1,3,4-Oxadiazole: An Emerging Scaffold to Inhibit the Thymidine Phosphorylase as an Anticancer Agent


Cite item

Full Text

Abstract

:Thymidine phosphorylase (TP), also referred to as \"platelet-derived endothelial cell growth factor\" is crucial to the pyrimidine salvage pathway. TP reversibly transforms thymidine into thymine and 2-deoxy-D-ribose-1-phosphate (dRib-1-P), which further degraded to 2-Deoxy-D-ribose (2DDR), which has both angiogenic and chemotactic activity. In several types of human cancer such as breast and colorectal malignancies, TP is abundantly expressed in response to biological disturbances like hypoxia, acidosis, chemotherapy, and radiation therapy. TP overexpression is highly associated with angiogenic factors such as vascular endothelial growth factor (VEGF), interleukins (ILs), matrix metalloproteases (MMPs), etc., which accelerate tumorigenesis, invasion, metastasis, immune response evasion, and resistant to apoptosis. Hence, TP is recognized as a key target for the development of new anticancer drugs. Heterocycles are the primary structural element of most chemotherapeutics. Even 75% of nitrogen-containing heterocyclic compounds are contributing to the pharmaceutical world. To create the bioactive molecule, medicinal chemists are concentrating on nitrogen-containing heterocyclic compounds such as pyrrole, pyrrolidine, pyridine, imidazole, pyrimidines, pyrazole, indole, quinoline, oxadiazole, benzimidazole, etc. The Oxadiazole motif stands out among all of them due to its enormous significance in medicinal chemistry. The main thrust area of this review is to explore the synthesis, SAR, and the significant role of 1,3,4-oxadiazole derivatives as a TP inhibitor for their chemotherapeutic effects.

About the authors

Anjali Murmu

Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University)

Email: info@benthamscience.net

Purusottam Banjare

Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University)

Email: info@benthamscience.net

Balaji Matore

Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University)

Email: info@benthamscience.net

Partha Roy

Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University)

Author for correspondence.
Email: info@benthamscience.net

Jagadish Singh

Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University)

Author for correspondence.
Email: info@benthamscience.net

References

  1. Goubran, H.A.; Kotb, R.R.; Stakiw, J.; Emara, M.E.; Burnouf, T. Regulation of tumor growth and metastasis: The role of tumor microenvironment. Cancer Growth Metastasis, 2014, 7, 9-18. doi: 10.4137/CGM.S11285 PMID: 24926201
  2. Nishikawa, M. Reactive oxygen species in tumor metastasis. Cancer Lett., 2008, 266(1), 53-59. doi: 10.1016/j.canlet.2008.02.031 PMID: 18362051
  3. Levine, S.; Malone, E.; Lekiachvili, A.; Briss, P. Health care industry insights: Why the use of preventive services is still low. Prev. Chronic Dis., 2019, 16(3), 180625. doi: 10.5888/pcd16.180625 PMID: 30873937
  4. Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin., 2023, 73(1), 17-48. doi: 10.3322/caac.21763 PMID: 36633525
  5. Matore, B.W.; Banjare, P.; Singh, J.; Roy, P.P. In silico selectivity modeling of pyridine and pyrimidine based CYP11B1 and CYP11B2 inhibitors: A case study. J. Mol. Graph. Model., 2022, 116, 108238. doi: 10.1016/j.jmgm.2022.108238 PMID: 35691091
  6. Ahmad Ganai, S. Novel approaches towards designing of isoform-selective inhibitors against class II histone deacetylases: The acute requirement for targetted anticancer therapy. Curr. Top. Med. Chem., 2016, 16(22), 2441-2452. doi: 10.2174/1568026616666160212122609 PMID: 26873193
  7. Oliveira Pedrosa, M.; Duarte da Cruz, R.; Oliveira Viana, J.; de Moura, R.; Ishiki, H.; Barbosa Filho, J.; Diniz, M.; Scotti, M.; Scotti, L.; Bezerra Mendonca, F. Hybrid compounds as direct multitarget ligands: A review. Curr. Top. Med. Chem., 2017, 17(9), 1044-1079. doi: 10.2174/1568026616666160927160620 PMID: 27697048
  8. Martins, P.; Jesus, J.; Santos, S.; Raposo, L.; Roma-Rodrigues, C.; Baptista, P.; Fernandes, A. Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules, 2015, 20(9), 16852-16891. doi: 10.3390/molecules200916852 PMID: 26389876
  9. Pearce, S. The importance of heterocyclic compounds in anti-cancer drug design. Drug Discov. World, 2017, 18(2), 66-70.
  10. Bala, S.; Kamboj, S.; Kumar, A. Heterocyclic 1, 3, 4-oxadiazole compounds with diverse biological activities: A comprehensive review. J. Pharm. Res., 2010, 3(12), 2993-2997.
  11. Keri, R.S.; Patil, S.A. Quinoline: A promising antitubercular target. Biomed. Pharmacother., 2014, 68(8), 1161-1175. doi: 10.1016/j.biopha.2014.10.007 PMID: 25458785
  12. Al-Mulla, A. A review: Biological importance of heterocyclic compounds. Der Pharma Chem., 2017, 9(13), 141-147.
  13. Matore, B.W.; Roy, P.P.; Singh, J. Discovery of novel VEGFR2-TK inhibitors by phthalimide pharmacophore based virtual screening, molecular docking, MD simulation and DFT. J. Biomol. Struct. Dyn., 2023, 1-22. doi: 10.1080/07391102.2023.2178510 PMID: 36775656
  14. Matore, B.W.; Banjare, P.; Sarthi, A.S.; Roy, P.P.; Singh, J. Phthalimides represent a promising scaffold for multi-targeted anticancer agents. ChemistrySelect, 2023, 8(9), e202204851. doi: 10.1002/slct.202204851
  15. Bajaj, S.; Asati, V.; Singh, J.; Roy, P.P. 1,3,4-Oxadiazoles: An emerging scaffold to target growth factors, enzymes and kinases as anti-cancer agents. Eur. J. Med. Chem., 2015, 97, 124-141. doi: 10.1016/j.ejmech.2015.04.051 PMID: 25965776
  16. Glomb, T.; Szymankiewicz, K.; Świątek, P. Anti-cancer activity of derivatives of 1,3,4-oxadiazole. Molecules, 2018, 23(12), 3361. doi: 10.3390/molecules23123361 PMID: 30567416
  17. Benassi, A.; Doria, F.; Pirota, V. Groundbreaking anticancer activity of highly diversified oxadiazole scaffolds. Int. J. Mol. Sci., 2020, 21(22), 8692. doi: 10.3390/ijms21228692 PMID: 33217987
  18. Zhao, S.; Zhang, X.; Wei, P.; Su, X.; Zhao, L.; Wu, M.; Hao, C.; Liu, C.; Zhao, D.; Cheng, M. Design, synthesis and evaluation of aromatic heterocyclic derivatives as potent antifungal agents. Eur. J. Med. Chem., 2017, 137, 96-107. doi: 10.1016/j.ejmech.2017.05.043 PMID: 28558334
  19. Anouar, E.H.; Moustapha, M.E.; Taha, M.; Geesi, M.H.; Farag, Z.R.; Rahim, F.; Almandil, N.B.; Farooq, R.K.; Nawaz, M.; Mosaddik, A. Synthesis, molecular docking and β-glucuronidase inhibitory potential of indole base oxadiazole derivatives. Molecules, 2019, 24(5), 963. doi: 10.3390/molecules24050963 PMID: 30857263
  20. Menteşe, E.; Bektaş, H.; Sokmen, B.B.; Emirik, M.; Çakır, D.; Kahveci, B. Synthesis and molecular docking study of some 5,6-dichloro-2-cyclopropyl-1 H-benzimidazole derivatives bearing triazole, oxadiazole, and imine functionalities as potent inhibitors of urease. Bioorg. Med. Chem. Lett., 2017, 27(13), 3014-3018. doi: 10.1016/j.bmcl.2017.05.019 PMID: 28526368
  21. Janardhanan, J.; Chang, M.; Mobashery, S. The oxadiazole antibacterials. Curr. Opin. Microbiol., 2016, 33, 13-17. doi: 10.1016/j.mib.2016.05.009 PMID: 27239942
  22. Glomb, T.; Wiatrak, B.; Gębczak, K.; Gębarowski, T.; Bodetko, D.; Czyżnikowska, Ż.; Świątek, P. New 1,3,4-oxadiazole derivatives of pyridothiazine-1,1-dioxide with anti-inflammatory activity. Int. J. Mol. Sci., 2020, 21(23), 9122. doi: 10.3390/ijms21239122 PMID: 33266208
  23. Verma, G.; Chashoo, G.; Ali, A.; Khan, M.F.; Akhtar, W.; Ali, I.; Akhtar, M.; Alam, M.M.; Shaquiquzzaman, M. Synthesis of pyrazole acrylic acid based oxadiazole and amide derivatives as antimalarial and anticancer agents. Bioorg. Chem., 2018, 77, 106-124. doi: 10.1016/j.bioorg.2018.01.007 PMID: 29353728
  24. Tantray, M.A.; Khan, I.; Hamid, H.; Alam, M.S.; Dhulap, A.; Kalam, A. Synthesis of benzimidazole-linked-1,3,4-oxadiazole carboxamides as GSK-3β inhibitors with in vivo antidepressant activity. Bioorg. Chem., 2018, 77, 393-401. doi: 10.1016/j.bioorg.2018.01.040 PMID: 29421716
  25. Yadagiri, B.; Gurrala, S.; Bantu, R.; Nagarapu, L.; Polepalli, S.; Srujana, G.; Jain, N. Synthesis and evaluation of benzosuberone embedded with 1,3,4-oxadiazole, 1,3,4-thiadiazole and 1,2,4-triazole moieties as new potential anti proliferative agents. Bioorg. Med. Chem. Lett., 2015, 25(10), 2220-2224. doi: 10.1016/j.bmcl.2015.03.032 PMID: 25827522
  26. Stern, E.P.; Host, L.V.; Wanjiku, I.; Escott, K.J.; Gilmour, P.S.; Ochiel, R.; Unwin, R.; Burns, A.; Ong, V.H.; Cadiou, H.; O’Keeffe, A.G.; Denton, C.P. Zibotentan in systemic sclerosis-associated chronic kidney disease: A phase II randomised placebo-controlled trial. Arthritis Res. Ther., 2022, 24(1), 130. doi: 10.1186/s13075-022-02818-6 PMID: 35650639
  27. Siwach, A.; Verma, P.K. Therapeutic potential of oxadiazole or furadiazole containing compounds. BMC Chem., 2020, 14(1), 70. doi: 10.1186/s13065-020-00721-2 PMID: 33372629
  28. Matore, B.W.; Banjare, P.; Guria, T.; Roy, P.P.; Singh, J. Oxadiazole derivatives: Histone deacetylase inhibitors in anticancer therapy and drug discovery. Eur. J. Med. Chem. Rep., 2022, 5(March), 100058. doi: 10.1016/j.ejmcr.2022.100058
  29. Stecoza, C.E.; Nitulescu, G.M.; Draghici, C.; Caproiu, M.T.; Olaru, O.T.; Bostan, M.; Mihaila, M. Synthesis and anticancer evaluation of new 1,3,4-oxadiazole derivatives. Pharmaceuticals, 2021, 14(5), 438. doi: 10.3390/ph14050438 PMID: 34066442
  30. Elamin, Y.Y.; Rafee, S.; Osman, N.; O Byrne, K.J.; Gately, K. Thymidine phosphorylase in cancer; Enemy or friend? Cancer Microenviron., 2016, 9(1), 33-43. doi: 10.1007/s12307-015-0173-y PMID: 26298314
  31. Bajaj, S.; Roy, P.P.; Singh, J. Synthesis, thymidine phosphorylase inhibitory and computational study of novel 1,3,4-oxadiazole-2-thione derivatives as potential anticancer agents. Comput. Biol. Chem., 2018, 76, 151-160. doi: 10.1016/j.compbiolchem.2018.05.013 PMID: 30015176
  32. Bajaj, S.; Kumar, M.S.; Tinwala, H.; Yc, M. Design, synthesis, modelling studies and biological evaluation of 1,3,4-oxadiazole derivatives as potent anticancer agents targeting thymidine phosphorylase enzyme. Bioorg. Chem., 2021, 111(111), 104873. doi: 10.1016/j.bioorg.2021.104873 PMID: 33845381
  33. Miyazono, K.; Okabe, T.; Urabe, A.; Takaku, F.; Heldin, C.H. Purification and properties of an endothelial cell growth factor from human platelets. J. Biol. Chem., 1987, 262(9), 4098-4103. doi: 10.1016/S0021-9258(18)61316-X PMID: 3549724
  34. Friedkin, M.; Roberts, D. The enzymatic synthesis of nucleosides. I. thymidine phosphorylase in mammalian tissue. J. Biol. Chem., 1954, 207(1), 245-256. doi: 10.1016/S0021-9258(18)71264-7 PMID: 13152099
  35. Warfield, B.M.; Reigan, P. Multifunctional role of thymidine phosphorylase in cancer. Trends Cancer, 2022, 8(6), 482-493. doi: 10.1016/j.trecan.2022.01.018 PMID: 35193822
  36. Timofeev, V.; Abramchik, Y.; Zhukhlistova, N.; Muravieva, T.; Fateev, I.; Esipov, R.; Kuranova, I. 3′-Azidothymidine in the active site of Escherichia coli thymidine phosphorylase: The peculiarity of the binding on the basis of X-ray study. Acta Crystallogr. D Biol. Crystallogr., 2014, 70(4), 1155-1165. doi: 10.1107/S1399004714001904 PMID: 24699659
  37. Li, W.; Yue, H. Thymidine phosphorylase: A potential new target for treating cardiovascular disease. Trends Cardiovasc. Med., 2018, 28(3), 157-171. doi: 10.1016/j.tcm.2017.10.003 PMID: 29108898
  38. Barton, G.J.; Ponting, C.P.; Spraggon, G.; Finnis, C.; Sleep, D. Human platelet-derived endothelial cell growth factor is homologous to Escherichia coli thymidine phosphorylase. Protein Sci., 1992, 1(5), 688-690. doi: 10.1002/pro.5560010514 PMID: 1304367
  39. Fox, S.B.; Moghaddam, A.; Westwood, M.; Turley, H.; Bicknell, R.; Gatter, K.C.; Harris, A.L. Platelet-derived endothelial cell growth factor/thymidine phosphorylase expression in normal tissues: An immunohistochemical study. J. Pathol., 1995, 176(2), 183-190. doi: 10.1002/path.1711760212 PMID: 7636628
  40. de Bruin, M.; van Capel, T.; Smid, K.; van der Born, K.; Fukushima, M.; Hoekman, K.; Pinedo, H.M.; Peters, G.J. Role of platelet derived endothelial cell growth factor/thymidine phosphorylase in fluoropyrimidine sensitivity and potential role of deoxyribose-1-phosphate. Nucleosides Nucleotides Nucleic Acids, 2004, 23(8-9), 1485-1490. doi: 10.1081/NCN-200027702 PMID: 15571282
  41. Zagórska, A.; Czopek, A.; Jaromin, A.; Mielczarek-Puta, M.; Struga, M.; Stary, D.; Bajda, M. Design, synthesis, and in vitro antiproliferative activity of hydantoin and purine derivatives with the 4-acetylphenylpiperazinylalkyl moiety. Materials , 2021, 14(15), 4156. doi: 10.3390/ma14154156 PMID: 34361351
  42. Abbas, M.M.; Evans, J.J.; Sykes, P.H.; Benny, P.S. Modulation of vascular endothelial growth factor and thymidine phosphorylase in normal human endometrial stromal cells. Fertil. Steril., 2004, 82(S 3), 1048-1053. doi: 10.1016/j.fertnstert.2004.02.135 PMID: 15474072
  43. Sharkey, A.M.; Day, K.; McPherson, A.; Malik, S.; Licence, D.; Smith, S.K.; Charnock-Jones, D.S. Vascular endothelial growth factor expression in human endometrium is regulated by hypoxia. J. Clin. Endocrinol. Metab., 2000, 85(1), 402-409. doi: 10.1210/jc.85.1.402 PMID: 10634417
  44. Zizzo, N.; Passantino, G.; D’alessio, R.M.; Tinelli, A.; Lopresti, G.; Patruno, R.; Tricarico, D.; Maqoud, F.; Scala, R.; Zito, F.A.; Ranieri, G. Thymidine phosphorylase expression and microvascular density correlation analysis in canine mammary tumor: Possible prognostic factor in breast cancer. Front. Vet. Sci., 2019, 6, 368. doi: 10.3389/fvets.2019.00368 PMID: 31709268
  45. Shaw, T.; Smillie, R.H.; MacPhee, D.G. The role of blood platelets in nucleoside metabolism: Assay, cellular location and significance of thymidine phosphorylase in human blood. Mutat. Res., 1988, 200(1-2), 99-116. doi: 10.1016/0027-5107(88)90074-7 PMID: 3393166
  46. Bijnsdorp, I.V.; Azijli, K.; Jansen, E.E.; Wamelink, M.M.; Jakobs, C.; Struys, E.A.; Fukushima, M.; Kruyt, F.A.E.; Peters, G.J. Accumulation of thymidine-derived sugars in thymidine phosphorylase overexpressing cells. Biochem. Pharmacol., 2010, 80(6), 786-792. doi: 10.1016/j.bcp.2010.05.009 PMID: 20488166
  47. Liekens, S.; Bronckaers, A.; Pérez-Pérez, M.J.; Balzarini, J. Targeting platelet-derived endothelial cell growth factor/thymidine phosphorylase for cancer therapy. Biochem. Pharmacol., 2007, 74(11), 1555-1567. doi: 10.1016/j.bcp.2007.05.008 PMID: 17572389
  48. Sato, J.; Sata, M.; Nakamura, H.; Inoue, S.; Wada, T.; Takabatake, N.; Otake, K.; Tomoike, H.; Kubota, I. Role of thymidine phosphorylase on invasiveness and metastasis in lung adenocarcinoma. Int. J. Cancer, 2003, 106(6), 863-870. doi: 10.1002/ijc.11315 PMID: 12918063
  49. Tarar, A.; Alyami, E.M.; Peng, C.A. Mesenchymal stem cells anchored with thymidine phosphorylase for doxifluridine-mediated cancer therapy. RSC Advances, 2021, 11(3), 1394-1403. doi: 10.1039/D0RA10263F PMID: 35424143
  50. Taha, M.; Adnan Ali Shah, S.; Afifi, M.; Imran, S.; Sultan, S.; Rahim, F.; Hadiani Ismail, N.; Mohammed Khan, K. Synthesis, molecular docking study and thymidine phosphorylase inhibitory activity of 3-formylcoumarin derivatives. Bioorg. Chem., 2018, 78, 17-23. doi: 10.1016/j.bioorg.2018.02.028 PMID: 29525348
  51. Nencka, R. Thymidine phosphorylase inhibitors. In: Anti-Angiogenesis Drug Discovery and Development; Bentham Science Publishers, 2011; pp. 116-147. doi: 10.2174/978160805162511101010116
  52. Takeuchi, M.; Otsuka, T.; Matsui, N.; Asai, K.; Hirano, T.; Moriyama, A.; Isobe, I.; Eksioglu, Y.Z.; Matsukawa, K.; Kato, T.; Tada, T. Aberrant production of gliostatin/platelet-derived endothelial cell growth factor in rheumatoid synovium. Arthritis Rheum., 1994, 37(5), 662-672. doi: 10.1002/art.1780370509 PMID: 8185693
  53. Li, W.; Yue, H. Thymidine phosphorylase is increased in COVID-19 patients in an acuity-dependent manner. Front. Med., 2021, 8, 653773. doi: 10.3389/fmed.2021.653773 PMID: 33829029
  54. Jacob, J. R, G.; P, L.; Illuri, R.; Bhosle, D.; Sangli, G.K.; Mundkinajeddu, D. Evaluation of anti-psoriatic potential of the fruit rind of Punica granatum L. Pharmacogn. J., 2019, 11(3), 466-468. doi: 10.5530/pj.2019.11.73
  55. Creamer, D.; Sullivan, D.; Bicknell, R.; Barker, J. Angiogenesis in psoriasis. Angiogenesis, 2002, 5(4), 231-236. doi: 10.1023/A:1024515517623 PMID: 12906316
  56. Patel, R.; Coulter, L.L.; Rimmer, J.; Parkes, M.; Chinnery, P.F.; Swift, O. Mitochondrial neurogastrointestinal encephalopathy: A clinicopathological mimic of Crohn’s disease. BMC Gastroenterol., 2019, 19(1), 11. doi: 10.1186/s12876-018-0925-5 PMID: 30646848
  57. Usuki, K.; Saras, J.; Waltenberger, J.; Miyazono, K.; Pierce, G.; Thomason, A.; Heldin, C.H. Platelet-derived endothelial cell growth factor has thymidine phosphorylase activity. Biochem. Biophys. Res. Commun., 1992, 184(3), 1311-1316. doi: 10.1016/S0006-291X(05)80025-7 PMID: 1590793
  58. Toyoda, Y.; Tabata, S.; Kishi, J.; Kuramoto, T.; Mitsuhashi, A.; Saijo, A.; Kawano, H.; Goto, H.; Aono, Y.; Hanibuchi, M.; Horikawa, H.; Nakajima, T.; Furukawa, T.; Sone, S.; Akiyama, S.; Nishioka, Y. Thymidine phosphorylase regulates the expression of CXCL10 in rheumatoid arthritis fibroblast-like synoviocytes. Arthritis Rheumatol., 2014, 66(3), 560-568. doi: 10.1002/art.38263 PMID: 24574215
  59. Yadak, R.; Sillevis Smitt, P.; van Gisbergen, M.W.; van Til, N.P.; de Coo, I.F.M. Mitochondrial neurogastrointestinal encephalomyopathy caused by thymidine phosphorylase enzyme deficiency: From pathogenesis to emerging therapeutic options. Front. Cell. Neurosci., 2017, 11(February), 31. doi: 10.3389/fncel.2017.00031 PMID: 28261062
  60. Yadak, R.; Breur, M.; Bugiani, M. Gastrointestinal dysmotility in MNGIE: From thymidine phosphorylase enzyme deficiency to altered interstitial cells of Cajal. Orphanet J. Rare Dis., 2019, 14(1), 33. doi: 10.1186/s13023-019-1016-6 PMID: 30736844
  61. Yang, L.; Wang, Y.; Hao, W.; Chang, J.; Pan, Y.; Li, J.; Wang, H. Modeling pesticides toxicity to Sheepshead minnow using QSAR. Ecotoxicol. Environ. Saf., 2020, 193(February), 110352. doi: 10.1016/j.ecoenv.2020.110352 PMID: 32120163
  62. Pauly, J.L.; Schuller, M.G.; Zelcer, A.A.; Kirss, T.A.; Gore, S.S.; Germain, M.J. Identification and comparative analysis of thymidine phosphorylase in the plasma of healthy subjects and cancer patients. J. Natl. Cancer Inst., 1977, 58(6), 1587-1590. doi: 10.1093/jnci/58.6.1587 PMID: 864739
  63. Leemans, E.; Mahasenan, K.V.; Kumarasiri, M.; Spink, E.; Ding, D.; O’Daniel, P.I.; Boudreau, M.A.; Lastochkin, E.; Testero, S.A.; Yamaguchi, T.; Lee, M.; Hesek, D.; Fisher, J.F.; Chang, M.; Mobashery, S. Three-dimensional QSAR analysis and design of new 1,2,4-oxadiazole antibacterials. Bioorg. Med. Chem. Lett., 2016, 26(3), 1011-1015. doi: 10.1016/j.bmcl.2015.12.041 PMID: 26733473
  64. Mihalcioiu, C.; Tedeschi, A.L.; Eslami, Z.; Saleh, R.; Omeroglu, A.; Gulbeyaz, A.; Ait-Tihyaty, M.; Jean-Claude, B.; Garoufalis, E. Pilot study investigating the prognostic significance of thymidine phosphorylase expression in patients with metastatic breast cancer: A single institution retrospective analysis. OncoTargets Ther., 2015, 8, 911-919. doi: 10.2147/OTT.S71089 PMID: 25960662
  65. Stenman, G.; Sahlin, P.; Dumanski, J.P.; Hagiwara, K.; Ishikawa, F.; Miyazono, K.; Collins, V.P.; Heldin, C.H. Regional localization of the human platelet-derived endothelial cell growth factor (ECGF1) gene to chromosome 22q13. Cytogenet. Genome Res., 1992, 59(1), 22-23. doi: 10.1159/000133191 PMID: 1733667
  66. Walter, M.R.; Cook, W.J.; Cole, L.B.; Short, S.A.; Koszalka, G.W.; Krenitsky, T.A.; Ealick, S.E. Three-dimensional structure of thymidine phosphorylase from Escherichia coli at 2.8 A resolution. J. Biol. Chem., 1990, 265(23), 14016-14022. doi: 10.1016/S0021-9258(18)77450-4 PMID: 2199449
  67. Pugmire, M.J.; Cook, W.J.; Jasanoff, A.; Walter, M.R.; Ealick, S.E. Structural and theoretical studies suggest domain movement produces an active conformation of thymidine phosphorylase. J. Mol. Biol., 1998, 281(2), 285-299. doi: 10.1006/jmbi.1998.1941 PMID: 9698549
  68. Norman, R.A.; Barry, S.T.; Bate, M.; Breed, J.; Colls, J.G.; Ernill, R.J.; Luke, R.W.A.; Minshull, C.A.; McAlister, M.S.B.; McCall, E.J.; McMiken, H.H.J.; Paterson, D.S.; Timms, D.; Tucker, J.A.; Pauptit, R.A. Crystal structure of human thymidine phosphorylase in complex with a small molecule inhibitor. Structure, 2004, 12(1), 75-84. doi: 10.1016/j.str.2003.11.018 PMID: 14725767
  69. Omari, K.E.L.; Bronckaers, A.; Liekens, S.; Pérez-Pérez, M.J.; Balzarini, J.; Stammers, D.K. Structural basis for non-competitive product inhibition in human thymidine phosphorylase: Implications for drug design. Biochem. J., 2006, 399(2), 199-204. doi: 10.1042/BJ20060513 PMID: 16803458
  70. Mitsiki, E.; Papageorgiou, A.C.; Iyer, S.; Thiyagarajan, N.; Prior, S.H.; Sleep, D.; Finnis, C.; Acharya, K.R. Structures of native human thymidine phosphorylase and in complex with 5-iodouracil. Biochem. Biophys. Res. Commun., 2009, 386(4), 666-670. doi: 10.1016/j.bbrc.2009.06.104 PMID: 19555658
  71. Bronckaers, A.; Gago, F.; Balzarini, J.; Liekens, S. The dual role of thymidine phosphorylase in cancer development and chemotherapy. Med. Res. Rev., 2009, 29(6), 903-953. doi: 10.1002/med.20159 PMID: 19434693
  72. Brown, N.S.; Bicknell, R. Thymidine phosphorylase, 2-deoxy-D-ribose and angiogenesis. Biochem. J., 1998, 334(1), 1-8. doi: 10.1042/bj3340001 PMID: 9693094
  73. Levene, P.A.; Mikeska, L.A.; Mori, T. Carbohydrate of thymonucleic acid. J. Biol. Chem., 1930, 85(3), 785-787. doi: 10.1016/S0021-9258(18)76947-0
  74. Sakamoto, H.; Shirakawa, T.; Izuka, S.; Igarashi, T.; Kinoshita, K.; Ohtani, K.; Takami, T. Thymidine phosphorylase expression is predominantly observed in stroma of well-differentiated adenocarcinoma of endometrium and correlates with a frequency of vascular involvement. Gynecol. Oncol., 1999, 72(3), 298-305.
  75. Bijnsdorp, I.V.; Capriotti, F.; Kruyt, F A E.; Losekoot, N.; Fukushima, M.; Griffioen, A.W.; Thijssen, V.L.; Peters, G.J. Thymidine phosphorylase in cancer cells stimulates human endothelial cell migration and invasion by the secretion of angiogenic factors. Br. J. Cancer, 2011, 104(7), 1185-1192. doi: 10.1038/bjc.2011.74 PMID: 21386840
  76. Dikici, S.; Yar, M.; Bullock, A.J.; Shepherd, J.; Roman, S.; Macneil, S. Developing wound dressings using 2-Deoxy-D -ribose to induce angiogenesis as a backdoor route for stimulating the production of vascular endothelial growth factor. Int. J. Mol. Sci., 2021, 22(21), 11437. doi: 10.3390/ijms222111437
  77. Toi, M.; Rahman, M.A.; Bando, H.; Chow, L.W.C. Thymidine phosphorylase (platelet-derived endothelial-cell growth factor) in cancer biology and treatment. Lancet Oncol., 2005, 6(3), 158-166. doi: 10.1016/S1470-2045(05)01766-3 PMID: 15737832
  78. Chiang, G.G.; Abraham, R.T. Targeting the mTOR signaling network in cancer. Trends Mol. Med., 2007, 13(10), 433-442. doi: 10.1016/j.molmed.2007.08.001 PMID: 17905659
  79. Konda, R.; Sato, H.; Sakai, K.; Sato, M.; Orikasa, S.; Kimura, N. Expression of platelet-derived endothelial cell growth factor and its potential role in up-regulation of angiogenesis in scarred kidneys secondary to urinary tract diseases. Am. J. Pathol., 1999, 155(5), 1587-1597. doi: 10.1016/S0002-9440(10)65475-2 PMID: 10550316
  80. Gunningham, S.P.; Currie, M.J.; Morrin, H.R.; Tan, E.Y.; Turley, H.; Dachs, G.U.; Watson, A.I.; Frampton, C.; Robinson, B.A.; Fox, S.B. The angiogenic factor thymidine phosphorylase up-regulates the cell adhesion molecule P-selectin in human vascular endothelial cells and is associated with P-selectin expression in breast cancers. J. Pathol., 2007, 212(3), 335-344. doi: 10.1002/path.2174 PMID: 17487938
  81. Sengupta, S.; Sellers, L.A.; Matheson, H.B.; Fan, T.P.D. Thymidine phosphorylase induces angiogenesis in vivo and in vitro: An evaluation of possible mechanisms. Br. J. Pharmacol., 2003, 139(2), 219-231. doi: 10.1038/sj.bjp.0705216 PMID: 12770927
  82. Andreetta, C.; Puppin, C.; Minisini, A.; Valent, F.; Pegolo, E.; Damante, G.; Di Loreto, C.; Pizzolitto, S.; Pandolfi, M.; Fasola, G.; Piga, A.; Puglisi, F. Thymidine phosphorylase expression and benefit from capecitabine in patients with advanced breast cancer. Ann. Oncol., 2009, 20(2), 265-271. doi: 10.1093/annonc/mdn592 PMID: 18765464
  83. Koukourakis, G.; Kouloulias, V.; Koukourakis, M.; Zacharias, G.; Zabatis, H.; Kouvaris, J. Efficacy of the oral fluorouracil pro-drug capecitabine in cancer treatment: A review. Molecules, 2008, 13(8), 1897-1922. doi: 10.3390/molecules13081897 PMID: 18794792
  84. Voutsadakis, I.A. biomarkers of trifluridine-tipiracil efficacy. J. Clin. Med., 2021, 10(23), 5568. doi: 10.3390/jcm10235568 PMID: 34884270
  85. Lee, J.J.; Chu, E. Adherence, dosing, and managing toxicities with trifluridine/tipiracil (TAS-102). Clin. Colorectal Cancer, 2017, 16(2), 85-92. doi: 10.1016/j.clcc.2017.01.003 PMID: 28242161
  86. Doussis-Anagnostopoulou, I.A.; Remadi, S.; Turley, H.; Gindre, P.; Comley, M.; Borisch, B.; Gatter, K.C. Platelet-derived endothelial cell growth factor/thymidine phosphorylase immunohistochemical expression in lymphoid tissue and lymphoid malignancies. Hum. Pathol., 1997, 28(10), 1146-1151. doi: 10.1016/S0046-8177(97)90252-5 PMID: 9343321
  87. Sivridis, E.; Giatromanolaki, A.; Papadopoulos, I.; Gatter, K.C.; Harris, A.L.; Koukourakis, M.I. Thymidine phosphorylase expression in normal, hyperplastic and neoplastic prostates: Correlation with tumour associated macrophages, infiltrating lymphocytes, and angiogenesis. Br. J. Cancer, 2002, 86(9), 1465-1471. doi: 10.1038/sj.bjc.6600281 PMID: 11986782
  88. Zhang, J.M.; Mizoi, T.; Shiiba, K.; Sasaki, I.; Matsuno, S. Expression of thymidine phosphorylase by macrophages in colorectal cancer tissues. World J. Gastroenterol., 2004, 10(4), 545-549. doi: 10.3748/wjg.v10.i4.545 PMID: 14966914
  89. Akiyama, S.; Furukawa, T.; Sumizawa, T.; Takebayashi, Y.; Nakajima, Y.; Haraguchi, M. The role of thymidine phosphorylase, an angiogenic enzyme, in tumor progression. Cancer Sci., 2004, 95(11), 851-857. doi: 10.1111/j.1349-7006.2004.tb02193.x. PMID: 15546501
  90. Nakajima, Y.; Madhyastha, R.; Maruyama, M. 2-Deoxy-D-ribose, a downstream mediator of thymidine phosphorylase, regulates tumor angiogenesis and progression. Anticancer. Agents Med. Chem., 2009, 9(2), 239-245. doi: 10.2174/187152009787313846 PMID: 19199868
  91. Tabata, S.; Ikeda, R.; Yamamoto, M.; Shimaoka, S.; Mukaida, N.; Takeda, Y.; Yamada, K.; Soga, T.; Furukawa, T.; Akiyama, S. Thymidine phosphorylase activates NFκB and stimulates the expression of angiogenic and metastatic factors in human cancer cells. Oncotarget, 2014, 5(21), 10473-10485. doi: 10.18632/oncotarget.2242 PMID: 25350954
  92. Van Cutsem, E.; Hochster, H.; Shitara, K.; Mayer, R.; Ohtsu, A.; Falcone, A.; Yoshino, T.; Doi, T.; Ilson, D.H.; Arkenau, H.T.; George, B.; Benhadji, K.A.; Makris, L.; Tabernero, J. Pooled safety analysis from phase III studies of trifluridine/tipiracil in patients with metastatic gastric or gastroesophageal junction cancer and metastatic colorectal cancer. ESMO Open, 2022, 7(6), 100633. doi: 10.1016/j.esmoop.2022.100633 PMID: 36455504
  93. Mansoor, W.; Arkenau, H.T.; Alsina, M.; Shitara, K.; Thuss-Patience, P.; Cuffe, S.; Dvorkin, M.; Park, D.; Ando, T.; Van Den Eynde, M.; Beretta, G.D.; Zaniboni, A.; Doi, T.; Tabernero, J.; Ilson, D.H.; Makris, L.; Benhadji, K.A.; Van Cutsem, E. Trifluridine/tipiracil in patients with metastatic gastroesophageal junction cancer: A subgroup analysis from the phase 3 TAGS study. Gastric Cancer, 2021, 24(4), 970-977. doi: 10.1007/s10120-021-01156-x PMID: 33713215
  94. Taieb, J.; Price, T.; Vidot, L.; Chevallier, B.; Wyrwicz, L.; Bachet, J.B. Safety and efficacy of trifluridine/tipiracil in previously treated metastatic colorectal cancer: Final results from the phase IIIb single-arm PRECONNECT study by duration of therapy. BMC Cancer, 2023, 23(1), 94. doi: 10.1186/s12885-022-10489-4 PMID: 36707808
  95. Raedler, B.L.A. Lonsurf (trifluridine plus tipiracil): A new oral treatment approved for patients with metastatic colorectal cancer. Am. Health Drug Benefits., 2016, 9Spec Feature, 97-100. PMID: 27668054
  96. Yano, S.; Kazuno, H.; Sato, T.; Suzuki, N.; Emura, T.; Wierzba, K.; Yamashita, J.; Tada, Y.; Yamada, Y.; Fukushima, M.; Asao, T. Synthesis and evaluation of 6-methylene-bridged uracil derivatives. Part 2: Optimization of inhibitors of human thymidine phosphorylase and their selectivity with uridine phosphorylase. Bioorg. Med. Chem., 2004, 12(13), 3443-3450. doi: 10.1016/j.bmc.2004.04.046 PMID: 15186830
  97. Bruin, M. De; Capel, T.; Van; Born, K.; Van Der; Kruyt, F. A.; Fukushima, M.; Hoekman, K.; Pinedo, H. M. Role of platelet-derived endothelial cell growth factor/thymidine phosphorylase in fluoropyrimidine sensitivity. Br. J. Cancer, 2003, 88, 957-964. doi: 10.1038/sj.bjc.6600808
  98. McNally, V.A.; Gbaj, A.; Douglas, K.T.; Stratford, I.J.; Jaffar, M.; Freeman, S.; Bryce, R.A. Identification of a novel class of inhibitor of human and Escherichia coli thymidine phosphorylase by in silico screening. Bioorg. Med. Chem. Lett., 2003, 13(21), 3705-3709. doi: 10.1016/j.bmcl.2003.08.010 PMID: 14552762
  99. Bera, H.; Chigurupati, S. Recent discovery of non-nucleobase thymidine phosphorylase inhibitors targeting cancer. Eur. J. Med. Chem., 2016, 124, 992-1003. doi: 10.1016/j.ejmech.2016.10.032 PMID: 27783978
  100. Casanova, E.; Herna, A. 5′-O-Tritylinosine and analogues as allosteric inhibitors of human thymidine phosphorylase. J. Med. Chem., 2006, 49(18), 5562-5570. doi: 10.1021/jm0605379 PMID: 16942029
  101. Javaid, S.; Shaikh, M.; Fatima, N.; Choudhary, M.I. Natural compounds as angiogenic enzyme thymidine phosphorylase inhibitors: In vitro biochemical inhibition, mechanistic, and in silico modeling studies. PLoS One, 2019, 14(11), e0225056. doi: 10.1371/journal.pone.0225056 PMID: 31743355
  102. Javaid, S.; Saad, S.M.; Perveen, S.; Khan, K.M.; Choudhary, M.I. 2-Arylquinazolin-4(3H)-ones: A novel class of thymidine phosphorylase inhibitors. Bioorg. Chem., 2015, 63, 142-151. doi: 10.1016/j.bioorg.2015.10.006 PMID: 26547232
  103. Shahzad, S.A.; Yar, M.; Khan, Z.A.; Shahzadi, L.; Naqvi, S.A.R.; Mahmood, A.; Ullah, S.; Shaikh, A.J.; Sherazi, T.A.; Bale, A.T.; Kukułowicz, J.; Bajda, M. Identification of 1,2,4-triazoles as new thymidine phosphorylase inhibitors: Future anti-tumor drugs. Bioorg. Chem., 2019, 85(85), 209-220. doi: 10.1016/j.bioorg.2019.01.005
  104. Shahzad, S.A.; Sarfraz, A.; Yar, M.; Khan, Z.A.; Naqvi, S.A.R.; Naz, S.; Khan, N.A.; Farooq, U.; Batool, R.; Ali, M. Synthesis, evaluation of thymidine phosphorylase and angiogenic inhibitory potential of ciprofloxacin analogues: Repositioning of ciprofloxacin from antibiotic to future anticancer drugs. Bioorg. Chem., 2020, 100(February), 103876. doi: 10.1016/j.bioorg.2020.103876 PMID: 32388426
  105. Bera, H.; Sayan, W.C.; Gupta, D. Synthesis, in vitro evaluation of thymidine phosphorylase inhibitory activity, and in silico study of 1,3,5-triazin-2,4-dione and its fused analogues. Med. Chem. Res., 2013, 22, 6010-6021. doi: 10.1007/s00044-013-0589-1
  106. Bensaber, S.M.; Nouri, H.A.A.; Salah, B.E.; Zetrini, A.A.; Alsabri, S.G.; Erhuma, M.; Hermann, A.; Jaeda, M.I.; Gbaj, A.M. Chemical synthesis, molecular modelling, and evaluation of anticancer activity of some pyrazol-3-one Schiff base derivatives. Med. Chem. Res., 2015, 23, 5120-5134. doi: 10.1007/s00044-014-1064-3
  107. Heravi, M.M.; Zadsirjan, V. Prescribed drugs containing nitrogen heterocycles: An overview. RSC Advances, 2020, 2020(72), 44247-44311. doi: 10.1039/D0RA09198G
  108. Atmaram, U.A.; Roopan, S.M.; Roopan, M. Biological activity of oxadiazole and thiadiazole derivatives. Appl. Microbiol. Biotechnol., 2022, 106(9-10), 3489-3505. doi: 10.1007/s00253-022-11969-0 PMID: 35562490
  109. Kumar, D.; Patel, G.; Chavers, A.K.; Chang, K.H.; Shah, K. Synthesis of novel 1,2,4-oxadiazoles and analogues as potential anticancer agents. Eur. J. Med. Chem., 2011, 46(7), 3085-3092. doi: 10.1016/j.ejmech.2011.03.031 PMID: 21481985
  110. Banik, B.K.; Sahoo, B.M.; Kumar, B.V.V.R.; Panda, K.C.; Jena, J.; Mahapatra, M.K.; Borah, P. Green synthetic approach: An efficient eco-friendly tool for synthesis of biologically active oxadiazole derivatives. Molecules, 2021, 26(4), 1163. doi: 10.3390/molecules26041163 PMID: 33671751
  111. Boström, J.; Hogner, A.; Llinàs, A.; Wellner, E.; Plowright, A.T. Oxadiazoles in medicinal chemistry. J. Med. Chem., 2012, 55(5), 1817-1830. doi: 10.1021/jm2013248 PMID: 22185670
  112. Kapoor, G.; Bhutani, R.; Pathak, D.P.; Chauhan, G.; Grover, P.; Nagarajan, K.; Siddiqui, S.A. Current advancement in the oxadiazole-based scaffolds as anticancer agents current advancement in the oxadiazole-based scaffolds as anticancer agents. Polycycl. Aromat. Compd., 2021, 0(0), 1-33. doi: 10.1080/10406638.2021.1886123
  113. Khan, I.; Ibrar, A.; Abbas, N. Review article oxadiazoles as privileged motifs for promising anticancer leads: Recent advances and future prospects. Arch. Pharm., 2013, 347(1), 1-20. doi: 10.1002/ardp.201300231 PMID: 24265208
  114. Sajid, M.A.; Khan, Z.A.; Shahzad, S.A.; Naqvi, S.A.R.; Usman, M.; Iqbal, A. Recent advances in thymidine phosphorylase inhibitors: Syntheses and prospective medicinal applications. Turk. J. Chem., 2017, 41, 1-28. doi: 10.3906/kim-1602-79
  115. Tang, J.; Karhinen, L.; Xu, T.; Szwajda, A.; Yadav, B.; Wennerberg, K.; Aittokallio, T. Target inhibition networks: Predicting selective combinations of druggable targets to block cancer survival pathways. PLOS Comput. Biol., 2013, 9(9), e1003226. doi: 10.1371/journal.pcbi.1003226 PMID: 24068907
  116. Nayak, S.; Gaonkar, S.L.; Musad, E.A.; Dawsar, A.M.A.L.; Dawsar, A.L. 1,3,4-Oxadiazole-containing hybrids as potential anticancer agents: Recent developments, mechanism of action and structure-activity relationships. J. Saudi Chem. Soc., 2021, 25(8), 101284. doi: 10.1016/j.jscs.2021.101284
  117. Tiwari, D.; Narang, R.; Lal, S. A review on microwave assisted synthesis, mechanism of action and structure activity relationship of 1,3,4-oxadiazole derivatives as anticancer agent. World J. Adv. Res. Rev., 2021, 9(1), 86-96. doi: 10.30574/wjarr.2021.9.1.0472
  118. Priego, E.; Hernández, A.; Camarasa, M.; Balzarini, J.; Liekens, S. thymidine phosphorylase inhibitors: Recent developments and potential therapeutic applications. Mini Rev Med Chem., 2005, 5(12), 1113-23. doi: 10.2174/138955705774933301 PMID: 16375757
  119. Lu, H.; Klein, R.S.; Schwartz, E.L. Antiangiogenic and antitumor activity of 6-(2-aminoethyl)amino-5-chlorouracil, a novel small-molecule inhibitor of thymidine phosphorylase, in combination with the vascular endothelial growth factor-trap. Clin. Cancer Res., 2009, 15(16), 5136-5144. doi: 10.1158/1078-0432.CCR-08-3203 PMID: 19671868
  120. Almandil, N.B.; Taha, M.; Farooq, R.K.; Alhibshi, A.; Ibrahim, M.; Anouar, E.H.; Gollapalli, M.; Rahim, F.; Nawaz, M.; Adnan, S. Synthesis of thymidine phosphorylase inhibitor based on quinoxaline derivatives and their molecular docking study. Molecules, 2019, 24(6), 1002. doi: 10.3390/molecules24061002 PMID: 30871147
  121. Shahzad, S.A.; Yar, M.; Bajda, M.; Jadoon, B.; Khan, Z.A.; Naqvi, S.A.R.; Shaikh, A.J.; Hayat, K.; Mahmmod, A.; Mahmood, N.; Filipek, S. Synthesis and biological evaluation of novel oxadiazole derivatives: A new class of thymidine phosphorylase inhibitors as potential anti-tumor agents. Bioorg. Med. Chem., 2014, 22(3), 1008-1015. doi: 10.1016/j.bmc.2013.12.043 PMID: 24411198
  122. Iftikhar, F.; Yaqoob, F.; Tabassum, N.; Jan, M.S.; Sadiq, A.; Tahir, S.; Batool, T.; Niaz, B.; Ansari, F.L.; Choudhary, M.I.; Rashid, U. Design, synthesis, in-vitro thymidine phosphorylase inhibition, in-vivo antiangiogenic and in-silico studies of C-6 substituted dihydropyrimidines. Bioorg. Chem., 2018, 80(April), 99-111. doi: 10.1016/j.bioorg.2018.05.026 PMID: 29894893
  123. Khan, K.M.; Rani, M.; Ambreen, N.; Ali, M.; Hussain, S.; Perveen, S.; Choudhary, M.I. 2,5-Disubstituted-1,3,4-oxadiazoles: Thymidine phosphorylase inhibitors. Med. Chem. Res., 2013, 22(12), 6022-6028. doi: 10.1007/s00044-013-0588-2
  124. Lakshmithendral, K.; Saravanan, K.; Elancheran, R.; Archana, K.; Manikandan, N.; Arjun, H.A.; Ramanathan, M.; Lokanath, N.K.; Kabilan, S. Design, synthesis and biological evaluation of 2-(phenoxymethyl)-5-phenyl-1,3,4-oxadiazole derivatives as anti-breast cancer agents. Eur. J. Med. Chem., 2019, 168, 1-10. doi: 10.1016/j.ejmech.2019.02.033 PMID: 30798049
  125. Shahzad, S.A.; Yar, M.; Bajda, M.; Shahzadi, L.; Khan, Z.A.; Naqvi, S.A.R.; Mutahir, S.; Mahmood, N.; Khan, K.M. Synthesis, thymidine phosphorylase inhibition and molecular modeling studies of 1,3,4-oxadiazole-2-thione derivatives. Bioorg. Chem., 2015, 60, 37-41. doi: 10.1016/j.bioorg.2015.04.003 PMID: 25920005
  126. Javid, M.T.; Rahim, F.; Taha, M.; Nawaz, M.; Wadood, A.; Ali, M.; Mosaddik, A.; Shah, S.A.A.; Farooq, R.K. Synthesis, SAR elucidations and molecular docking study of newly designed isatin based oxadiazole analogs as potent inhibitors of thymidine phosphorylase. Bioorg. Chem., 2018, 79(February), 323-333. doi: 10.1016/j.bioorg.2018.05.011 PMID: 29803079
  127. Taha, M.; Rashid, U.; Imran, S.; Ali, M. Rational design of bis-indolylmethane-oxadiazole hybrids as inhibitors of thymidine phosphorylase. Bioorg. Med. Chem., 2018, 26(12), 3654-3663. doi: 10.1016/j.bmc.2018.05.046 PMID: 29853339
  128. Ullah, H.; Khan, F.; Taha, M.; Rahim, F.; Sarfraz, M.; Aziz, A.; Ullah, S.; Khan, M.U.; Ullah, M. New thiazole-bearing oxadiazole derivatives: Synthesis, thymidine phosphorylase inhibitory potential, and molecular docking study. Russ. J. Org. Chem., 2021, 57(12), 1993-2001. doi: 10.1134/S1070428021120150
  129. Ullah, H.; Rahim, F.; Taha, M.; Uddin, I.; Wadood, A.; Shah, S.A.A.; Farooq, R.K.; Nawaz, M.; Wahab, Z.; Khan, K.M. Synthesis, molecular docking study and in vitro thymidine phosphorylase inhibitory potential of oxadiazole derivatives. Bioorg. Chem., 2018, 78, 58-67. doi: 10.1016/j.bioorg.2018.02.020 PMID: 29533215
  130. Zaman, K.; Rahim, F.; Taha, M.; Wadood, A.; Shah, S.A.A.; Ahmed, Q.U.; Zakaria, Z.A. Synthesis of new isoquinoline-base-oxadiazole derivatives as potent inhibitors of thymidine phosphorylase and molecular docking study. Sci. Rep., 2019, 9(1), 16015. doi: 10.1038/s41598-019-52100-0 PMID: 31690793
  131. El-mernissi, R.; El, K.; Aanouz, I.; Ghaleb, A.; Khaldan, A. 2D-QSAR studies of isatin based oxadiazole analogs as potent inhibitors of thymidine phosphorylase. RHAZES: Green Appl. Chem., 2020, 8
  132. Jian-bo, T.; Yi, F.; Tian-hao, W.; Ding, L.U.O. Investigation of quantitative structure activity relationship of isatin-based oxadiazole derivatives as thymidine phosphorylase inhibitors. Chin. J. Anal. Chem., 2021, 49(4), e21046-e21054. doi: 10.1016/S1872-2040(21)60095-6
  133. Lang, D.K.; Kaur, R.; Arora, R.; Saini, B.; Arora, S. Nitrogen-containing heterocycles as anticancer agents: An overview. Anticancer. Agents Med. Chem., 2020, 20(18), 2150-2168. doi: 10.2174/1871520620666200705214917 PMID: 32628593
  134. Paladhi, A.; Daripa, S.; Mondal, I.; Hira, S.K. Targeting thymidine phosphorylase alleviates resistance to dendritic cell immunotherapy in colorectal cancer and promotes antitumor immunity. Front. Immunol., 2022, 13, 988071. doi: 10.3389/fimmu.2022.988071 PMID: 36090972
  135. Temmink, O.H.; de Bruin, M.; Laan, A.C.; Turksma, A.W.; Cricca, S.; Masterson, A.J.; Noordhuis, P.; Peters, G.J. The role of thymidine phosphorylase and uridine phosphorylase in (fluoro)pyrimidine metabolism in peripheral blood mononuclear cells. Int. J. Biochem. Cell Biol., 2006, 38(10), 1759-1765. doi: 10.1016/j.biocel.2006.04.007 PMID: 16798057

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers