP synthase. Cell, 2013, 153(5), 1094-1107. doi: 10.1016/j.cell.2013.04.046 PMID: 23647843
- Kang, J.; Wu, J.; Liu, Q.; Wu, X.; Zhao, Y.; Ren, J. Post-translational modifications of STING: A potential therapeutic target. Front. Immunol., 2022, 13, 888147. doi: 10.3389/fimmu.2022.888147 PMID: 35603197
- Tao, J.; Zhou, X.; Jiang, Z. cGAS-cGAMP-STING: The three musketeers of cytosolic DNA sensing and signaling. IUBMB Life, 2016, 68(11), 858-870. doi: 10.1002/iub.1566 PMID: 27706894
- Gao, Y.; Zheng, X.; Chang, B.; Lin, Y.; Huang, X.; Wang, W.; Ding, S.; Zhan, W.; Wang, S.; Xiao, B.; Huo, L.; Yu, Y.; Chen, Y.; Gong, R.; Wu, Y.; Zhang, R.; Zhong, L.; Wang, X.; Chen, Q.; Gao, S.; Jiang, Z.; Wei, D.; Kang, T. Intercellular transfer of activated STING triggered by RAB22A-mediated non-canonical autophagy promotes antitumor immunity. Cell Res., 2022, 32(12), 1086-1104. doi: 10.1038/s41422-022-00731-w PMID: 36280710
- Hu, X.; Zhang, H.; Zhang, Q.; Yao, X.; Ni, W.; Zhou, K. Emerging role of STING signalling in CNS injury: Inflammation, autophagy, necroptosis, ferroptosis and pyroptosis. J. Neuroinflammation, 2022, 19(1), 242. doi: 10.1186/s12974-022-02602-y PMID: 36195926
- Jianfeng, W.; Yutao, W.; Jianbin, B. Indolethylamine-N-Methyltransferase inhibits proliferation and promotes apoptosis of human prostate cancer cells: A mechanistic exploration. Front. Cell Dev. Biol., 2022, 10, 805402. doi: 10.3389/fcell.2022.805402 PMID: 35252179
- Ihle, C.L.; Provera, M.D.; Straign, D.M.; Smith, E.E.; Edgerton, S.M.; Van Bokhoven, A.; Lucia, M.S.; Owens, P. Distinct tumor microenvironments of lytic and blastic bone metastases in prostate cancer patients. J. Immunother. Cancer, 2019, 7(1), 293. doi: 10.1186/s40425-019-0753-3 PMID: 31703602
- Lindblad, K.E.; Ruiz de Galarreta, M.; Lujambio, A. Tumor-intrinsic mechanisms regulating immune exclusion in liver cancers. Front. Immunol., 2021, 12, 642958>. doi: 10.3389/fimmu.2021.642958 PMID: 33981303
- ODonnell, J.S.; Madore, J.; Li, X.Y.; Smyth, M.J. Tumor intrinsic and extrinsic immune functions of CD155. Semin. Cancer Biol., 2020, 65, 189-196. doi: 10.1016/j.semcancer.2019.11.013 PMID: 31883911
- Rowshanravan, B.; Halliday, N.; Sansom, D.M. CTLA-4: A moving target in immunotherapy. Blood, 2018, 131(1), 58-67. doi: 10.1182/blood-2017-06-741033 PMID: 29118008
- Stamper, C.C.; Zhang, Y.; Tobin, J.F.; Erbe, D.V.; Ikemizu, S.; Davis, S.J.; Stahl, M.L.; Seehra, J.; Somers, W.S.; Mosyak, L. Crystal structure of the B7-1/CTLA-4 complex that inhibits human immune responses. Nature, 2001, 410(6828), 608-611. doi: 10.1038/35069118 PMID: 11279502
- Waldman, A.D.; Fritz, J.M.; Lenardo, M.J. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat. Rev. Immunol., 2020, 20(11), 651-668. doi: 10.1038/s41577-020-0306-5
- DeglInnocenti, E.; Grioni, M.; Boni, A.; Camporeale, A.; Bertilaccio, M.T.S.; Freschi, M.; Monno, A.; Arcelloni, C.; Greenberg, N.M.; Bellone, M. Peripheral T cell tolerance occurs early during spontaneous prostate cancer development and can be rescued by dendritic cell immunization. Eur. J. Immunol., 2005, 35(1), 66-75. doi: 10.1002/eji.200425531 PMID: 15597325
- Li, X.; Khorsandi, S.; Wang, Y.; Santelli, J.; Huntoon, K.; Nguyen, N.; Yang, M.; Lee, D.; Lu, Y.; Gao, R.; Kim, B.Y.S.; de Gracia Lux, C.; Mattrey, R.F.; Jiang, W.; Lux, J. Cancer immunotherapy based on image-guided STING activation by nucleotide nanocomplex-decorated ultrasound microbubbles. Nat. Nanotechnol., 2022, 17(8), 891-899. doi: 10.1038/s41565-022-01134-z PMID: 35637356
- Sun, X.; Zhang, Y.; Li, J.; Park, K.S.; Han, K.; Zhou, X.; Xu, Y.; Nam, J.; Xu, J.; Shi, X.; Wei, L.; Lei, Y.L.; Moon, J.J. Amplifying STING activation by cyclic dinucleotide manganese particles for local and systemic cancer metalloimmunotherapy. Nat. Nanotechnol., 2021, 16(11), 1260-1270. doi: 10.1038/s41565-021-00962-9 PMID: 34594005
- Lin, H.; Wang, K.; Xiong, Y.; Zhou, L.; Yang, Y.; Chen, S.; Xu, P.; Zhou, Y.; Mao, R.; Lv, G.; Wang, P.; Zhou, D. Identification of tumor antigens and immune subtypes of glioblastoma for mRNA vaccine development. Front. Immunol., 2022, 13, 773264. doi: 10.3389/fimmu.2022.773264 PMID: 35185876
- Shortman, K.; Lahoud, M.H.; Caminschi, I. Improving vaccines by targeting antigens to dendritic cells. Exp. Mol. Med., 2009, 41(2), 61-66. doi: 10.3858/emm.2009.41.2.008 PMID: 19287186
- Kratzer, T.B.; Jemal, A.; Miller, K.D.; Nash, S.; Wiggins, C.; Redwood, D.; Smith, R.; Siegel, R.L. Cancer statistics for A merican I ndian and A laska N ative individuals, 2022: Including increasing disparities in early onset colorectal cancer. CA Cancer J. Clin., 2023, 73(2), 120-146. doi: 10.3322/caac.21757 PMID: 36346402
- Sun, L.; Wu, J.; Du, F.; Chen, X.; Chen, Z.J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science, 2013, 339(6121), 786-791. doi: 10.1126/science.1232458 PMID: 23258413
- Liu, Y.; Zeng, G. Cancer and innate immune system interactions: translational potentials for cancer immunotherapy. J. Immunother., 2012, 35(4), 299-308. doi: 10.1097/CJI.0b013e3182518e83 PMID: 22495387
- Disis, M.L. Immune regulation of cancer. J. Clin. Oncol., 2010, 28(29), 4531-4538. doi: 10.1200/JCO.2009.27.2146 PMID: 20516428
- Chaplin, D.D. Overview of the immune response. J. Allergy Clin. Immunol., 2010, 125(2)(Suppl. 2), S3-S23. doi: 10.1016/j.jaci.2009.12.980 PMID: 20176265
- Del Prete, A.; Salvi, V.; Soriani, A.; Laffranchi, M.; Sozio, F.; Bosisio, D.; Sozzani, S. Dendritic cell subsets in cancer immunity and tumor antigen sensing. Cell. Mol. Immunol., 2023, 20(5), 432-447. doi: 10.1038/s41423-023-00990-6 PMID: 36949244
- Das, P.; Shen, T.; McCord, R.P. Characterizing the variation in chromosome structure ensembles in the context of the nuclear microenvironment. PLOS Comput. Biol., 2022, 18(8), e1010392. doi: 10.1371/journal.pcbi.1010392 PMID: 35969616
- Strickfaden, H.; Zunhammer, A.; van Koningsbruggen, S.; Köhler, D.; Cremer, T. 4D Chromatin dynamics in cycling cells. Nucleus, 2010, 1(3), 284-297. doi: 10.4161/nucl.11969 PMID: 21327076
- Ho, S.S.W.; Zhang, W.Y.L.; Tan, N.Y.J.; Khatoo, M.; Suter, M.A.; Tripathi, S.; Cheung, F.S.G.; Lim, W.K.; Tan, P.H.; Ngeow, J.; Gasser, S. The DNA structure-specific endonuclease mus81 mediates dna sensor sting-dependent host rejection of prostate cancer cells. Immunity, 2016, 44(5), 1177-1189. doi: 10.1016/j.immuni.2016.04.010 PMID: 27178469
- Zhang, W.; Li, G.; Luo, R.; Lei, J.; Song, Y.; Wang, B.; Ma, L.; Liao, Z.; Ke, W.; Liu, H.; Hua, W.; Zhao, K.; Feng, X.; Wu, X.; Zhang, Y.; Wang, K.; Yang, C. Cytosolic escape of mitochondrial DNA triggers cGAS-STING-NLRP3 axis-dependent nucleus pulposus cell pyroptosis. Exp. Mol. Med., 2022, 54(2), 129-142. doi: 10.1038/s12276-022-00729-9 PMID: 35145201
- Newman, L.E.; Shadel, G.S. Mitochondrial DNA release in innate immune signaling. Annu. Rev. Biochem., 2023, 92(1), 299-332. doi: 10.1146/annurev-biochem-032620-104401 PMID: 37001140
- Singh, J.; Boettcher, M.; Dölling, M.; Heuer, A.; Hohberger, B.; Leppkes, M.; Naschberger, E.; Schapher, M.; Schauer, C.; Schoen, J.; Stürzl, M.; Vitkov, L.; Wang, H.; Zlatar, L.; Schett, G.A.; Pisetsky, D.S.; Liu, M.L.; Herrmann, M.; Knopf, J. Moonlighting chromatin: When DNA escapes nuclear control. Cell Death Differ., 2023, 30(4), 861-875. doi: 10.1038/s41418-023-01124-1 PMID: 36755071
- Vassilieva, E.V.; Taylor, D.W.; Compans, R.W. Combination of STING pathway agonist with saponin is an effective adjuvant in immunosenescent mice. Front. Immunol., 2019, 10, 3006. doi: 10.3389/fimmu.2019.03006 PMID: 31921219
- Liu, Y.; Lu, X.; Qin, N.; Qiao, Y.; Xing, S.; Liu, W.; Feng, F.; Liu, Z.; Sun, H. STING, a promising target for small molecular immune modulator: A review. Eur. J. Med. Chem., 2021, 211, 113113. doi: 10.1016/j.ejmech.2020.113113 PMID: 33360799
- Ross, P.; Weinhouse, H.; Aloni, Y.; Michaeli, D.; Weinberger-Ohana, P.; Mayer, R.; Braun, S.; de Vroom, E.; van der Marel, G.A.; van Boom, J.H.; Benziman, M. Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature, 1987, 325(6101), 279-281. doi: 10.1038/325279a0 PMID: 18990795
- Elmanfi, S.; Yilmaz, M.; Ong, W.W.S.; Yeboah, K.S.; Sintim, H.O.; Gürsoy, M.; Könönen, E.; Gürsoy, U.K. Bacterial cyclic dinucleotides and the cGAScGAMPSTING pathway: A role in periodontitis? Pathogens, 2021, 10(6), 675. doi: 10.3390/pathogens10060675 PMID: 34070809
- Gonugunta, V.K.; Sakai, T.; Pokatayev, V.; Yang, K.; Wu, J.; Dobbs, N.; Yan, N. Trafficking-mediated STING degradation requires sorting to acidified endolysosomes and can be targeted to enhance anti-tumor response. Cell Rep., 2017, 21(11), 3234-3242. doi: 10.1016/j.celrep.2017.11.061 PMID: 29241549
- Ohkuri, T.; Kosaka, A.; Ishibashi, K.; Kumai, T.; Hirata, Y.; Ohara, K.; Nagato, T.; Oikawa, K.; Aoki, N.; Harabuchi, Y.; Celis, E.; Kobayashi, H. Intratumoral administration of cGAMP transiently accumulates potent macrophages for anti-tumor immunity at a mouse tumor site. Cancer Immunol. Immunother., 2017, 66(6), 705-716. doi: 10.1007/s00262-017-1975-1 PMID: 28243692
- Ji, N.; Wang, M.; Tan, C. Liposomal delivery of MIW815 (ADU-S100) for potentiated STING activation. Pharmaceutics, 2023, 15(2), 638. doi: 10.3390/pharmaceutics15020638 PMID: 36839960
- Corrales, L.; Glickman, L.H.; McWhirter, S.M.; Kanne, D.B.; Sivick, K.E.; Katibah, G.E.; Woo, S.R.; Lemmens, E.; Banda, T.; Leong, J.J.; Metchette, K.; Dubensky, T.W., Jr; Gajewski, T.F. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep., 2015, 11(7), 1018-1030. doi: 10.1016/j.celrep.2015.04.031 PMID: 25959818
- Harrington, K.J.; Brody, J.; Ingham, M.; Strauss, J.; Cemerski, S.; Wang, M.; Tse, A.; Khilnani, A.; Marabelle, A.; Golan, T. Preliminary results of the first-in-human (FIH) study of MK-1454, an agonist of stimulator of interferon genes (STING), as monotherapy or in combination with pembrolizumab (pembro) in patients with advanced solid tumors or lymphomas. Ann. Oncol., 2018, 29, viii712. doi: 10.1093/annonc/mdy424.015
- Papaevangelou, E.; Esteves, A.M.; Dasgupta, P.; Galustian, C. Cyto-IL-15 synergizes with the STING agonist ADU-S100 to eliminate prostate tumors and confer durable immunity in mouse models. Front. Immunol., 2023, 14, 1196829. doi: 10.3389/fimmu.2023.1196829 PMID: 37465665
- Cui, X.; Zhang, R.; Cen, S.; Zhou, J. STING modulators: Predictive significance in drug discovery. Eur. J. Med. Chem., 2019, 182, 111591. doi: 10.1016/j.ejmech.2019.111591 PMID: 31419779
- Jassar, A.S.; Suzuki, E.; Kapoor, V.; Sun, J.; Silverberg, M.B.; Cheung, L.; Burdick, M.D.; Strieter, R.M.; Ching, L.M.; Kaiser, L.R.; Albelda, S.M. Activation of tumor-associated macrophages by the vascular disrupting agent 5,6-dimethylxanthenone-4-acetic acid induces an effective CD8+ T-cell-mediated antitumor immune response in murine models of lung cancer and mesothelioma. Cancer Res., 2005, 65(24), 11752-11761. doi: 10.1158/0008-5472.CAN-05-1658 PMID: 16357188
- Kanwar, KRPSCLKGW, JR Vascular attack by 5,6-dimethylxanthenone-4-acetic acid combined with B7.1 (CD80)-mediated immunotherapy overcomes immune resistance and leads to the eradication of large tumors and multiple tumor foci. Cancer Res. , 2001, 61(5), 1948-1956.
- Lara, P.N., Jr; Douillard, J.Y.; Nakagawa, K.; von Pawel, J.; McKeage, M.J.; Albert, I.; Losonczy, G.; Reck, M.; Heo, D.S.; Fan, X.; Fandi, A.; Scagliotti, G. Randomized phase III placebo-controlled trial of carboplatin and paclitaxel with or without the vascular disrupting agent vadimezan (ASA404) in advanced non-small-cell lung cancer. J. Clin. Oncol., 2011, 29(22), 2965-2971. doi: 10.1200/JCO.2011.35.0660 PMID: 21709202
- Woon, S.T.; Zwain, S.; Schooltink, M.A.; Newth, A.L.; Baguley, B.C.; Ching, L.M. NF-kappa B activation in vivo in both host and tumour cells by the antivascular agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA). Eur. J. Cancer, 2003, 39(8), 1176-1183. doi: 10.1016/S0959-8049(03)00196-5 PMID: 12736120
- Ching, L-M.; Cao, Z.; Kieda, C.; Zwain, S.; Jameson, M.B.; Baguley, B.C. Induction of endothelial cell apoptosis by the antivascular agent 5,6-dimethylxanthenone-4-acetic acid. Br. J. Cancer, 2002, 86(12), 1937-1942. doi: 10.1038/sj.bjc.6600368 PMID: 12085190
- Wang, Y.; Luo, J.; Alu, A.; Han, X.; Wei, Y.; Wei, X. cGAS-STING pathway in cancer biotherapy. Mol. Cancer, 2020, 19(1), 136. doi: 10.1186/s12943-020-01247-w PMID: 32887628
- Garland, K.M.; Sheehy, T.L.; Wilson, J.T. Chemical and biomolecular strategies for STING pathway activation in cancer immunotherapy. Chem. Rev., 2022, 122(6), 5977-6039. doi: 10.1021/acs.chemrev.1c00750 PMID: 35107989
- Ramanjulu, J.M.; Pesiridis, G.S.; Yang, J.; Concha, N.; Singhaus, R.; Zhang, S.Y.; Tran, J.L.; Moore, P.; Lehmann, S.; Eberl, H.C.; Muelbaier, M.; Schneck, J.L.; Clemens, J.; Adam, M.; Mehlmann, J.; Romano, J.; Morales, A.; Kang, J.; Leister, L.; Graybill, T.L.; Charnley, A.K.; Ye, G.; Nevins, N.; Behnia, K.; Wolf, A.I.; Kasparcova, V.; Nurse, K.; Wang, L.; Puhl, A.C.; Li, Y.; Klein, M.; Hopson, C.B.; Guss, J.; Bantscheff, M.; Bergamini, G.; Reilly, M.A.; Lian, Y.; Duffy, K.J.; Adams, J.; Foley, K.P.; Gough, P.J.; Marquis, R.W.; Smothers, J.; Hoos, A.; Bertin, J. Design of amidobenzimidazole STING receptor agonists with systemic activity. Nature, 2018, 564(7736), 439-443. doi: 10.1038/s41586-018-0705-y PMID: 30405246
- Pan, B.S.; Perera, S.A.; Piesvaux, J.A.; Presland, J.P.; Schroeder, G.K.; Cumming, J.N.; Trotter, B.W.; Altman, M.D.; Buevich, A.V.; Cash, B.; Cemerski, S.; Chang, W.; Chen, Y.; Dandliker, P.J.; Feng, G.; Haidle, A.; Henderson, T.; Jewell, J.; Kariv, I.; Knemeyer, I.; Kopinja, J.; Lacey, B.M.; Laskey, J.; Lesburg, C.A.; Liang, R.; Long, B.J.; Lu, M.; Ma, Y.; Minnihan, E.C.; ODonnell, G.; Otte, R.; Price, L.; Rakhilina, L.; Sauvagnat, B.; Sharma, S.; Tyagarajan, S.; Woo, H.; Wyss, D.F.; Xu, S.; Bennett, D.J.; Addona, G.H. An orally available non-nucleotide STING agonist with antitumor activity. Science, 2020, 369(6506), eaba6098. doi: 10.1126/science.aba6098 PMID: 32820094
- Deng, L.; Liang, H.; Xu, M.; Yang, X.; Burnette, B.; Arina, A.; Li, X.D.; Mauceri, H.; Beckett, M.; Darga, T.; Huang, X.; Gajewski, T.F.; Chen, Z.J.; Fu, Y.X.; Weichselbaum, R.R. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity, 2014, 41(5), 843-852. doi: 10.1016/j.immuni.2014.10.019 PMID: 25517616
- Le Naour, J.; Zitvogel, L.; Galluzzi, L.; Vacchelli, E.; Kroemer, G. Trial watch: STING agonists in cancer therapy. OncoImmunology, 2020, 9(1), 1777624. doi: 10.1080/2162402X.2020.1777624 PMID: 32934881
- Guo, F.; Han, Y.; Zhao, X.; Wang, J.; Liu, F.; Xu, C.; Wei, L.; Jiang, J.D.; Block, T.M.; Guo, J.T.; Chang, J. STING agonists induce an innate antiviral immune response against hepatitis B virus. Antimicrob. Agents Chemother., 2015, 59(2), 1273-1281. doi: 10.1128/AAC.04321-14 PMID: 25512416
- Bhatnagar, S.; Revuri, V.; Shah, M.; Larson, P.; Shao, Z.; Yu, D.; Prabha, S.; Griffith, T.S.; Ferguson, D.; Panyam, J. Combination of STING and TLR 7/8 agonists as vaccine adjuvants for cancer immunotherapy. Cancers (Basel), 2022, 14(24), 6091. doi: 10.3390/cancers14246091 PMID: 36551577
- Wobma, H.; Shin, D.S.; Chou, J.; Dedeoğlu, F. Dysregulation of the cGAS-STING pathway in monogenic autoinflammation and lupus. Front. Immunol., 2022, 13, 905109. doi: 10.3389/fimmu.2022.905109 PMID: 35693769
- Leventhal, D.S.; Sokolovska, A.; Li, N.; Plescia, C.; Kolodziej, S.A.; Gallant, C.W.; Christmas, R.; Gao, J.R.; James, M.J.; Abin-Fuentes, A.; Momin, M.; Bergeron, C.; Fisher, A.; Miller, P.F.; West, K.A.; Lora, J.M. Immunotherapy with engineered bacteria by targeting the STING pathway for anti-tumor immunity. Nat. Commun., 2020, 11(1), 2739. doi: 10.1038/s41467-020-16602-0 PMID: 32483165
- Toulany, M. Targeting DNA double-strand break repair pathways to improve radiotherapy response. Genes, 2019, 10(1), 25. doi: 10.3390/genes10010025 PMID: 30621219
- Hoong, B.Y.D.; Gan, Y.H.; Liu, H.; Chen, E.S. cGAS-STING pathway in oncogenesis and cancer therapeutics. Oncotarget, 2020, 11(30), 2930-2955. doi: 10.18632/oncotarget.27673 PMID: 32774773
- Motwani, M.; Pesiridis, S.; Fitzgerald, K.A. DNA sensing by the cGASSTING pathway in health and disease. Nat. Rev. Genet., 2019, 20(11), 657-674. doi: 10.1038/s41576-019-0151-1 PMID: 31358977
- Storozynsky, Q.; Hitt, M.M. The impact of radiation-induced DNA damage on cGAS-STING-mediated immune responses to cancer. Int. J. Mol. Sci., 2020, 21(22), 8877. doi: 10.3390/ijms21228877 PMID: 33238631
- Lhuillier, C.; Rudqvist, N.P.; Elemento, O.; Formenti, S.C.; Demaria, S. Radiation therapy and anti-tumor immunity: Exposing immunogenic mutations to the immune system. Genome Med., 2019, 11(1), 40. doi: 10.1186/s13073-019-0653-7 PMID: 31221199
- Fillon, M. Lung cancer radiation may increase the risk of major adverse cardiac events. CA Cancer J. Clin., 2019, 69(6), 435-437. doi: 10.3322/caac.21581 PMID: 31545880
- Xue, A.; Shang, Y.; Jiao, P.; Zhang, S.; Zhu, C.; He, X.; Feng, G.; Fan, S. Increased activation of CGAS-STING pathway enhances radiosensitivity of non-small cell lung cancer cells. Thorac. Cancer, 2022, 13(9), 1361-1368. doi: 10.1111/1759-7714.14400 PMID: 35429143
- Liu, Y.; Crowe, W.N.; Wang, L.; Lu, Y.; Petty, W.J.; Habib, A.A.; Zhao, D. An inhalable nanoparticulate STING agonist synergizes with radiotherapy to confer long-term control of lung metastases. Nat. Commun., 2019, 10(1), 5108. doi: 10.1038/s41467-019-13094-5 PMID: 31704921
- Luo, M.; Liu, Z.; Zhang, X.; Han, C.; Samandi, L.Z.; Dong, C.; Sumer, B.D.; Lea, J.; Fu, Y.X.; Gao, J. Synergistic STING activation by PC7A nanovaccine and ionizing radiation improves cancer immunotherapy. J. Control. Release, 2019, 300, 154-160. doi: 10.1016/j.jconrel.2019.02.036 PMID: 30844475
- Patel, R.B.; Ye, M.; Carlson, P.M.; Jaquish, A.; Zangl, L.; Ma, B.; Wang, Y.; Arthur, I.; Xie, R.; Brown, R.J.; Wang, X.; Sriramaneni, R.; Kim, K.; Gong, S.; Morris, Z.S. Development of an in situ cancer vaccine via combinational radiation and bacterial-membrane-coated nanoparticles. Adv. Mater., 2019, 31(43), 1902626. doi: 10.1002/adma.201902626 PMID: 31523868
- Gan, Y.; Li, X.; Han, S.; Liang, Q.; Ma, X.; Rong, P.; Wang, W.; Li, W. The cGAS/STING pathway: A novel target for cancer therapy. Front. Immunol., 2022, 12, 795401. doi: 10.3389/fimmu.2021.795401 PMID: 35046953
- Wang, Y.; Deng, W.; Li, N.; Neri, S.; Sharma, A.; Jiang, W.; Lin, S.H. Combining immunotherapy and radiotherapy for cancer treatment: Current challenges and future directions. Front. Pharmacol., 2018, 9(MAR), 185. doi: 10.3389/fphar.2018.00185 PMID: 29556198
- Ukleja, J.; Kusaka, E.; Miyamoto, D.T. Immunotherapy combined with radiation therapy for genitourinary malignancies. Front. Oncol., 2021, 11, 663852. doi: 10.3389/fonc.2021.663852
- Vanpouille-Box, C.; Alard, A.; Aryankalayil, M.J.; Sarfraz, Y.; Diamond, J.M.; Schneider, R.J.; Inghirami, G.; Coleman, C.N.; Formenti, S.C.; Demaria, S. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat. Commun., 2017, 8(1), 15618. doi: 10.1038/ncomms15618 PMID: 28598415
- Constanzo, J.; Faget, J.; Ursino, C.; Badie, C.; Pouget, J.P. Radiation-induced immunity and toxicities: The versatility of the cGAS-STING pathway. Front. Immunol., 2021, 12, 680503. doi: 10.3389/fimmu.2021.680503 PMID: 34079557
- Kaidar-Person, O.; Zagar, T.M.; Deal, A.; Moschos, S.J.; Ewend, M.G.; Sasaki-Adams, D.; Lee, C.B.; Collichio, F.A.; Fried, D.; Marks, L.B.; Chera, B.S. The incidence of radiation necrosis following stereotactic radiotherapy for melanoma brain metastases. Anticancer Drugs, 2017, 28(6), 669-675. doi: 10.1097/CAD.0000000000000497 PMID: 28368903
- Wang, H.; Guan, Y.; Li, C.; Chen, J.; Yue, S.; Qian, J.; Dai, B.; Jiang, C.; Wen, C.; Wen, L.; Liang, C.; Zhang, Y.; Zhang, L. PEGylated manganesezinc ferrite nanocrystals combined with intratumoral implantation of micromagnets enabled synergetic prostate cancer therapy via ferroptotic and immunogenic cell death. Small, 2023, 19(22), 2207077. doi: 10.1002/smll.202207077 PMID: 36861297
- Hsu, S.C.; Chen, C.L.; Cheng, M.L.; Chu, C.Y.; Changou, C.A.; Yu, Y.L.; Yeh, S.D.; Kuo, T.C.; Kuo, C.C.; Chuu, C.P.; Li, C.F.; Wang, L.H.; Chen, H.W.; Yen, Y.; Ann, D.K.; Wang, H.J.; Kung, H.J. Arginine starvation elicits chromatin leakage and cGAS-STING activation via epigenetic silencing of metabolic and DNA-repair genes. Theranostics, 2021, 11(15), 7527-7545. doi: 10.7150/thno.54695 PMID: 34158865
- Esteves, A.M.; Papaevangelou, E.; Dasgupta, P.; Galustian, C. Combination of interleukin-15 with a STING agonist, ADU-S100 analog: A potential immunotherapy for prostate cancer. Front. Oncol., 2021, 11, 621550. doi: 10.3389/fonc.2021.621550 PMID: 33777767
- Ager, C.R.; Reilley, M.J.; Nicholas, C.; Bartkowiak, T.; Jaiswal, A.R.; Curran, M.A. Intratumoral STING activation with T-cell checkpoint modulation generates systemic antitumor immunity. Cancer Immunol. Res., 2017, 5(8), 676-684. doi: 10.1158/2326-6066.CIR-17-0049 PMID: 28674082
- Ma, Z.; Zhang, W.; Dong, B.; Xin, Z.; Ji, Y.; Su, R.; Shen, K.; Pan, J.; Wang, Q.; Xue, W. Docetaxel remodels prostate cancer immune microenvironment and enhances checkpoint inhibitor-based immunotherapy. Theranostics, 2022, 12(11), 4965-4979. doi: 10.7150/thno.73152 PMID: 35836810
- Huang, W.; Randhawa, R.; Jain, P.; Hubbard, S.; Eickhoff, J.; Kummar, S.; Wilding, G.; Basu, H.; Roy, R. A novel artificial intelligencepowered method for prediction of early recurrence of prostate cancer after prostatectomy and cancer drivers. JCO Clin. Cancer Inform., 2022, 6(6), e2100131. doi: 10.1200/CCI.21.00131 PMID: 35192404
- Geng, C.; Zhang, M.C.; Manyam, G.C.; Vykoukal, J.V.; Fahrmann, J.F.; Peng, S.; Wu, C.; Park, S.; Kondraganti, S.; Wang, D.; Robinson, B.D.; Loda, M.; Barbieri, C.E.; Yap, T.A.; Corn, P.G.; Hanash, S.; Broom, B.M.; Pilié, P.G.; Thompson, T.C. SPOP mutations target STING1 signaling in prostate cancer and create therapeutic vulnerabilities to PARP inhibitor-induced growth suppression. Clin. Cancer Res., 2023, 29(21), 4464-4478. doi: 10.1158/1078-0432.CCR-23-1439 PMID: 37581614
- Olson, B.M.; Chaudagar, K.; Bao, R.; Saha, S.S.; Hong, C.; Li, M.; Rameshbabu, S.; Chen, R.; Thomas, A.; Patnaik, A. BET inhibition sensitizes immunologically cold rb-deficient prostate cancer to immune checkpoint blockade. Mol. Cancer Ther., 2023, 22(6), 751-764. doi: 10.1158/1535-7163.MCT-22-0369 PMID: 37014264
Supplementary files
