Neuroprotective Effect of Natural Indole and β-carboline Alkaloids against Parkinson’s Disease: An Overview


Cite item

Full Text

Abstract

:Parkinson’s disease (PD) is a devastating neurodegenerative condition that mostly damages dopaminergic neurons in the substantia nigra and impairs human motor function. Males are more likely than females to have PD. There are two main pathways associated with PD: one involves the misfolding of α-synuclein, which causes neurodegeneration, and the other is the catalytic oxidation of dopamine via MAO-B, which produces hydrogen peroxide that can cause mitochondrial damage. Parkin (PRKN), α- synuclein (SNCA), heat shock protein (HSP), and leucine-rich repeat kinase-2 (LRRK2) are some of the target areas for genetic alterations that cause neurodegeneration in Parkinson's disease (PD). Under the impact of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which is also important in Parkinson's disease (PD), inhibition of mitochondrial complex 1 results in enhanced ROS generation in neuronal cells. Natural products are still a superior option in the age of synthetic pharmaceuticals because of their lower toxicity and moderate side effects. A promising treatment for PD has been discovered using betacarboline (also known as \"β-carboline\") and indole alkaloids. However, there are not many studies done on this particular topic. In the herbs containing β-carbolines and indoles, the secondary metabolites and alkaloids, β-carbolines and indoles, have shown neuroprotective and cognitive-enhancing properties.

:In this review, we have presented results from 18 years of research on the effects of indole and β-carboline alkaloids against oxidative stress and MAO inhibition, two key targets in PD. In the SAR analysis, the activity has been correlated with their unique structural characteristics. This study will undoubtedly aid researchers in looking for new PD treatment options.

About the authors

Abhimannu Shome

Department of Pharmaceutical Chemistry and Analysis,, ISF College of Pharmacy

Email: info@benthamscience.net

Chahat

Department of Pharmaceutical Chemistry, ISF College of Pharmacy

Email: info@benthamscience.net

Viney Chawla

University Institute of Pharmaceutical Sciences and Research, Baba Farid University of Health Sciences

Email: info@benthamscience.net

Pooja Chawla

Department of Pharmaceutical Chemistry, ISF College of Pharmacy

Author for correspondence.
Email: info@benthamscience.net

References

  1. Feigin, V.L.; Nichols, E.; Alam, T.; Bannick, M.S.; Beghi, E.; Blake, N.; Culpepper, W.J.; Dorsey, E.R.; Elbaz, A.; Ellenbogen, R.G.; Fisher, J.L.; Fitzmaurice, C.; Giussani, G.; Glennie, L.; James, S.L.; Johnson, C.O.; Kassebaum, N.J.; Logroscino, G.; Marin, B.; Mountjoy-Venning, W.C.; Nguyen, M.; Ofori-Asenso, R.; Patel, A.P.; Piccininni, M.; Roth, G.A.; Steiner, T.J.; Stovner, L.J.; Szoeke, C.E.I.; Theadom, A.; Vollset, S.E.; Wallin, M.T.; Wright, C.; Zunt, J.R.; Abbasi, N.; Abd-Allah, F.; Abdelalim, A.; Abdollahpour, I.; Aboyans, V.; Abraha, H.N.; Acharya, D.; Adamu, A.A.; Adebayo, O.M.; Adeoye, A.M.; Adsuar, J.C.; Afarideh, M.; Agrawal, S.; Ahmadi, A.; Ahmed, M.B.; Aichour, A.N.; Aichour, I.; Aichour, M.T.E.; Akinyemi, R.O.; Akseer, N.; Al-Eyadhy, A. Al-Shahi Salman, R.; Alahdab, F.; Alene, K.A.; Aljunid, S.M.; Altirkawi, K.; Alvis-Guzman, N.; Anber, N.H.; Antonio, C.A.T.; Arabloo, J.; Aremu, O.; Ärnlöv, J.; Asayesh, H.; Asghar, R.J.; Atalay, H.T.; Awasthi, A.; Ayala Quintanilla, B.P.; Ayuk, T.B.; Badawi, A.; Banach, M.; Banoub, J.A.M.; Barboza, M.A.; Barker-Collo, S.L.; Bärnighausen, T.W.; Baune, B.T.; Bedi, N.; Behzadifar, M.; Behzadifar, M.; Béjot, Y.; Bekele, B.B.; Belachew, A.B.; Bennett, D.A.; Bensenor, I.M.; Berhane, A.; Beuran, M.; Bhattacharyya, K.; Bhutta, Z.A.; Bi-adgo, B.; Bijani, A.; Bililign, N.; Bin Sayeed, M.S.; Blazes, C.K.; Brayne, C.; Butt, Z.A.; Campos-Nonato, I.R.; Cantu-Brito, C.; Car, M.; Cárdenas, R.; Carrero, J.J.; Carvalho, F.; Castañeda-Orjuela, C.A.; Castro, F.; Catalá-López, F.; Cerin, E.; Chaiah, Y.; Chang, J-C.; Chatziralli, I.; Chiang, P.P-C.; Christensen, H.; Christopher, D.J.; Cooper, C.; Cortesi, P.A.; Costa, V.M.; Criqui, M.H.; Crowe, C.S.; Damasceno, A.A.M.; Daryani, A.; De la Cruz-Góngora, V.; De la Hoz, F.P.; De Leo, D.; Demoz, G.T.; Deribe, K.; Dharmaratne, S.D.; Diaz, D.; Dinberu, M.T.; Djalalinia, S.; Doku, D.T.; Dubey, M.; Dubljanin, E.; Duken, E.E.; Edvardsson, D.; El-Khatib, Z.; Endres, M.; Endries, A.Y.; Eskandarieh, S.; Esteghamati, A.; Esteghamati, S.; Farhadi, F.; Faro, A.; Farzadfar, F.; Farzaei, M.H.; Fatima, B.; Fereshtehnejad, S-M.; Fernandes, E.; Feyissa, G.T.; Filip, I.; Fischer, F.; Fukumoto, T.; Ganji, M.; Gankpe, F.G.; Garcia-Gordillo, M.A.; Gebre, A.K.; Gebremichael, T.G.; Gelaw, B.K.; Geleijnse, J.M.; Geremew, D.; Gezae, K.E.; Ghasemi-Kasman, M.; Gidey, M.Y.; Gill, P.S.; Gill, T.K.; Girma, E.T.; Gnedovskaya, E.V.; Goulart, A.C.; Grada, A.; Grosso, G.; Guo, Y.; Gupta, R.; Gupta, R.; Haagsma, J.A.; Hagos, T.B.; Haj-Mirzaian, A.; Haj-Mirzaian, A.; Hamadeh, R.R.; Hamidi, S.; Hankey, G.J.; Hao, Y.; Haro, J.M.; Hassankhani, H.; Hassen, H.Y.; Havmoeller, R.; Hay, S.I.; Hegazy, M.I.; Heidari, B.; Henok, A.; Heydarpour, F.; Hoang, C.L.; Hole, M.K.; Homaie Rad, E.; Hosseini, S.M.; Hu, G.; Igumbor, E.U.; Ilesanmi, O.S.; Irvani, S.S.N.; Islam, S.M.S.; Jakovljevic, M.; Javanbakht, M.; Jha, R.P.; Jobanputra, Y.B.; Jonas, J.B.; Jozwiak, J.J.; Jürisson, M.; Kahsay, A.; Kalani, R.; Kalkonde, Y.; Kamil, T.A.; Kanchan, T.; Kara-mi, M.; Karch, A.; Karimi, N.; Kasaeian, A.; Kassa, T.D.; Kassa, Z.Y.; Kaul, A.; Kefale, A.T.; Keiyoro, P.N.; Khader, Y.S.; Khafaie, M.A.; Khalil, I.A.; Khan, E.A.; Khang, Y-H.; Khazaie, H.; Kiadaliri, A.A.; Kiirithio, D.N.; Kim, A.S.; Kim, D.; Kim, Y-E.; Kim, Y.J.; Kisa, A.; Kokubo, Y.; Koyanagi, A.; Krishnamurthi, R.V.; Kuate Defo, B.; Kucuk Bicer, B.; Kumar, M.; Lacey, B.; Lafranconi, A.; Lansingh, V.C.; Latifi, A.; Leshargie, C.T.; Li, S.; Liao, Y.; Linn, S.; Lo, W.D.; Lopez, J.C.F.; Lorkowski, S.; Lotufo, P.A.; Lucas, R.M.; Lunevicius, R.; Mackay, M.T.; Mahotra, N.B.; Majdan, M.; Majdzadeh, R.; Majeed, A.; Malekzadeh, R.; Malta, D.C.; Manafi, N.; Mansournia, M.A.; Mantovani, L.G.; März, W.; Mashamba-Thompson, T.P.; Massenburg, B.B.; Mate, K.K.V.; McAlinden, C.; McGrath, J.J.; Mehta, V.; Meier, T.; Meles, H.G.; Melese, A.; Memiah, P.T.N.; Memish, Z.A.; Mendoza, W.; Mengistu, D.T.; Mengistu, G.; Meretoja, A.; Meretoja, T.J.; Mestrovic, T.; Miazgowski, B.; Miazgowski, T.; Miller, T.R.; Mini, G.K.; Mirrakhimov, E.M.; Moazen, B.; Mohajer, B.; Mohammad Gholi Mezerji, N.; Mohammadi, M.; Mohammadi-Khanaposhtani, M.; Mohammadibakhsh, R.; Mo-hammadnia-Afrouzi, M.; Mohammed, S.; Mohebi, F.; Mokdad, A.H.; Monasta, L.; Mondello, S.; Moodley, Y.; Moosazadeh, M.; Moradi, G.; Moradi-Lakeh, M.; Moradinazar, M.; Moraga, P.; Moreno Velásquez, I.; Morrison, S.D.; Mousavi, S.M.; Muhammed, O.S.; Muruet, W.; Musa, K.I.; Mustafa, G.; Naderi, M.; Nagel, G.; Naheed, A.; Naik, G.; Najafi, F.; Nangia, V.; Negoi, I.; Negoi, R.I.; Newton, C.R.J.; Ngunjiri, J.W.; Nguyen, C.T.; Nguyen, L.H.; Ningrum, D.N.A.; Nirayo, Y.L.; Nixon, M.R.; Norrving, B.; Noubiap, J.J.; Nourollahpour Shiadeh, M.; Nyasulu, P.S.; Ogah, O.S.; Oh, I-H.; Olagunju, A.T.; Olagunju, T.O.; Olivares, P.R.; Onwujekwe, O.E.; Oren, E.; Owolabi, M.O.; Pa, M.; Pakpour, A.H.; Pan, W-H.; Panda-Jonas, S.; Pandian, J.D.; Patel, S.K.; Pereira, D.M.; Petzold, M.; Pillay, J.D.; Piradov, M.A.; Polanczyk, G.V.; Polinder, S.; Postma, M.J.; Poulton, R.; Poustchi, H.; Prakash, S.; Prakash, V.; Qorbani, M.; Radfar, A.; Rafay, A.; Rafiei, A.; Rahim, F.; Rahimi-Movaghar, V.; Rahman, M.; Rahman, M.H.U.; Rahman, M.A.; Rajati, F.; Ram, U.; Ranta, A.; Rawaf, D.L.; Rawaf, S.; Reinig, N.; Reis, C.; Renzaho, A.M.N.; Resnikoff, S.; Rezaeian, S.; Rezai, M.S.; Rios González, C.M.; Roberts, N.L.S.; Roever, L.; Ronfani, L.; Roro, E.M.; Roshandel, G.; Rostami, A.; Sabbagh, P.; Sacco, R.L.; Sachdev, P.S.; Saddik, B.; Safari, H.; Safari-Faramani, R.; Safi, S.; Safiri, S.; Sagar, R.; Sahathevan, R.; Sahebkar, A.; Sahraian, M.A.; Salamati, P.; Salehi Zahabi, S.; Salimi, Y.; Samy, A.M.; Sanabria, J.; Santos, I.S.; Santric Milicevic, M.M.; Sarrafzadegan, N.; Sartorius, B.; Sarvi, S.; Sathian, B.; Satpathy, M.; Sawant, A.R.; Sawhney, M.; Schneider, I.J.C.; Schöttker, B.; Schwebel, D.C.; Seedat, S.; Sepanlou, S.G.; Shabaninejad, H.; Shafieesabet, A.; Shaikh, M.A.; Shakir, R.A.; Shams-Beyranvand, M.; Shamsizadeh, M.; Sharif, M.; Sharif-Alhoseini, M.; She, J.; Sheikh, A.; Sheth, K.N.; Shigematsu, M.; Shiri, R.; Shirkoohi, R.; Shiue, I.; Siabani, S.; Siddiqi, T.J.; Sigfusdottir, I.D.; Sigurvinsdottir, R.; Silberberg, D.H.; Silva, J.P.; Silveira, D.G.A.; Singh, J.A.; Sinha, D.N.; Skiadaresi, E.; Smith, M.; Sobaih, B.H.; Sobhani, S.; Soofi, M.; Soyiri, I.N.; Sposato, L.A.; Stein, D.J.; Stein, M.B.; Stokes, M.A.; Sufiyan, M.B.; Sykes, B.L.; Sylaja, P.N.; Tabarés-Seisdedos, R.; Te Ao, B.J.; Tehrani-Banihashemi, A.; Temsah, M-H.; Temsah, O.; Thakur, J.S.; Thrift, A.G.; Topor-Madry, R.; Tortajada-Girbés, M.; Tovani-Palone, M.R.; Tran, B.X.; Tran, K.B.; Truelsen, T.C.; Tsadik, A.G.; Tudor Car, L.; Ukwaja, K.N.; Ullah, I.; Usman, M.S.; Uthman, O.A.; Valdez, P.R.; Vasankari, T.J.; Vasanthan, R.; Veisani, Y.; Venketasubramanian, N.; Violante, F.S.; Vlassov, V.; Vosoughi, K.; Vu, G.T.; Vujcic, I.S.; Wagnew, F.S.; Waheed, Y.; Wang, Y-P.; Weiderpass, E.; Weiss, J.; Whiteford, H.A.; Wijeratne, T.; Winkler, A.S.; Wiysonge, C.S.; Wolfe, C.D.A.; Xu, G.; Yadollahpour, A.; Yamada, T.; Yano, Y.; Yaseri, M.; Yatsuya, H.; Yimer, E.M.; Yip, P.; Yisma, E.; Yonemoto, N.; Yousefifard, M.; Yu, C.; Zaidi, Z.; Zaman, S.B.; Zamani, M.; Zandian, H.; Zare, Z.; Zhang, Y.; Zodpey, S.; Naghavi, M.; Murray, C.J.L.; Vos, T. Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol., 2019, 18(5), 459-480. doi: 10.1016/S1474-4422(18)30499-X
  2. Kowal, S.L.; Dall, T.M.; Chakrabarti, R.; Storm, M.V.; Jain, A. The current and projected economic burden of Parkinson’s disease in the United States. Mov. Disord., 2013, 28(3), 311-318. doi: 10.1002/mds.25292
  3. Dorsey, E.R.; Constantinescu, R.; Thompson, J.P.; Biglan, K.M.; Holloway, R.G.; Kieburtz, K.; Marshall, F.J.; Ravina, B.M.; Schifitto, G.; Siderowf, A.; Tanner, C.M. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology, 2007, 68(5), 384-386. doi: 10.1212/01.wnl.0000247740.47667.03
  4. Ammar, A.; Trabelsi, K.; Hermassi, S.; Kolahi, A.A.; Mansournia, M.; Jahrami, H.; Boukhris, O.; Boujelbane, M.; Glenn, J.; Clark, C.; Nejadghaderi, A.; Puce, L.; Safiri, S.; Chtourou, H.; Schöllhorn, W.; Zmijewski, P.; Bragazzi, N. Global disease burden attributed to low physical activity in 204 countries and territories from 1990 to 2019: Insights from the global burden of disease 2019 study. Biol. Sport, 2023, 40(3), 835-855. doi: 10.5114/biolsport.2023.121322
  5. Lonikar, N.; Choudhari, P.; Bhusnuare, O. In silico analysis of marine indole alkaloids for design of adenosine A2A receptor antagonist. J. Biomol. Struct. Dyn., 2021, 39(10), 3515-3522. doi: 10.1080/07391102.2020.1765874
  6. German, D.C.; Manaye, K.; Smith, W.K.; Woodward, D.J.; Saper, C.B. Midbrain dopaminergic cell loss in parkinson’s disease: Computer visualization. Ann. Neurol., 1989, 26(4), 507-514. doi: 10.1002/ana.410260403
  7. Lotharius, J.; Brundin, P. Pathogenesis of parkinson’s disease: Dopamine, vesicles and α-synuclein. Nat. Rev. Neurosci., 2002, 3(12), 932-942. doi: 10.1038/nrn983
  8. Gottwald, M.D.; Aminoff, M.J. New frontiers in the pharmacological management of Parkinson's disease. Drugs Today., 2008, 44(7), 531-545. doi: 10.1358/dot.2008.44.7.1217105
  9. Simuni, T.; Jaggi, J.L.; Mulholland, H.; Hurtig, H.I.; Colcher, A.; Siderowf, A.D.; Ravina, B.; Skolnick, B.E.; Goldstein, R.; Stern, M.B.; Baltuch, G.H. Bilateral stimulation of the subthalamic nucleus in patients with Parkinson disease: A study of efficacy and safety. J. Neurosurg., 2002, 96(4), 666-672. doi: 10.3171/jns.2002.96.4.0666
  10. Ansah, T.A.; Ferguson, M.C.; Nayyar, T.; Deutch, A.Y. Age- and duration-dependent effects of MPTP on cortical serotonin systems. Neurosci. Lett., 2011, 504(2), 160-164. doi: 10.1016/j.neulet.2011.09.026
  11. Jankovic, J. Parkinson’s disease: Clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry, 2008, 79(4), 368-376. doi: 10.1136/jnnp.2007.131045
  12. Hurley, M.J.; Brandon, B.; Gentleman, S.M.; Dexter, D.T. Parkinson’s disease is associated with altered expression of CaV1 channels and calcium-binding proteins. Brain, 2013, 136(7), 2077-2097. doi: 10.1093/brain/awt134
  13. Błaszczyk, J.W. Parkinson’s disease and neurodegeneration: GABA-collapse hypothesis. Front. Neurosci., 2016, 10, 269. doi: 10.3389/fnins.2016.00269
  14. Aosaki, T.; Miura, M.; Suzuki, T.; Nishimura, K.; Masuda, M. Acetylcholine-dopamine balance hypothesis in the striatum: An update. Geriatr. Gerontol. Int., 2010, 10, S148-S157. doi: 10.1111/j.1447-0594.2010.00588.x
  15. Stefanis, L. α-Synuclein in Parkinson’s disease. Cold Spring Harb. Perspect. Med., 2012, 2(2), a009399. doi: 10.1101/cshperspect.a009399
  16. Mouradian, M.M. Recent advances in the genetics and pathogenesis of Parkinson disease. Neurology, 2002, 58(2), 179-185. doi: 10.1212/WNL.58.2.179
  17. Dauer, W.; Kholodilov, N.; Vila, M.; Trillat, A.C.; Goodchild, R.; Larsen, K.E.; Staal, R.; Tieu, K.; Schmitz, Y.; Yuan, C.A.; Rocha, M.; Jackson-Lewis, V.; Hersch, S.; Sulzer, D.; Przedborski, S.; Burke, R.; Hen, R. Resistance of α-synuclein null mice to the parkinsonian neurotoxin MPTP. Proc. Natl. Acad. Sci. USA, 2002, 99(22), 14524-14529. doi: 10.1073/pnas.172514599
  18. Ostrerova-Golts, N.; Petrucelli, L.; Hardy, J.; Lee, J.M.; Farer, M.; Wolozin, B. The A53T α-synuclein mutation increases iron-dependent aggregation and toxicity. J. Neurosci., 2000, 20(16), 6048-6054. doi: 10.1523/JNEUROSCI.20-16-06048.2000
  19. Fowler, J.S.; Volkow, N.D.; Wang, G.J.; Logan, J.; Pappas, N.; Shea, C.; MacGregor, R. Age-related increases in brain monoamine oxidase B in living healthy human subjects. Neurobiol. Aging, 1997, 18(4), 431-435. doi: 10.1016/S0197-4580(97)00037-7
  20. Andrei, C.; Dazzi, C.; Lotti, L.; Torrisi, M.R.; Chimini, G.; Rubartelli, A. The secretory route of the leaderless protein interleukin 1β involves exocytosis of endolysosome-related vesicles. Mol. Biol. Cell, 1999, 10(5), 1463-1475. doi: 10.1091/mbc.10.5.1463
  21. Zhou, S.; Schuetz, J.D.; Bunting, K.D.; Colapietro, A.M.; Sampath, J.; Morris, J.J.; Lagutina, I.; Grosveld, G.C.; Osawa, M.; Nakauchi, H.; Sorrentino, B.P. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat. Med., 2001, 7(9), 1028-1034. doi: 10.1038/nm0901-1028
  22. Flieger, O.; Engling, A.; Bucala, R.; Lue, H.; Nickel, W.; Bernhagen, J. Regulated secretion of macrophage migration inhibitory factor is mediated by a non-classical pathway involving an ABC transporter. FEBS Lett., 2003, 551(1-3), 78-86. doi: 10.1016/S0014-5793(03)00900-1
  23. Loebinger, M.R.; Giangreco, A.; Groot, K.R.; Prichard, L.; Allen, K.; Simpson, C.; Bazley, L.; Navani, N.; Tibrewal, S.; Davies, D.; Janes, S.M. Squamous cell cancers contain a side population of stem-like cells that are made chemosensitive by ABC transporter block-ade. Br. J. Cancer, 2008, 98(2), 380-387. doi: 10.1038/sj.bjc.6604185
  24. Frye, B.C.; Halfter, S.; Djudjaj, S.; Muehlenberg, P.; Weber, S.; Raffetseder, U.; En-Nia, A.; Knott, H.; Baron, J.M.; Dooley, S.; Bernhagen, J.; Mertens, P.R. Y‐box protein‐1 is actively secreted through a non‐classical pathway and acts as an extracellular mitogen. EMBO Rep., 2009, 10(7), 783-789. doi: 10.1038/embor.2009.81
  25. Maiti, P.; Manna, J.; Dunbar, G.L. Current understanding of the molecular mechanisms in Parkinson’s disease: Targets for potential treatments. Transl. Neurodegener., 2017, 6(1), 28. doi: 10.1186/s40035-017-0099-z
  26. Kitada, T.; Asakawa, S.; Hattori, N.; Matsumine, H.; Yamamura, Y.; Minoshima, S.; Yokochi, M.; Mizuno, Y.; Shimizu, N. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. nature, 1998, 392(6676), 605-608. doi: 10.1038/33416
  27. Bouhouche, A.; Tibar, H.; Ben El Haj, R.; El Bayad, K.; Razine, R.; Tazrout, S.; Skalli, A.; Bouslam, N.; Elouardi, L.; Benomar, A.; Yahyaoui, M.; Regragui, W. LRRK2 G2019S mutation: Prevalence and clinical features in moroccans with Parkinson’s disease. Parkinsons Dis., 2017, 2017, 1-7. doi: 10.1155/2017/2412486
  28. Rubinsztein, D.C. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature, 2006, 443(7113), 780-786. doi: 10.1038/nature05291
  29. Chan, N.C.; Salazar, A.M.; Pham, A.H.; Sweredoski, M.J.; Kolawa, N.J.; Graham, R.L.J.; Hess, S.; Chan, D.C. Broad activation of the ubiquitin–proteasome system by Parkin is critical for mitophagy. Hum. Mol. Genet., 2011, 20(9), 1726-1737. doi: 10.1093/hmg/ddr048
  30. Dokladny, K.; Myers, O.B.; Moseley, P.L. Heat shock response and autophagy—cooperation and control. Autophagy, 2015, 11(2), 200-213. doi: 10.1080/15548627.2015.1009776
  31. Maiti, P.; Manna, J.; Veleri, S.; Frautschy, S. Molecular chaperone dysfunction in neurodegenerative diseases and effects of curcumin. BioMed Res. Int., 2014, 2014, 1-14. doi: 10.1155/2014/495091
  32. Wyttenbach, A. Role of heat shock proteins during polyglutamine neurodegeneration. J. Mol. Neurosci., 2004, 23(1-2), 069-096. doi: 10.1385/JMN:23:1-2:069
  33. Parker, W.D., Jr; Parks, J.K.; Swerdlow, R.H. Complex I deficiency in Parkinson’s disease frontal cortex. Brain Res., 2008, 1189, 215-218. doi: 10.1016/j.brainres.2007.10.061
  34. Cannon, J.R.; Tapias, V.; Na, H.M.; Honick, A.S.; Drolet, R.E.; Greenamyre, J.T. A highly reproducible rotenone model of Parkinson’s disease. Neurobiol. Dis., 2009, 34(2), 279-290. doi: 10.1016/j.nbd.2009.01.016
  35. Anderson, G.; Noorian, A.; Taylor, G.; Anitha, M.; Bernhard, D.; Srinivasan, S.; Greene, J. Loss of enteric dopaminergic neurons and associated changes in colon motility in an MPTP mouse model of Parkinson’s disease. Exp. Neurol., 2007, 207(1), 4-12. doi: 10.1016/j.expneurol.2007.05.010
  36. Bezard, E.; Dovero, S.; Bioulac, B.; Gross, C.E. Kinetics of nigral degeneration in a chronic model of MPTP-treated mice. Neurosci. Lett., 1997, 234(1), 47-50. doi: 10.1016/S0304-3940(97)00663-0
  37. Mark, L.P.; Prost, R.W.; Ulmer, J.L.; Smith, M.M.; Daniels, D.L.; Strottmann, J.M.; Brown, W.D.; Hacein-Bey, L. Pictorial review of glutamate excitotoxicity: Fundamental concepts for neuroimaging. AJNR Am. J. Neuroradiol., 2001, 22(10), 1813-1824. PMID: 11733308
  38. Dong, X.; Wang, Y.; Qin, Z. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol. Sin., 2009, 30(4), 379-387. doi: 10.1038/aps.2009.24
  39. Paisán-Ruíz, C.; Jain, S.; Evans, E.W.; Gilks, W.P.; Simón, J.; van der Brug, M.; de Munain, A.L.; Aparicio, S.; Gil, A.M.; Khan, N.; Johnson, J.; Martinez, J.R.; Nicholl, D.; Carrera, I.M.; Peňa, A.S.; de Silva, R.; Lees, A.; Martí-Massó, J.F.; Pérez-Tur, J.; Wood, N.W.; Singleton, A.B. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron, 2004, 44(4), 595-600. doi: 10.1016/j.neuron.2004.10.023
  40. Galter, D.; Westerlund, M.; Carmine, A.; Lindqvist, E.; Sydow, O.; Olson, L. LRRK2 expression linked to dopamine-innervated areas. Ann. Neurol., 2006, 59(4), 714-719. doi: 10.1002/ana.20808
  41. Hauser, R.A.; Freeman, T.B.; Snow, B.J.; Nauert, M.; Gauger, L.; Kordower, J.H.; Olanow, C.W. Long-term evaluation of bilateral fetal nigral transplantation in Parkinson disease. Arch. Neurol., 1999, 56(2), 179-187. doi: 10.1001/archneur.56.2.179
  42. Polymeropoulos, M.H.; Higgins, J.J.; Golbe, L.I.; Johnson, W.G.; Ide, S.E.; Di Iorio, G.; Sanges, G.; Stenroos, E.S.; Pho, L.T.; Schaffer, A.A.; Lazzarini, A.M.; Nussbaum, R.L.; Duvoisin, R.C. Mapping of a gene for Parkinson’s disease to chromosome 4q21-q23. Sci., 1996, 274(5290), 1197-1199. doi: 10.1126/science.274.5290.1197
  43. Kuhla, A.; Ludwig, S.C.; Kuhla, B.; Münch, G.; Vollmar, B. Advanced glycation end products are mitogenic signals and trigger cell cycle reentry of neurons in Alzheimer’s disease brain. Neurobiol. Aging, 2015, 36(2), 753-761. doi: 10.1016/j.neurobiolaging.2014.09.025
  44. Ip, C.W.; Klaus, L.C.; Karikari, A.A.; Visanji, N.P.; Brotchie, J.M.; Lang, A.E.; Volkmann, J.; Koprich, J.B. AAV1/2-induced overexpression of A53T-α-synuclein in the substantia nigra results in degeneration of the nigrostriatal system with Lewy-like pathology and motor impairment: A new mouse model for Parkinson’s disease. Acta Neuropathol. Commun., 2017, 5(1), 11. doi: 10.1186/s40478-017-0416-x
  45. Richfield, E.K.; Thiruchelvam, M.J.; Cory-Slechta, D.A.; Wuertzer, C.; Gainetdinov, R.R.; Caron, M.G.; Di Monte, D.A.; Federoff, H.J. Behavioral and neurochemical effects of wild-type and mutated human α-synuclein in transgenic mice. Exp. Neurol., 2002, 175(1), 35-48. doi: 10.1006/exnr.2002.7882
  46. Jeon, M.Y.; Lee, W.Y.; Kang, H.Y.; Chung, E.J. The effects of L-3,4-dihydroxyphenylalanine and dopamine agonists on dopamine neurons in the progressive hemiparkinsonian rat models. Neurol. Res., 2007, 29(3), 289-295. doi: 10.1179/174313206X153996
  47. Barbeau, A. L-dopa therapy in Parkinson’s disease: A critical review of nine years’ experience. Can. Med. Assoc. J., 1969, 101(13), 59. PMID: 4903690
  48. Foster, H.D.; Hoffer, A. The two faces of L-DOPA: Benefits and adverse side effects in the treatment of Encephalitis lethargica, Parkinson’s disease, multiple sclerosis and amyotrophic lateral sclerosis. Med. Hypotheses, 2004, 62(2), 177-181. doi: 10.1016/S0306-9877(03)00318-9
  49. Cenci, M.A. Presynaptic mechanisms of l-DOPA-induced dyskinesia: The findings, the debate, and the therapeutic implications. Front. Neurol., 2014, 5, 242. doi: 10.3389/fneur.2014.00242
  50. Korczyn, A.D. Drug treatment of Parkinson’s disease. Dialogues Clin. Neurosci., 2022, 6(3), 315-322. doi: 10.31887/DCNS.2004.6.3/akorczyn
  51. Antonini, A.; Abbruzzese, G.; Barone, P.; Bonuccelli, U.; Lopiano, L.; Onofrj, M.; Zappia, M.; Quattrone, A. COMT inhibition with tolcapone in the treatment algorithm of patients with Parkinson’s disease (PD): Relevance for motor and non-motor features. Neuropsychiatr. Dis. Treat., 2008, 4(1), 1. doi: 10.2147/NDT.S2404
  52. Brooks, D.J. Dopamine agonists: Their role in the treatment of Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry, 2000, 68(6), 685-689. doi: 10.1136/jnnp.68.6.685
  53. Tintner, R.; Jankovic, J. Dopamine agonists in Parkinson’s disease. Expert Opin. Investig. Drugs, 2003, 12(11), 1803-1820. doi: 10.1517/13543784.12.11.1803
  54. Jankovic, J.; Aguilar, L.G. Current approaches to the treatment of Parkinson’s disease. Neuropsychiatr. Dis. Treat., 2008, 4(4), 743-757. doi: 10.2147/NDT.S2006
  55. Chen, J.J.; Marsh, L. Anxiety in Parkinson’s disease: Identification and management. Ther. Adv. Neurol. Disord., 2014, 7(1), 52-59. doi: 10.1177/1756285613495723
  56. Durif, F.; Debilly, B.; Galitzky, M.; Morand, D.; Viallet, F.; Borg, M.; Thobois, S.; Broussolle, E.; Rascol, O. Clozapine improves dyskinesias in Parkinson disease: A double-blind, placebo-controlled study. Neurology, 2004, 62(3), 381-388. doi: 10.1212/01.WNL.0000110317.52453.6C
  57. Huffman, J.C.; Alpert, J.E. An approach to the psychopharmacologic care of patients: Antidepressants, antipsychotics, anxiolytics, mood stabilizers, and natural remedies. Med. Clin. North Am., 2010, 94(6), 1141-1160. doi: 10.1016/j.mcna.2010.08.009
  58. Wink, M. In Alkaloids; Springer, 1998, pp. 11-44. doi: 10.1007/978-1-4757-2905-4_2
  59. Roberts, M.F. Alkaloids: Biochemistry, ecology, and medicinal applications; Springer Science & Business Media, 2013. doi: 10.1007/978-1-4757-2905-4
  60. Dey, P.; Kundu, A.; Kumar, A.; Gupta, M.; Lee, B.M.; Bhakta, T.; Dash, S.; Kim, H.S. Chapter 15: Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids).in Recent advances in natural products analysis; Elsevier, 2020, pp. 505-567. doi: 10.1016/B978-0-12-816455-6.00015-9
  61. Connolly, J.; Hill, R.; Robinson, J. Advances in flavours and fragrances. Dictionary of Terpenoids; Chapman & Hall: London, 1991, pp. 677-736. doi: 10.1007/978-1-4899-4513-6
  62. Talapatra, S.K.; Talapatra, B. Alkaloids. general introduction.In Chemistry of Plant Natural Products; Springer, 2015, pp. 717-724. doi: 10.1007/978-3-642-45410-3_15
  63. Henning, C.P. Compuestos secundarios nitrogenados: Alcaloides; Productos Naturales Vegetales, 2013, p. 18.
  64. Gao, F.; Li, Y.Y.; Wang, D.; Huang, X.; Liu, Q. Diterpenoid alkaloids from the Chinese traditional herbal Fuzi and their cytotoxic activity. Molecules, 2012, 17(5), 5187-5194. doi: 10.3390/molecules17055187
  65. Wang, F.P.; Chen, Q.H.; Liu, X.Y. Diterpenoid alkaloids. Nat. Prod. Rep., 2010, 27(4), 529-570. doi: 10.1039/b916679c
  66. Borzeix, M.; Cahn, J. Cerebral antioedematous effect of Teproside and of some vincamine derivatives. Int. J. Clin. Pharmacol., 1984, 4(4), 259-261. PMID: 6500773
  67. Ng, Y.P.; Or, T.C.T.; Ip, N.Y. Plant alkaloids as drug leads for Alzheimer’s disease. Neurochem. Int., 2015, 89, 260-270. doi: 10.1016/j.neuint.2015.07.018
  68. Amirkia, V.; Heinrich, M. Alkaloids as drug leads – A predictive structural and biodiversity-based analysis. Phytochem. Lett., 2014, 10, xlviii-liii. doi: 10.1016/j.phytol.2014.06.015
  69. Dey, A. Plant-derived alkaloids: A promising window for neuroprotective drug discovery. In: Discovery and development of neuroprotective agents from natural products; Elsevier, 2018; pp. 237-320. doi: 10.1016/B978-0-12-809593-5.00006-9
  70. Cushnie, T.P.T.; Cushnie, B.; Lamb, A.J. Alkaloids: An overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int. J. Antimicrob. Agents, 2014, 44(5), 377-386. doi: 10.1016/j.ijantimicag.2014.06.001
  71. Cortes, N.; Posada-Duque, R.A.; Alvarez, R.; Alzate, F.; Berkov, S.; Cardona-Gómez, G.P.; Osorio, E. Neuroprotective activity and acetylcholinesterase inhibition of five Amaryllidaceae species: A comparative study. Life Sci., 2015, 122, 42-50. doi: 10.1016/j.lfs.2014.12.011
  72. Estévez, V.; Villacampa, M.; Menéndez, J.C. Recent advances in the synthesis of pyrroles by multicomponent reactions. Chem. Soc. Rev., 2014, 43(13), 4633-4657. doi: 10.1039/C3CS60015G
  73. Kaur, R.; Arora, S. Alkaloids-important therapeutic secondary metabolites of plant origin. J. Crit. Rev., 2015, 2(3), 1-8.
  74. Gutiérrez-Grijalva, E.P.; López-Martínez, L.X.; Contreras-Angulo, L.A.; Elizalde-Romero, C.A.; Heredia, J.B. Plant Alkaloids: Structures and bioactive properties. Plant-derived bioactives; Springer, 2020, pp. 85-117. doi: 10.1007/978-981-15-2361-8_5
  75. Goel, P.; Alam, O.; Naim, M.J.; Nawaz, F.; Iqbal, M.; Alam, M.I. Recent advancement of piperidine moiety in treatment of cancer- A review. Eur. J. Med. Chem., 2018, 157, 480-502. doi: 10.1016/j.ejmech.2018.08.017
  76. Koleva, I.I.; van Beek, T.A.; Soffers, A.E.M.F.; Dusemund, B.; Rietjens, I.M.C.M. Alkaloids in the human food chain - Natural occurrence and possible adverse effects. Mol. Nutr. Food Res., 2012, 56(1), 30-52. doi: 10.1002/mnfr.201100165
  77. Mao, Z.; Huang, S.; Gao, L.; Wang, A.; Huang, P. A novel and versatile method for the enantioselective syntheses of tropane alkaloids. Sci. China Chem., 2014, 57(2), 252-264. doi: 10.1007/s11426-013-4998-2
  78. Jirschitzka, J.; Schmidt, G.W.; Reichelt, M.; Schneider, B.; Gershenzon, J.; D’Auria, J.C. Plant tropane alkaloid biosynthesis evolved independently in the Solanaceae and Erythroxylaceae. Proc. Natl. Acad. Sci. USA, 2012, 109(26), 10304-10309. doi: 10.1073/pnas.1200473109
  79. Byler, K.G.; Wang, C.; Setzer, W.N. Quinoline alkaloids as intercalative topoisomerase inhibitors. J. Mol. Model., 2009, 15(12), 1417-1426. doi: 10.1007/s00894-009-0501-6
  80. Cai, X.H.; Li, Y.; Su, J.; Liu, Y.P.; Li, X.N.; Luo, X.D. Novel indole and quinoline alkaloids from Melodinus yunnanensis. Nat. Prod. Bioprospect., 2011, 1(1), 25-28. doi: 10.1007/s13659-011-0001-0
  81. Khan, A.Y.; Suresh Kumar, G. Natural isoquinoline alkaloids: Binding aspects to functional proteins, serum albumins, hemoglobin, and lysozyme. Biophys. Rev., 2015, 7(4), 407-420. doi: 10.1007/s12551-015-0183-5
  82. Bhadra, K.; Kumar, G.S. Therapeutic potential of nucleic acid-binding isoquinoline alkaloids: Binding aspects and implications for drug design. Med. Res. Rev., 2011, 31(6), 821-862. doi: 10.1002/med.20202
  83. Szőke, É.; Lemberkovics, É.; Kursinszki, L. Alkaloids derived from lysine: Piperidine alkaloids; Natu. Produc, 2013, pp. 303-341. doi: 10.1007/978-3-642-22144-6_10
  84. Guirimand, G.; Courdavault, V.; St-Pierre, B.; Burlat, V. Biosynthesis and regulation of alkaloids. In: Plant developmental biology-biotechnological perspectives; Springer, 2010; pp. 139-160. doi: 10.1007/978-3-642-04670-4_8
  85. Sagi, S.; Avula, B.; Wang, Y.H.; Khan, I.A. Quantification and characterization of alkaloids from roots of Rauwolfia serpentina using ultra-high performance liquid chromatography-photo diode array-mass spectrometry. Anal. Bioanal. Chem., 2016, 408(1), 177-190. doi: 10.1007/s00216-015-9093-4
  86. Silva, V.G.; Silva, R.O.; Damasceno, S.R.B.; Carvalho, N.S.; Prudêncio, R.S.; Aragão, K.S.; Guimarães, M.A.; Campos, S.A.; Véras, L.M.C.; Godejohann, M.; Leite, J.R.S.A.; Barbosa, A.L.R.; Medeiros, J-V.R. Anti-inflammatory and antinociceptive activity of epiisopiloturine, an imidazole alkaloid isolated from Pilocarpus microphyllus. J. Nat. Prod., 2013, 76(6), 1071-1077. doi: 10.1021/np400099m
  87. Debnath, B.; Singh, W.S.; Das, M.; Goswami, S.; Singh, M.K.; Maiti, D.; Manna, K. Role of plant alkaloids on human health: A review of biological activities. Mater. Today Chem., 2018, 9, 56-72. doi: 10.1016/j.mtchem.2018.05.001
  88. Davis, R.A.; Carroll, A.R.; Quinn, R.J. Eudistomin V, a new β-Carboline from the Australian ascidian Pseudodistoma aureum. J. Nat. Prod., 1998, 61(7), 959-960. doi: 10.1021/np9800452
  89. Klein-Júnior, L.C.; Cretton, S.; Vander Heyden, Y.; Gasper, A.L.; Nejad-Ebrahimi, S.; Christen, P.; Henriques, A.T. Bioactive azepine-indole alkaloids from Psychotria nemorosa. J. Nat. Prod., 2020, 83(4), 852-863. doi: 10.1021/acs.jnatprod.9b00469
  90. Schmidt, F.; Douaron, G.L.; Champy, P.; Amar, M.; Séon-Méniel, B.; Raisman-Vozari, R.; Figadère, B. Tryptamine-derived alkaloids from Annonaceae exerting neurotrophin-like properties on primary dopaminergic neurons. Bioorg. Med. Chem., 2010, 18(14), 5103-5113. doi: 10.1016/j.bmc.2010.05.067
  91. dos Santos Passos, C.; Klein-Júnior, L.C.; de Mello Andrade, J.M.; Matté, C.; Henriques, A.T. The catechol-O-methyltransferase inhibitory potential of Z-vallesiachotamine by in silico and in vitro approaches. Rev. Bras. Farmacogn., 2015, 25(4), 382-386. doi: 10.1016/j.bjp.2015.07.002
  92. Kozanecka-Okupnik, W.; Jasiewicz, B.; Pospieszny, T.; Jastrząb, R.; Skrobańska, M.; Mrówczyńska, L. Spectroscopy, molecular modeling and anti-oxidant activity studies on novel conjugates containing indole and uracil moiety. J. Mol. Struct., 2018, 1169, 130-137. doi: 10.1016/j.molstruc.2018.05.057
  93. Kumar, S.; Singh, A.; Kumar, B. Screening of monoterpene indole alkaloids in six Rauwolfia species by ultra‐high performance liquid chromatography orbitrap velos pro mass spectrometer. Separ. Sci. Plus, 2019, 2(8), 300-308. doi: 10.1002/sscp.201900029
  94. Sato, Y.; Oyobe, N.; Ogawa, T.; Suzuki, S.; Aoyama, H.; Nakamura, T.; Fujioka, H.; Shuto, S.; Arisawa, M. Design, synthesis, and monoamine oxidase inhibitory activity of (+)-cinchonaminone and its simplified derivatives. ACS Med. Chem. Lett., 2021, 12(9), 1464-1469. doi: 10.1021/acsmedchemlett.1c00310
  95. Xiao, X.; Tong, Z.; Zhang, Y.; Zhou, H.; Luo, M.; Hu, T.; Hu, P.; Kong, L.; Liu, Z.; Yu, C.; Huang, Z.; Hu, L. Novel prenylated indole alkaloids with neuroprotection on sh-sy5y cells against oxidative stress targeting Keap1–Nrf2. Mar. Drugs, 2022, 20(3), 191. doi: 10.3390/md20030191
  96. Li, Y-J.; Li, J.; Xie, L.; Zhou, J-Y.; Li, Q-X.; Yang, R-Y.; Liu, Y-P.; Fu, Y-H. Monoterpenoid indole alkaloids with potential neuroprotective activities from the stems and leaves of Melodinus cochinchinensis. Nat. Prod. Res., 2021, 36(20), 5181-5188. doi: 10.1080/14786419.2021.1922406
  97. Krishnan, N.; Mariappanadar, V.; Dhanabalan, A.K.; Devadasan, V.; Gopinath, S.C.B.; Raman, P. Purification, identification and in silico models of alkaloids from Nardostachys jatamansi — bioactive compounds for neurodegenerative diseases. Biomass Convers. Biorefin., 2022, 1-12. doi: 10.1007/s13399-022-03237-y
  98. Xu, Y.; Wang, R.; Hou, T.; Li, H.; Han, Y.; Li, Y.; Xu, L.; Lu, S.; Liu, L.; Cheng, J.; Wang, J.X.; Xu, Q.; Liu, Y.; Liang, X. Un-cariphyllin A-J, indole alkaloids from Uncaria rhynchophylla as antagonists of dopamine D2 and Mu opioid receptors. Bioorg. Chem., 2023, 130, 106257. doi: 10.1016/j.bioorg.2022.106257
  99. Smirnova, O.B.; Golovko, T.V.; Granik, V.G. Carbolines. Part 2: Comparison of some of the properties of α-, γ-, and δ-carbolines (Review). Pharm. Chem. J., 2011, 45(7), 389-400. doi: 10.1007/s11094-011-0641-8
  100. Dai, J.; Dan, W.; Schneider, U.; Wang, J. β-Carboline alkaloid monomers and dimers: Occurrence, structural diversity, and biological activities. Eur. J. Med. Chem., 2018, 157, 622-656. doi: 10.1016/j.ejmech.2018.08.027
  101. Herraiz, T.; Chaparro, C. Human monoamine oxidase enzyme inhibition by coffee and β-carbolines norharman and harman isolated from coffee. Life Sci., 2006, 78(8), 795-802. doi: 10.1016/j.lfs.2005.05.074
  102. Yang, Y.J.; Lee, J.J.; Jin, C.M.; Lim, S.C.; Lee, M.K. Effects of harman and norharman on dopamine biosynthesis and L-DOPA-induced cytotoxicity in PC12 cells. Eur. J. Pharmacol., 2008, 587(1-3), 57-64. doi: 10.1016/j.ejphar.2008.03.050
  103. Samoylenko, V.; Rahman, M.M.; Tekwani, B.L.; Tripathi, L.M.; Wang, Y.H.; Khan, S.I.; Khan, I.A.; Miller, L.S.; Joshi, V.C.; Muhammad, I. Banisteriopsis caapi, a unique combination of MAO inhibitory and antioxidative constituents for the activities relevant to neurodegenerative disorders and Parkinson’s disease. J. Ethnopharmacol., 2010, 127(2), 357-367. doi: 10.1016/j.jep.2009.10.030
  104. Adayev, T.; Wegiel, J.; Hwang, Y.W. Harmine is an ATP-competitive inhibitor for dual-specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A). Arch. Biochem. Biophys., 2011, 507(2), 212-218. doi: 10.1016/j.abb.2010.12.024
  105. Shalgum, A.; Govindarajulu, M.; Majrashi, M.; Ramesh, S.; Collier, W.E.; Griffin, G.; Amin, R.; Bradford, C.; Moore, T.; Dhanasekaran, M. Neuroprotective effects of Hibiscus Sabdariffa against hydrogen peroxide-induced toxicity. J. Herb. Med., 2019, 17-18, 100253. doi: 10.1016/j.hermed.2018.100253
  106. Nurmaganbetov, Z.S.; Arystan, L.I.; Muldaeva, G.M.; Haydargalieva, L.S.; Adekenov, S.M. Experimental study of antiparkinsonian action of the harmine hydrochloride original compound. Pharmacol. Rep., 2019, 71(6), 1050-1058. doi: 10.1016/j.pharep.2019.06.002
  107. Cai, C.Z.; Zhou, H.F.; Yuan, N.N.; Wu, M.Y.; Lee, S.M.Y.; Ren, J.Y.; Su, H.X.; Lu, J.J.; Chen, X.P.; Li, M.; Tan, J-Q.; Lu, J-H. Natural alkaloid harmine promotes degradation of alpha-synuclein via PKA-mediated ubiquitin-proteasome system activation. Phytomedicine, 2019, 61, 152842. doi: 10.1016/j.phymed.2019.152842
  108. Katchborian-Neto, A.; Santos, W.T.; Nicácio, K.J.; Corrêa, J.O.A.; Murgu, M.; Martins, T.M.M.; Gomes, D.A.; Goes, A.M.; Soares, M.G.; Dias, D.F.; Chagas-Paula, D.A.; Paula, A.C.C. Neuroprotective potential of ayahuasca and untargeted metabolomics analyses: Applicability to Parkinson’s disease. J. Ethnopharmacol., 2020, 255, 112743. doi: 10.1016/j.jep.2020.112743
  109. Doskaliyev, A.; Seidakhmetova, R.; Tutai, D.; Goldaeva, K.; Surov, V.; Adekenov, S. S. Alkaloids of Peganum harmala L. and their pharmacological activity. Open Access Maced. J. Med. Sci., 2021, 9(A), 766-775. doi: 10.3889/oamjms.2021.6654
  110. Xu, J.; Ao, Y.L.; Huang, C.; Song, X.; Zhang, G.; Cui, W.; Wang, Y.; Zhang, X.Q.; Zhang, Z. Harmol promotes α-synuclein degradation and improves motor impairment in Parkinson’s models via regulating autophagy-lysosome pathway. NPJ Parkinsons Dis., 2022, 8(1), 100. doi: 10.1038/s41531-022-00361-4
  111. Senhaji, S.; Lamchouri, F.; Akabli, T.; Toufik, H. In vitro antioxidant activities of five β-carboline alkaloids, molecular docking, and dynamic simulations. Struct. Chem., 2022, 33(3), 883-895. doi: 10.1007/s11224-022-01886-3

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers