Fragment-based Drug Discovery Strategy and its Application to the Design of SARS-CoV-2 Main Protease Inhibitor


Cite item

Full Text

Abstract

:Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2) emerged at the end of 2019, causing a highly infectious and pathogenic disease known as 2019 coronavirus disease. This disease poses a serious threat to human health and public safety. The SARS-CoV-2 main protease (Mpro) is a highly sought-after target for developing drugs against COVID-19 due to its exceptional specificity. Its crystal structure has been extensively documented. Numerous strategies have been employed in the investigation of Mpro inhibitors. This paper is primarily concerned with Fragment-based Drug Discovery (FBDD), which has emerged as an effective approach to drug design in recent times. Here, we summarize the research on the approach of FBDD and its application in developing inhibitors for SARS-CoV-2 Mpro.

About the authors

Yu Jiang

The Second Affiliated Hospital, Baotou Medical College

Email: info@benthamscience.net

Yingnan Wu

College of Pharmacy, Inner Mongolia Medical University

Email: info@benthamscience.net

Jing Wang

College of Pharmacy, Inner Mongolia Medical University

Email: info@benthamscience.net

Yuheng Ma

College of Pharmacy, Inner Mongolia Medical University

Email: info@benthamscience.net

Hui Yu

School of Basic Medicine, Baotou Medical College

Author for correspondence.
Email: info@benthamscience.net

Zhanli Wang

Inner Mongolia Key Laboratory of Disease-Related Biomarkers, Baotou Medical College

Author for correspondence.
Email: info@benthamscience.net

References

  1. World health organization. Number of COVID-19 cases reported to WHO. Available from: https://covid19.who.int/
  2. Moshkovits, I.; Shepshelovich, D. Emergency use authorizations of COVID-19-related medical products. JAMA Intern. Med., 2022, 182(2), 228-229. doi: 10.1001/jamainternmed.2021.7257 PMID: 34928303
  3. Nutho, B.; Mahalapbutr, P.; Hengphasatporn, K.; Pattaranggoon, N.C.; Simanon, N.; Shigeta, Y.; Hannongbua, S.; Rungrotmongkol, T. Why are lopinavir and ritonavir effective against the newly emerged coronavirus 2019? Atomistic insights into the inhibitory mechanisms. Biochemistry, 2020, 59(18), 1769-1779. doi: 10.1021/acs.biochem.0c00160 PMID: 32293875
  4. Macías, J.; Pinilla, A.; Dominguez, L.F.A.; Corma, A.; Macias, C.E.; Serna, G.A.; Pizarraya, G.A.; Fuertes, F.M.; Verdugo, M.R.; Trigo, M.; Real, L.M.; Pineda, J.A. High rate of major drug-drug interactions of lopinavir-ritonavir for COVID-19 treatment. Sci. Rep., 2020, 10(1), 20958. doi: 10.1038/s41598-020-78029-3 PMID: 33262433
  5. Bolcato, G.; Bissaro, M.; Pavan, M.; Sturlese, M.; Moro, S. Targeting the coronavirus SARS-CoV-2: Computational insights into the mechanism of action of the protease inhibitors lopinavir, ritonavir and nelfinavir. Sci. Rep., 2020, 10(1), 20927. doi: 10.1038/s41598-020-77700-z PMID: 33262359
  6. Agostini, M.L.; Andres, E.L.; Sims, A.C.; Graham, R.L.; Sheahan, T.P.; Lu, X.; Smith, E.C.; Case, J.B.; Feng, J.Y.; Jordan, R.; Ray, A.S.; Cihlar, T.; Siegel, D.; Mackman, R.L.; Clarke, M.O.; Baric, R.S.; Denison, M.R. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. MBio, 2018, 9(2), e00221-18. doi: 10.1128/mBio.00221-18 PMID: 29511076
  7. Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271. doi: 10.1038/s41422-020-0282-0 PMID: 32020029
  8. Liu, X.; Li, Z.; Liu, S.; Sun, J.; Chen, Z.; Jiang, M.; Zhang, Q.; Wei, Y.; Wang, X.; Huang, Y.Y.; Shi, Y.; Xu, Y.; Xian, H.; Bai, F.; Ou, C.; Xiong, B.; Lew, A.M.; Cui, J.; Fang, R.; Huang, H.; Zhao, J.; Hong, X.; Zhang, Y.; Zhou, F.; Luo, H.B. Potential therapeutic effects of dipyridamole in the severely ill patients with COVID-19. Acta Pharm. Sin. B, 2020, 10(7), 1205-1215. doi: 10.1016/j.apsb.2020.04.008 PMID: 32318327
  9. Singh, R.; Vijayan, V. Chloroquine: A potential drug in the COVID-19 scenario. INAE Letters, 2020, 5(2), 399-410. doi: 10.1007/s41403-020-00114-w
  10. Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293. doi: 10.1038/s41586-020-2223-y PMID: 32272481
  11. Patel, J.; Berezowski, I.; Abdelmonem, A.; Taylor, D.; Pourmand, A. Azithromycin for mild-to-moderate COVID-19. Lancet Respir. Med., 2021, 9(10), e99. doi: 10.1016/S2213-2600(21)00379-9 PMID: 34509194
  12. Annane, D. Corticosteroids for COVID-19. J. Intensive Care Med., 2021, 1(1), 14-25. doi: 10.1016/j.jointm.2021.01.002 PMID: 36943816
  13. Jin, Z.; Zhao, Y.; Sun, Y.; Zhang, B.; Wang, H.; Wu, Y.; Zhu, Y.; Zhu, C.; Hu, T.; Du, X.; Duan, Y.; Yu, J.; Yang, X.; Yang, X.; Yang, K.; Liu, X.; Guddat, L.W.; Xiao, G.; Zhang, L.; Yang, H.; Rao, Z. Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur. Nat. Struct. Mol. Biol., 2020, 27(6), 529-532. doi: 10.1038/s41594-020-0440-6 PMID: 32382072
  14. Wang, R.; Hu, Q.; Wang, H.; Zhu, G.; Wang, M.; Zhang, Q.; Zhao, Y.; Li, C.; Zhang, Y.; Ge, G.; Chen, H.; Chen, L. Identification of vitamin K3 and its analogues as covalent inhibitors of SARS-CoV-2 3CLpro. Int. J. Biol. Macromol., 2021, 183, 182-192. doi: 10.1016/j.ijbiomac.2021.04.129 PMID: 33901557
  15. Hu, Y.; Ma, C.; Szeto, T.; Hurst, B.; Tarbet, B.; Wang, J. Boceprevir, calpain inhibitors II and XII, and GC-376 have broad-spectrum antiviral activity against coronaviruses. ACS Infect. Dis., 2021, 7(3), 586-597. doi: 10.1021/acsinfecdis.0c00761 PMID: 33645977
  16. Laplantine, E.; Chable-Bessia, C.; Oudin, A.; Swain, J.; Soria, A.; Merida, P.; Gourdelier, M.; Mestiri, S.; Besseghe, I.; Bremaud, E.; Neyret, A.; Lyonnais, S.; Favard, C.; Benaroch, P.; Hubert, M.; Schwartz, O.; Guerin, M.; Danckaert, A.; Del Nery, E.; Muriaux, D.; Weil, R. The FDA-approved drug Auranofin has a dual inhibitory effect on SARS-CoV-2 entry and NF-κB signaling. iScience, 2022, 25(10), 105066. doi: 10.1016/j.isci.2022.105066 PMID: 36093378
  17. Teli, D.M.; Shah, M.B.; Chhabria, M.T. In silico screening of natural compounds as potential inhibitors of SARS-CoV-2 main protease and Spike RBD: Targets for COVID-19. Front. Mol. Biosci., 2021, 7, 599079. doi: 10.3389/fmolb.2020.599079 PMID: 33542917
  18. Zhang, Z.; Shen, Q.; Chang, H. Vaccines for COVID-19: A systematic review of immunogenicity, current development, and future prospects. Front. Immunol., 2022, 13, 843928. doi: 10.3389/fimmu.2022.843928 PMID: 35572592
  19. Zhang, J.; Zeng, H.; Gu, J.; Li, H.; Zheng, L.; Zou, Q. Progress and prospects on vaccine development against SARS-CoV-2. Vaccines, 2020, 8(2), 153. doi: 10.3390/vaccines8020153 PMID: 32235387
  20. Gordon, D.E.; Jang, G.M.; Bouhaddou, M.; Xu, J.; Obernier, K.; White, K.M.; O’Meara, M.J.; Rezelj, V.V.; Guo, J.Z.; Swaney, D.L.; Tummino, T.A.; Hüttenhain, R.; Kaake, R.M.; Richards, A.L.; Tutuncuoglu, B.; Foussard, H.; Batra, J.; Haas, K.; Modak, M.; Kim, M.; Haas, P.; Polacco, B.J.; Braberg, H.; Fabius, J.M.; Eckhardt, M.; Soucheray, M.; Bennett, M.J.; Cakir, M.; McGregor, M.J.; Li, Q.; Meyer, B.; Roesch, F.; Vallet, T.; Mac Kain, A.; Miorin, L.; Moreno, E.; Naing, Z.Z.C.; Zhou, Y.; Peng, S.; Shi, Y.; Zhang, Z.; Shen, W.; Kirby, I.T.; Melnyk, J.E.; Chorba, J.S.; Lou, K.; Dai, S.A.; Barrio-Hernandez, I.; Memon, D.; Hernandez-Armenta, C.; Lyu, J.; Mathy, C.J.P.; Perica, T.; Pilla, K.B.; Ganesan, S.J.; Saltzberg, D.J.; Rakesh, R.; Liu, X.; Rosenthal, S.B.; Calviello, L.; Venkataramanan, S.; Liboy-Lugo, J.; Lin, Y.; Huang, X.P.; Liu, Y.; Wankowicz, S.A.; Bohn, M.; Safari, M.; Ugur, F.S.; Koh, C.; Savar, N.S.; Tran, Q.D.; Shengjuler, D.; Fletcher, S.J.; O’Neal, M.C.; Cai, Y.; Chang, J.C.J.; Broadhurst, D.J.; Klippsten, S.; Sharp, P.P.; Wenzell, N.A.; Kuzuoglu-Ozturk, D.; Wang, H.Y.; Trenker, R.; Young, J.M.; Cavero, D.A.; Hiatt, J.; Roth, T.L.; Rathore, U.; Subramanian, A.; Noack, J.; Hubert, M.; Stroud, R.M.; Frankel, A.D.; Rosenberg, O.S.; Verba, K.A.; Agard, D.A.; Ott, M.; Emerman, M.; Jura, N.; von Zastrow, M.; Verdin, E.; Ashworth, A.; Schwartz, O.; d’Enfert, C.; Mukherjee, S.; Jacobson, M.; Malik, H.S.; Fujimori, D.G.; Ideker, T.; Craik, C.S.; Floor, S.N.; Fraser, J.S.; Gross, J.D.; Sali, A.; Roth, B.L.; Ruggero, D.; Taunton, J.; Kortemme, T.; Beltrao, P.; Vignuzzi, M.; Sastre, G.A.; Shokat, K.M.; Shoichet, B.K.; Krogan, N.J. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature, 2020, 583(7816), 459-468. doi: 10.1038/s41586-020-2286-9 PMID: 32353859
  21. Ahmad, S.; Mirza, U.M.; Yean Kee, L.; Nazir, M.; Rahman, A.N.; Trant, J.F.; Abdullah, I. Fragment-based in silico design of SARS-CoV-2 main protease inhibitors. Chem. Biol. Drug Des., 2021, 98(4), 604-619. doi: 10.1111/cbdd.13914 PMID: 34148292
  22. Parker, M.R.; Feng, D.; Chamuris, B.; Margolskee, R.F. Expression and nuclear translocation of glucocorticoid receptors in type 2 taste receptor cells. Neurosci. Lett., 2014, 571, 72-77. doi: 10.1016/j.neulet.2014.04.047 PMID: 24814581
  23. Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med., 2020, 382(8), 727-733. doi: 10.1056/NEJMoa2001017 PMID: 31978945
  24. Cui, J.; Li, F.; Shi, Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol., 2019, 17(3), 181-192. doi: 10.1038/s41579-018-0118-9 PMID: 30531947
  25. Hasöksüz, M.; Kiliç, S.; Saraç, F. Coronaviruses and SARS-COV-2. Turk. J. Med. Sci., 2020, 50(SI-1), 549-556. doi: 10.3906/sag-2004-127 PMID: 32293832
  26. Corman, V.M.; Muth, D.; Niemeyer, D.; Drosten, C. Hosts and sources of endemic human coronaviruses. Adv. Virus Res., 2018, 100, 163-188. doi: 10.1016/bs.aivir.2018.01.001 PMID: 29551135
  27. Schirtzinger, E.E.; Kim, Y.; Davis, A.S. Improving human coronavirus OC43 (HCoV-OC43) research comparability in studies using HCoV-OC43 as a surrogate for SARS-CoV-2. J. Virol. Methods, 2022, 299, 114317. doi: 10.1016/j.jviromet.2021.114317 PMID: 34634321
  28. Stadler, K.; Masignani, V.; Eickmann, M.; Becker, S.; Abrignani, S.; Klenk, H.D.; Rappuoli, R. SARS - beginning to understand a new virus. Nat. Rev. Microbiol., 2003, 1(3), 209-218. doi: 10.1038/nrmicro775 PMID: 15035025
  29. Kesheh, M.M.; Hosseini, P.; Soltani, S.; Zandi, M. An overview on the seven pathogenic human coronaviruses. Rev. Med. Virol., 2022, 32(2), e2282. doi: 10.1002/rmv.2282 PMID: 34339073
  30. Woo, P.C.Y.; Lau, S.K.P.; Chu, C.; Chan, K.; Tsoi, H.; Huang, Y.; Wong, B.H.L.; Poon, R.W.S.; Cai, J.J.; Luk, W.; Poon, L.L.M.; Wong, S.S.Y.; Guan, Y.; Peiris, J.S.M.; Yuen, K. Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia. J. Virol., 2005, 79(2), 884-895. doi: 10.1128/JVI.79.2.884-895.2005 PMID: 15613317
  31. Zaki, A.M.; van Boheemen, S.; Bestebroer, T.M.; Osterhaus, A.D.M.E.; Fouchier, R.A.M. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med., 2012, 367(19), 1814-1820. doi: 10.1056/NEJMoa1211721 PMID: 23075143
  32. Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G.; Hu, Y.; Tao, Z.W.; Tian, J.H.; Pei, Y.Y.; Yuan, M.L.; Zhang, Y.L.; Dai, F.H.; Liu, Y.; Wang, Q.M.; Zheng, J.J.; Xu, L.; Holmes, E.C.; Zhang, Y.Z. Author Correction: A new coronavirus associated with human respiratory disease in China. Nature, 2020, 580(7803), E7-E7. doi: 10.1038/s41586-020-2202-3 PMID: 32296181
  33. Gorbalenya, A.E.; Baker, S.C.; Baric, R.S.; de Groot, R.J.; Drosten, C.; Gulyaeva, A.A.; Haagmans, B.L.; Lauber, C.; Leontovich, A.M.; Neuman, B.W.; Penzar, D.; Perlman, S.; Poon, L.L.M.; Samborskiy, D.V.; Sidorov, I.A.; Sola, I.; Ziebuhr, J. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol., 2020, 5(4), 536-544. doi: 10.1038/s41564-020-0695-z PMID: 32123347
  34. Li, G.; Fan, Y.; Lai, Y.; Han, T.; Li, Z.; Zhou, P.; Pan, P.; Wang, W.; Hu, D.; Liu, X.; Zhang, Q.; Wu, J. Coronavirus infections and immune responses. J. Med. Virol., 2020, 92(4), 424-432. doi: 10.1002/jmv.25685 PMID: 31981224
  35. Graham, R.L.; Donaldson, E.F.; Baric, R.S. A decade after SARS: Strategies for controlling emerging coronaviruses. Nat. Rev. Microbiol., 2013, 11(12), 836-848. doi: 10.1038/nrmicro3143 PMID: 24217413
  36. Hamming, I.; Timens, W.; Bulthuis, M.L.C.; Lely, A.T.; Navis, G.J.; van Goor, H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol., 2004, 203(2), 631-637. doi: 10.1002/path.1570 PMID: 15141377
  37. Raj, V.S.; Mou, H.; Smits, S.L.; Dekkers, D.H.W.; Müller, M.A.; Dijkman, R.; Muth, D.; Demmers, J.A.A.; Zaki, A.; Fouchier, R.A.M.; Thiel, V.; Drosten, C.; Rottier, P.J.M.; Osterhaus, A.D.M.E.; Bosch, B.J.; Haagmans, B.L. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature, 2013, 495(7440), 251-254. doi: 10.1038/nature12005 PMID: 23486063
  38. Huang, J.; Song, W.; Huang, H.; Sun, Q. Pharmacological therapeutics targeting RNA-dependent RNA polymerase, proteinase and Spike protein: From mechanistic studies to clinical trials for COVID-19. J. Clin. Med., 2020, 9(4), 1131. doi: 10.3390/jcm9041131 PMID: 32326602
  39. Mirza, M.U.; Froeyen, M. Structural elucidation of SARS- CoV-2 vital proteins: Computational methods reveal potential drug candidates against main protease, Nsp12 polymerase and Nsp13 helicase. J. Pharm. Anal., 2020, 10(4), 320-328. doi: 10.1016/j.jpha.2020.04.008 PMID: 32346490
  40. Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; Bi, Y.; Ma, X.; Zhan, F.; Wang, L.; Hu, T.; Zhou, H.; Hu, Z.; Zhou, W.; Zhao, L.; Chen, J.; Meng, Y.; Wang, J.; Lin, Y.; Yuan, J.; Xie, Z.; Ma, J.; Liu, W.J.; Wang, D.; Xu, W.; Holmes, E.C.; Gao, G.F.; Wu, G.; Chen, W.; Shi, W.; Tan, W. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet, 2020, 395(10224), 565-574. doi: 10.1016/S0140-6736(20)30251-8 PMID: 32007145
  41. Chen, Y.; Liu, Q.; Guo, D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J. Med. Virol., 2020, 92(4), 418-423. doi: 10.1002/jmv.25681 PMID: 31967327
  42. Hussain, S.; Pan, J.; Chen, Y.; Yang, Y.; Xu, J.; Peng, Y.; Wu, Y.; Li, Z.; Zhu, Y.; Tien, P.; Guo, D. Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus. J. Virol., 2005, 79(9), 5288-5295. doi: 10.1128/JVI.79.9.5288-5295.2005 PMID: 15827143
  43. Fehr, A.R.; Perlman, S. Coronaviruses: An overview of their replication and pathogenesis. Methods Mol. Biol., 2015, 1282, 1-23. doi: 10.1007/978-1-4939-2438-7_1 PMID: 25720466
  44. Xia, B.; Kang, X. Activation and maturation of SARS- CoV main protease. Protein Cell, 2011, 2(4), 282-290. doi: 10.1007/s13238-011-1034-1 PMID: 21533772
  45. Alhayali, A.; Vuddanda, P.R.; Velaga, S. Silodosin oral films: Development, physico-mechanical properties and in vitro dissolution studies in simulated saliva. J. Drug Deliv. Sci. Technol., 2019, 53, 101122. doi: 10.1016/j.jddst.2019.06.019
  46. Goyal, B.; Goyal, D. Targeting the dimerization of the main protease of coronaviruses: A potential broad-spectrum therapeutic strategy. ACS Comb. Sci., 2020, 22(6), 297-305. doi: 10.1021/acscombsci.0c00058 PMID: 32402186
  47. Ullrich, S.; Nitsche, C. The SARS-CoV-2 main protease as drug target. Bioorg. Med. Chem. Lett., 2020, 30(17), 127377. doi: 10.1016/j.bmcl.2020.127377 PMID: 32738988
  48. Fu, L.; Ye, F.; Feng, Y.; Yu, F.; Wang, Q.; Wu, Y.; Zhao, C.; Sun, H.; Huang, B.; Niu, P.; Song, H.; Shi, Y.; Li, X.; Tan, W.; Qi, J.; Gao, G.F. Both boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease. Nat. Commun., 2020, 11(1), 4417. doi: 10.1038/s41467-020-18233-x PMID: 32887884
  49. Su, H.; Yao, S.; Zhao, W.; Li, M.; Liu, J.; Shang, W.; Xie, H.; Ke, C.; Hu, H.; Gao, M.; Yu, K.; Liu, H.; Shen, J.; Tang, W.; Zhang, L.; Xiao, G.; Ni, L.; Wang, D.; Zuo, J.; Jiang, H.; Bai, F.; Wu, Y.; Ye, Y.; Xu, Y. Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients. Acta Pharmacol. Sin., 2020, 41(9), 1167-1177. doi: 10.1038/s41401-020-0483-6 PMID: 32737471
  50. Anand, K.; Ziebuhr, J.; Wadhwani, P.; Mesters, J.R.; Hilgenfeld, R. Coronavirus main proteinase (3CLpro) structure: Basis for design of anti-SARS drugs. Science, 2003, 300(5626), 1763-1767. doi: 10.1126/science.1085658 PMID: 12746549
  51. Fan, K.; Ma, L.; Han, X.; Liang, H.; Wei, P.; Liu, Y.; Lai, L. The substrate specificity of SARS coronavirus 3C-like proteinase. Biochem. Biophys. Res. Commun., 2005, 329(3), 934-940. doi: 10.1016/j.bbrc.2005.02.061 PMID: 15752746
  52. Ramajayam, R.; Tan, K.P.; Liang, P.H. Recent development of 3C and 3CL protease inhibitors for anti-coronavirus and anti-picornavirus drug discovery. Biochem. Soc. Trans., 2011, 39(5), 1371-1375. doi: 10.1042/BST0391371 PMID: 21936817
  53. Berry, M.; Fielding, B.; Gamieldien, J. Potential broad spectrum inhibitors of the coronavirus 3CLpro: A virtual screening and structure-based drug design study. Viruses, 2015, 7(12), 6642-6660. doi: 10.3390/v7122963 PMID: 26694449
  54. Xiong, M.; Su, H.; Zhao, W.; Xie, H.; Shao, Q.; Xu, Y. What coronavirus 3C-like protease tells us: From structure, substrate selectivity, to inhibitor design. Med. Res. Rev., 2021, 41(4), 1965-1998. doi: 10.1002/med.21783 PMID: 33460213
  55. Cui, W.; Yang, K.; Yang, H. Recent progress in the drug development targeting SARS-CoV-2 main protease as treatment for COVID-19. Front. Mol. Biosci., 2020, 7, 616341. doi: 10.3389/fmolb.2020.616341 PMID: 33344509
  56. Wildes, J.E.; Marcus, M.D. Weight suppression as a predictor of weight gain and response to intensive behavioral treatment in patients with anorexia nervosa. Behav. Res. Ther., 2012, 50(4), 266-274. doi: 10.1016/j.brat.2012.02.006 PMID: 22398152
  57. Fattori, D. Molecular recognition: The fragment approach in lead generation. Drug Discov. Today, 2004, 9(5), 229-238. doi: 10.1016/S1359-6446(03)03007-1 PMID: 14980541
  58. Hajduk, P.J.; Greer, J. A decade of fragment-based drug design: Strategic advances and lessons learned. Nat. Rev. Drug Discov., 2007, 6(3), 211-219. doi: 10.1038/nrd2220 PMID: 17290284
  59. Loging, W.; Harland, L.; Jones, W.B. High-throughput electronic biology: mining information for drug discovery. Nat. Rev. Drug Discov., 2007, 6(3), 220-230. doi: 10.1038/nrd2265 PMID: 17330071
  60. Orita, M.; Ohno, K.; Niimi, T. Two ‘Golden Ratio’ indices in fragment-based drug discovery. Drug Discov. Today, 2009, 14(5-6), 321-328. doi: 10.1016/j.drudis.2008.10.006 PMID: 19028598
  61. Scott, D.E.; Coyne, A.G.; Hudson, S.A.; Abell, C. Fragment-based approaches in drug discovery and chemical biology. Biochemistry, 2012, 51(25), 4990-5003. doi: 10.1021/bi3005126 PMID: 22697260
  62. Hall, R.J.; Mortenson, P.N.; Murray, C.W. Efficient exploration of chemical space by fragment-based screening. Prog. Biophys. Mol. Biol., 2014, 116(2-3), 82-91. doi: 10.1016/j.pbiomolbio.2014.09.007 PMID: 25268064
  63. Joseph-McCarthy, D.; Campbell, A.J.; Kern, G.; Moustakas, D. Fragment-based lead discovery and design. J. Chem. Inf. Model., 2014, 54(3), 693-704. doi: 10.1021/ci400731w PMID: 24490951
  64. Congreve, M.; Carr, R.; Murray, C.; Jhoti, H. A ‘Rule of Three’ for fragment-based lead discovery? Drug Discov. Today, 2003, 8(19), 876-877. doi: 10.1016/S1359-6446(03)02831-9 PMID: 14554012
  65. Erlanson, D.A.; Fesik, S.W.; Hubbard, R.E.; Jahnke, W.; Jhoti, H. Twenty years on: the impact of fragments on drug discovery. Nat. Rev. Drug Discov., 2016, 15(9), 605-619. doi: 10.1038/nrd.2016.109 PMID: 27417849
  66. Leach, A.R.; Hann, M.M.; Burrows, J.N.; Griffen, E.J. Fragment screening: An introduction. Mol. Biosyst., 2006, 2(9), 429. doi: 10.1039/b610069b PMID: 17153140
  67. Baell, J.B.; Holloway, G.A. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J. Med. Chem., 2010, 53(7), 2719-2740. doi: 10.1021/jm901137j PMID: 20131845
  68. Morley, A.D.; Pugliese, A.; Birchall, K.; Bower, J.; Brennan, P.; Brown, N.; Chapman, T.; Drysdale, M.; Gilbert, I.H.; Hoelder, S.; Jordan, A.; Ley, S.V.; Merritt, A.; Miller, D.; Swarbrick, M.E.; Wyatt, P.G. Fragment-based hit identification: Thinking in 3D. Drug Discov. Today, 2013, 18(23-24), 1221-1227. doi: 10.1016/j.drudis.2013.07.011 PMID: 23906694
  69. Over, B.; Wetzel, S.; Grütter, C.; Nakai, Y.; Renner, S.; Rauh, D.; Waldmann, H. Natural-product-derived fragments for fragment-based ligand discovery. Nat. Chem., 2013, 5(1), 21-28. doi: 10.1038/nchem.1506 PMID: 23247173
  70. Vulpetti, A.; Dalvit, C. Design and generation of highly diverse fluorinated fragment libraries and their efficient screening with improved (19) F NMR methodology. ChemMedChem, 2013, 8(12), 2057-2069. doi: 10.1002/cmdc.201300351 PMID: 24127294
  71. Shuker, S.B.; Hajduk, P.J.; Meadows, R.P.; Fesik, S.W. Discovering high-affinity ligands for proteins: SAR by NMR. Science, 1996, 274(5292), 1531-1534. doi: 10.1126/science.274.5292.1531 PMID: 8929414
  72. Jhoti, H.; Cleasby, A.; Verdonk, M.; Williams, G. Fragment-based screening using X-ray crystallography and NMR spectroscopy. Curr. Opin. Chem. Biol., 2007, 11(5), 485-493. doi: 10.1016/j.cbpa.2007.07.010 PMID: 17851109
  73. Lepre, C.A. Practical aspects of NMR-based fragment screening. In: Methods in Enzymology; Elsevier, 2011; 493, pp. 219-239.
  74. Stockman, B.J.; Dalvit, C. NMR screening techniques in drug discovery and drug design. Prog. Nucl. Magn. Reson. Spectrosc., 2002, 41(3-4), 187-231. doi: 10.1016/S0079-6565(02)00049-3
  75. Haselhorst, T.; Lamerz, A.C.; Itzstein, M. v. Saturation transfer difference NMR spectroscopy as a technique to investigate protein-carbohydrate interactions in solution. Methods Mol Biol, 2009, 534, 375-386.
  76. Dalvit, C.; Fogliatto, G.; Stewart, A.; Veronesi, M.; Stockman, B. WaterLOGSY as a method for primary NMR screening: Practical aspects and range of applicability. J. Biomol. NMR, 2001, 21(4), 349-359. doi: 10.1023/A:1013302231549 PMID: 11824754
  77. Dalvit, C.; Fagerness, P.E.; Hadden, D.T.A.; Sarver, R.W.; Stockman, B.J. Fluorine-NMR experiments for high-throughput screening: Theoretical aspects, practical considerations, and range of applicability. J. Am. Chem. Soc., 2003, 125(25), 7696-7703. doi: 10.1021/ja034646d PMID: 12812511
  78. Cala, O.; Krimm, I. Ligand-orientation based fragment selection in STD NMR screening. J. Med. Chem., 2015, 58(21), 8739-8742. doi: 10.1021/acs.jmedchem.5b01114 PMID: 26492576
  79. Berg, H.; Wirtz Martin, M.A.; Altincekic, N.; Alshamleh, I.; Kaur Bains, J.; Blechar, J.; Ceylan, B.; de Jesus, V.; Dhamotharan, K.; Fuks, C.; Gande, S.L.; Hargittay, B.; Hohmann, K.F.; Hutchison, M.T.; Marianne Korn, S.; Krishnathas, R.; Kutz, F.; Linhard, V.; Matzel, T.; Meiser, N.; Niesteruk, A.; Pyper, D.J.; Schulte, L.; Trucks, S.; Azzaoui, K.; Blommers, M.J.J.; Gadiya, Y.; Karki, R.; Zaliani, A.; Gribbon, P.; da Silva Almeida, M.; Dinis Anobom, C.; Bula, A.L.; Bütikofer, M.; Caruso, P.Í.; Felli, C.I.; Da Poian, A.T.; de Amorim, C.G.; Fourkiotis, N.K.; Gallo, A.; Ghosh, D.; Neto, G.F.; Gorbatyuk, O.; Hao, B.; Kurauskas, V.; Lecoq, L.; Li, Y.; Antunes, C.M.N.; Mompeán, M.; Martins, C.N.T.; Pedrosa, N.M.; Pinheiro, A.S.; Pontoriero, L.; Pustovalova, Y.; Riek, R.; Robertson, A.J.; Saad, J.A.M.; Treviño, M.Á.; Tsika, A.C.; Almeida, F.C.L.; Bax, A.; Wildman, H.K.; Hoch, J.C.; Jaudzems, K.; Laurents, D.V.; Orts, J.; Pierattelli, R.; Spyroulias, G.A.; Ferner, D.E.; Ferner, J.; Fürtig, B.; Hengesbach, M.; Löhr, F.; Qureshi, N.; Richter, C.; Saxena, K.; Schlundt, A.; Sreeramulu, S.; Wacker, A.; Weigand, J.E.; Bartoschek, W.J.; Wöhnert, J.; Schwalbe, H. Comprehensive fragment screening of the SARS-CoV-2 proteome explores novel chemical space for drug development. Angew. Chem. Int. Ed., 2022, 61(46), e202205858. doi: 10.1002/anie.202205858
  80. Geschwindner, S.; Carlsson, J.F.; Knecht, W. Application of optical biosensors in small-molecule screening activities. Sensors, 2012, 12(4), 4311-4323. doi: 10.3390/s120404311 PMID: 22666031
  81. Nylander, C.; Liedberg, B.; Lind, T. Gas detection by means of surface plasmon resonance. Sens. Actuators, 1982, 3, 79-88. doi: 10.1016/0250-6874(82)80008-5
  82. Liedberg, B.; Nylander, C.; Lunström, I. Surface plasmon resonance for gas detection and biosensing. Sens. Actuators, 1983, 4, 299-304. doi: 10.1016/0250-6874(83)85036-7
  83. Neumann, T.; Junker, H-D.; Schmidt, K.; Sekul, R. SPR-based fragment screening: Advantages and applications. Curr. Top. Med. Chem., 2007, 7(16), 1630-1642. doi: 10.2174/156802607782341073 PMID: 17979772
  84. Danielson, U.H. Integrating surface plasmon resonance biosensor-based interaction kinetic analyses into the lead discovery and optimization process. Future Med. Chem., 2009, 1(8), 1399-1414. doi: 10.4155/fmc.09.100 PMID: 21426056
  85. Giannetti, A.M. From experimental design to validated hits: A comprehensive walk-through of fragment lead identification using surface plasmon resonance. In: Methods in Enzymology; Elsevier, 2011; 493, pp. 169-218.
  86. Löfås, S.; Malmqvist, M.; Rönnberg, I.; Stenberg, E.; Liedberg, B.; Lundström, I. Bioanalysis with surface plasmon resonance. Sens. Actuators B Chem., 1991, 5(1-4), 79-84. doi: 10.1016/0925-4005(91)80224-8
  87. Day, Y.S.N.; Baird, C.L.; Rich, R.L.; Myszka, D.G. Direct comparison of binding equilibrium, thermodynamic, and rate constants determined by surface- and solution-based biophysical methods. Protein Sci., 2002, 11(5), 1017-1025. doi: 10.1110/ps.4330102 PMID: 11967359
  88. Albert, J.; Blomberg, N.; Breeze, A.; Brown, A.; Burrows, J.; Edwards, P.; Folmer, R.; Geschwindner, S.; Griffen, E.; Kenny, P.; Nowak, T.; Olsson, L.L.; Sanganee, H.; Shapiro, A. An integrated approach to fragment-based lead generation: Philosophy, strategy and case studies from Astra Zeneca’s drug discovery programmes. Curr. Top. Med. Chem., 2007, 7(16), 1600-1629. doi: 10.2174/156802607782341091 PMID: 17979771
  89. Nienaber, V.L.; Richardson, P.L.; Klighofer, V.; Bouska, J.J.; Giranda, V.L.; Greer, J. Discovering novel ligands for macromolecules using X-ray crystallographic screening. Nat. Biotechnol., 2000, 18(10), 1105-1108. doi: 10.1038/80319 PMID: 11017052
  90. Hartshorn, M.J.; Murray, C.W.; Cleasby, A.; Frederickson, M.; Tickle, I.J.; Jhoti, H. Fragment-based lead discovery using X-ray crystallography. J. Med. Chem., 2005, 48(2), 403-413. doi: 10.1021/jm0495778 PMID: 15658854
  91. Davies, T.G.; Wixted, W.E.; Coyle, J.E.; Jones, G.C.; Hearn, K.; McMenamin, R.; Norton, D.; Rich, S.J.; Richardson, C.; Saxty, G.; Willems, H.M.G.; Woolford, A.J.A.; Cottom, J.E.; Kou, J.P.; Yonchuk, J.G.; Feldser, H.G.; Sanchez, Y.; Foley, J.P.; Bolognese, B.J.; Logan, G.; Podolin, P.L.; Yan, H.; Callahan, J.F.; Heightman, T.D.; Kerns, J.K. Monoacidic inhibitors of the Kelch-like ECH-associated protein 1: Nuclear factor erythroid 2-related factor 2 (KEAP1: NRF2) protein–protein interaction with high cell potency identified by fragment-based discovery. J. Med. Chem., 2016, 59(8), 3991-4006. doi: 10.1021/acs.jmedchem.6b00228 PMID: 27031670
  92. Skarzynski, T.; Thorpe, J. Industrial perspective on X-ray data collection and analysis. Acta Crystallogr. D Biol. Crystallogr., 2006, 62(1), 102-107. doi: 10.1107/S0907444905034281 PMID: 16369099
  93. Lo, M.C.; Aulabaugh, A.; Jin, G.; Cowling, R.; Bard, J.; Malamas, M.; Ellestad, G. Evaluation of fluorescence-based thermal shift assays for hit identification in drug discovery. Anal. Biochem., 2004, 332(1), 153-159. doi: 10.1016/j.ab.2004.04.031 PMID: 15301960
  94. Vedadi, M.; Niesen, F.H.; Hassani, A.A.; Fedorov, O.Y.; Finerty, P.J., Jr; Wasney, G.A.; Yeung, R.; Arrowsmith, C.; Ball, L.J.; Berglund, H.; Hui, R.; Marsden, B.D.; Nordlund, P.; Sundstrom, M.; Weigelt, J.; Edwards, A.M. Chemical screening methods to identify ligands that promote protein stability, protein crystallization, and structure determination. Proc. Natl. Acad. Sci., 2006, 103(43), 15835-15840. doi: 10.1073/pnas.0605224103 PMID: 17035505
  95. Mashalidis, E.H.; Śledź, P.; Lang, S.; Abell, C. A three-stage biophysical screening cascade for fragment-based drug discovery. Nat. Protoc., 2013, 8(11), 2309-2324. doi: 10.1038/nprot.2013.130 PMID: 24157549
  96. Willemsen, J.M.; Wienken, C.J.; Braun, D.; Baaske, P.; Duhr, S. Molecular interaction studies using microscale thermophoresis. Assay Drug Dev. Technol., 2011, 9(4), 342-353. doi: 10.1089/adt.2011.0380 PMID: 21812660
  97. Meiby, E.; Simmonite, H.; le Strat, L.; Davis, B.; Matassova, N.; Moore, J.D.; Mrosek, M.; Murray, J.; Hubbard, R.E.; Ohlson, S. Fragment screening by weak affinity chromatography: Comparison with established techniques for screening against HSP90. Anal. Chem., 2013, 85(14), 6756-6766. doi: 10.1021/ac400715t PMID: 23806099
  98. Sheng, C.; Zhang, W. Fragment informatics and computational fragment-based drug design: An overview and update. Med. Res. Rev., 2013, 33(3), 554-598. doi: 10.1002/med.21255 PMID: 22430881
  99. Wielens, J.; Headey, S.J.; Rhodes, D.I.; Mulder, R.J.; Dolezal, O.; Deadman, J.J.; Newman, J.; Chalmers, D.K.; Parker, M.W.; Peat, T.S.; Scanlon, M.J. Parallel screening of low molecular weight fragment libraries: Do differences in methodology affect hit identification? SLAS Discov., 2013, 18(2), 147-159. doi: 10.1177/1087057112465979 PMID: 23139382
  100. Congreve, M.; Chessari, G.; Tisi, D.; Woodhead, A.J. Recent developments in fragment-based drug discovery. J. Med. Chem., 2008, 51(13), 3661-3680. doi: 10.1021/jm8000373 PMID: 18457385
  101. Howard, N.; Abell, C.; Blakemore, W.; Chessari, G.; Congreve, M.; Howard, S.; Jhoti, H.; Murray, C.W.; Seavers, L.C.A.; van Montfort, R.L.M. Application of fragment screening and fragment linking to the discovery of novel thrombin inhibitors. J. Med. Chem., 2006, 49(4), 1346-1355. doi: 10.1021/jm050850v PMID: 16480269
  102. Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623. doi: 10.1021/jm020017n PMID: 12036371
  103. Potter, A.; Oldfield, V.; Nunns, C.; Fromont, C.; Ray, S.; Northfield, C.J.; Bryant, C.J.; Scrace, S.F.; Robinson, D.; Matossova, N.; Baker, L.; Dokurno, P.; Surgenor, A.E.; Davis, B.; Richardson, C.M.; Murray, J.B.; Moore, J.D. Discovery of cell-active phenyl-imidazole Pin1 inhibitors by structure-guided fragment evolution. Bioorg. Med. Chem. Lett., 2010, 20(22), 6483-6488. doi: 10.1016/j.bmcl.2010.09.063 PMID: 20932746
  104. Erlanson, D.A. Introduction to fragment-based drug discovery. Top. Curr. Chem., 2012, 317, 1-32. PMID: 21695633
  105. Lewis, W.G.; Green, L.G.; Grynszpan, F.; Radić, Z.; Carlier, P.R.; Taylor, P.; Finn, M.G.; Sharpless, K.B. Click chemistry in situ: Acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks. Angew. Chem. Int. Ed., 2002, 41(6), 1053-1057. doi: 10.1002/1521-3773(20020315)41:63.0.CO;2-4 PMID: 12491310
  106. Bourne, Y.; Kolb, H.C.; Radić, Z.; Sharpless, K.B.; Taylor, P.; Marchot, P. Freeze-frame inhibitor captures acetylcholinesterase in a unique conformation. Proc. Natl. Acad. Sci., 2004, 101(6), 1449-1454. doi: 10.1073/pnas.0308206100 PMID: 14757816
  107. Edink, E.; Rucktooa, P.; Retra, K.; Akdemir, A.; Nahar, T.; Zuiderveld, O.; van Elk, R.; Janssen, E.; van Nierop, P.; van Koezen, M.J.; Smit, A.B.; Sixma, T.K.; Leurs, R.; de Esch, I.J.P. Fragment growing induces conformational changes in acetylcholine-binding protein: A structural and thermodynamic analysis. J. Am. Chem. Soc., 2011, 133(14), 5363-5371. doi: 10.1021/ja110571r PMID: 21322593
  108. Wang, Z.Z.; Shi, X.X.; Huang, G.Y.; Hao, G.F.; Yang, G.F. Fragment-based drug design facilitates selective kinase inhibitor discovery. Trends Pharmacol. Sci., 2021, 42(7), 551-565. doi: 10.1016/j.tips.2021.04.001 PMID: 33958239
  109. Guillon, R.; Rahimova, R.; Preeti; Egron, D.; Rouanet, S.; Dumontet, C.; Aghajari, N.; Jordheim, L.P.; Chaloin, L.; Peyrottes, S. Lead optimization and biological evaluation of fragment-based cN-II inhibitors. Eur. J. Med. Chem., 2019, 168, 28-44. doi: 10.1016/j.ejmech.2019.02.040 PMID: 30798051
  110. Shi, X.X.; Li, J.Y.; Chen, Q.; Zhu, X.L.; Hao, G.F.; Yang, G.F. Development of a web-based laboratory class to reduce the challenges in teaching fragment-based drug design. J. Chem. Educ., 2020, 97(2), 427-436. doi: 10.1021/acs.jchemed.9b00198
  111. Mannhold, R.; Kubinyi, H.; Folkers, G. Fragment-based drug discovery: lessons and outlook; John Wiley & Sons, 2015.
  112. Bollag, G.; Tsai, J.; Zhang, J.; Zhang, C.; Ibrahim, P.; Nolop, K.; Hirth, P. Vemurafenib: The first drug approved for BRAF-mutant cancer. Nat. Rev. Drug Discov., 2012, 11(11), 873-886. doi: 10.1038/nrd3847 PMID: 23060265
  113. Deeks, E.D. Venetoclax: First global approval. Drugs, 2016, 76(9), 979-987. doi: 10.1007/s40265-016-0596-x PMID: 27260335
  114. Markham, A. Erdafitinib: First global approval. Drugs, 2019, 79(9), 1017-1021. doi: 10.1007/s40265-019-01142-9 PMID: 31161538
  115. Li, X.; Song, Y. Structure and function of SARS-CoV and SARS-CoV-2 main proteases and their inhibition: A comprehensive review. Eur. J. Med. Chem., 2023, 260, 115772. doi: 10.1016/j.ejmech.2023.115772 PMID: 37659195
  116. Alamri, M.A.; Qamar, T.M.; Mirza, M.U.; Alqahtani, S.M.; Froeyen, M.; Chen, L.L. Discovery of human coronaviruses pan-papain-like protease inhibitors using computational approaches. J. Pharm. Anal., 2020, 10(6), 546-559. doi: 10.1016/j.jpha.2020.08.012 PMID: 32874702
  117. Ikram, N.; Mirza, M.U.; Vanmeert, M.; Froeyen, M.; Salo-Ahen, O.M.H.; Tahir, M.; Qazi, A.; Ahmad, S. Inhibition of oncogenic kinases: An in vitro validated computational approach identified potential multi-target anticancer compounds. Biomolecules, 2019, 9(4), 124. doi: 10.3390/biom9040124 PMID: 30925835
  118. Khalid, H.; Landry, K.B.; Ijaz, B.; Ashfaq, U.A.; Ahmed, M.; Kanwal, A.; Froeyen, M.; Mirza, M.U. Discovery of novel hepatitis C virus inhibitor targeting multiple allosteric sites of NS5B polymerase. Infect. Genet. Evol., 2020, 84, 104371. doi: 10.1016/j.meegid.2020.104371 PMID: 32485331
  119. Mirza, M.; Ikram, N. Integrated computational approach for virtual hit identification against ebola viral proteins VP35 and VP40. Int. J. Mol. Sci., 2016, 17(11), 1748. doi: 10.3390/ijms17111748 PMID: 27792169
  120. Salo-Ahen, O.M.H.; Alanko, I.; Bhadane, R.; Bonvin, A.M.J.J.; Honorato, R.V.; Hossain, S.; Juffer, A.H.; Kabedev, A.; Kakkonen, L.M.; Larsen, A.S.; Lescrinier, E.; Marimuthu, P.; Mirza, M.U.; Mustafa, G.; Nunes-Alves, A.; Pantsar, T.; Saadabadi, A.; Singaravelu, K.; Vanmeert, M. Molecular dynamics simulations in drug discovery and pharmaceutical development. Processes, 2020, 9(1), 71. doi: 10.3390/pr9010071
  121. Gurung, A.B.; Ali, M.A.; Lee, J.; Farah, M.A.; Al-Anazi, K.M. An updated review of computer-aided drug design and its application to COVID-19. BioMed Res. Int., 2021, 2021, 1-18. doi: 10.1155/2021/8853056 PMID: 34258282
  122. Choudhury, C. Fragment tailoring strategy to design novel chemical entities as potential binders of novel corona virus main protease. J. Biomol. Struct. Dyn., 2021, 39(10), 3733-3746. doi: 10.1080/07391102.2020.1771424 PMID: 32452282
  123. Hatada, R.; Okuwaki, K.; Mochizuki, Y.; Handa, Y.; Fukuzawa, K.; Komeiji, Y.; Okiyama, Y.; Tanaka, S. Fragment molecular orbital based interaction analyses on COVID-19 main protease-inhibitor N3 complex (PDB ID: 6LU7). J. Chem. Inf. Model., 2020, 60(7), 3593-3602. doi: 10.1021/acs.jcim.0c00283 PMID: 32539372
  124. Coutard, B.; Decroly, E.; Li, C.; Sharff, A.; Lescar, J.; Bricogne, G.; Barral, K. Assessment of dengue virus helicase and methyltransferase as targets for fragment-based drug discovery. Antiviral Res., 2014, 106, 61-70. doi: 10.1016/j.antiviral.2014.03.013 PMID: 24704437
  125. Hoffer, L.; Renaud, J.P.; Horvath, D. Fragment-based drug design: Computational & experimental state of the art. Comb. Chem. High Throughput Screen., 2011, 14(6), 500-520. doi: 10.2174/138620711795767884 PMID: 21521152
  126. Loving, K.; Alberts, I.; Sherman, W. Computational approaches for fragment-based and de novo design. Curr. Top. Med. Chem., 2010, 10(1), 14-32. doi: 10.2174/156802610790232305 PMID: 19929832
  127. Kanakaveti, V.; Shanmugam, A.; Ramakrishnan, C.; Anoosha, P.; Sakthivel, R.; Rayala, S.K.; Gromiha, M.M. Computational approaches for identifying potential inhibitors on targeting protein interactions in drug discovery. Adv. Protein Chem. Struct. Biol., 2020, 121, 25-47. doi: 10.1016/bs.apcsb.2019.11.013 PMID: 32312424
  128. Bung, N.; Krishnan, S.R.; Bulusu, G.; Roy, A. De novo design of new chemical entities for SARS-CoV-2 using artificial intelligence. Future Med. Chem., 2021, 13(6), 575-585. doi: 10.4155/fmc-2020-0262 PMID: 33590764
  129. Khan, R.J.; Jha, R.K.; Amera, G.M.; Jain, M.; Singh, E.; Pathak, A.; Singh, R.P.; Muthukumaran, J.; Singh, A.K. Targeting SARS-CoV-2: A systematic drug repurposing approach to identify promising inhibitors against 3C-like proteinase and 2′-O-ribose methyltransferase. J. Biomol. Struct. Dyn., 2021, 39(8), 2679-2692. doi: 10.1080/07391102.2020.1753577 PMID: 32266873
  130. Pant, S.; Singh, M.; Ravichandiran, V.; Murty, U.S.N.; Srivastava, H.K. Peptide-like and small-molecule inhibitors against Covid-19. J. Biomol. Struct. Dyn., 2021, 39(8), 2904-2913. doi: 10.1080/07391102.2020.1757510 PMID: 32306822
  131. Aanouz, I.; Belhassan, A.; El-Khatabi, K.; Lakhlifi, T.; El-ldrissi, M.; Bouachrine, M. Moroccan Medicinal plants as inhibitors against SARS-CoV-2 main protease: Computational investigations. J. Biomol. Struct. Dyn., 2021, 39(8), 2971-2979. doi: 10.1080/07391102.2020.1758790 PMID: 32306860
  132. Enmozhi, S.K.; Raja, K.; Sebastine, I.; Joseph, J. Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: An in silico approach. J. Biomol. Struct. Dyn., 2021, 39(9), 3092-3098. PMID: 32329419
  133. Islam, R.; Parves, M.R.; Paul, A.S.; Uddin, N.; Rahman, M.S.; Mamun, A.A.; Hossain, M.N.; Ali, M.A.; Halim, M.A. A molecular modeling approach to identify effective antiviral phytochemicals against the main protease of SARS-CoV-2. J. Biomol. Struct. Dyn., 2021, 39(9), 3213-3224. PMID: 32340562
  134. Kiss, R.; Sandor, M.; Szalai, F.A. A public web service for drug discovery. J. Cheminform., 2012, 4(1), 1-1. PMID: 22236646
  135. Schrödinger, L. Schrödinger release 2018-4: Desmond molecular dynamics system. In: Maestro-Desmond Interoperability Tools; DE Shaw Research: New York, NY, 2018.
  136. Singh, N.; Pydi, S.P.; Upadhyaya, J.; Chelikani, P. Structural basis of activation of bitter taste receptor T2R1 and comparison with Class A G-protein-coupled receptors (GPCRs). J. Biol. Chem., 2011, 286(41), 36032-36041. doi: 10.1074/jbc.M111.246983 PMID: 21852241
  137. Di Pizio, A.; Niv, M.Y. Promiscuity and selectivity of bitter molecules and their receptors. Bioorg. Med. Chem., 2015, 23(14), 4082-4091. doi: 10.1016/j.bmc.2015.04.025 PMID: 25934224
  138. Pydi, S.P.; Jaggupilli, A.; Nelson, K.M.; Abrams, S.R.; Bhullar, R.P.; Loewen, M.C.; Chelikani, P. Abscisic acid acts as a blocker of the bitter taste G protein-coupled receptor T2R4. Biochemistry, 2015, 54(16), 2622-2631. doi: 10.1021/acs.biochem.5b00265 PMID: 25844797
  139. Floriano, W.B.; Hall, S.; Vaidehi, N.; Kim, U.; Drayna, D.; Goddard, W.A., III Modeling the human PTC bitter-taste receptor interactions with bitter tastants. J. Mol. Model., 2006, 12(6), 931-941. doi: 10.1007/s00894-006-0102-6 PMID: 16607493
  140. Biarnés, X.; Marchiori, A.; Giorgetti, A.; Lanzara, C.; Gasparini, P.; Carloni, P.; Born, S.; Brockhoff, A.; Behrens, M.; Meyerhof, W. Insights into the binding of Phenyltiocarbamide (PTC) agonist to its target human TAS2R38 bitter receptor. PLoS One, 2010, 5(8), e12394. doi: 10.1371/journal.pone.0012394 PMID: 20811630
  141. Miguet, L.; Zhang, Z.; Grigorov, M.G. Computational studies of ligand-receptor interactions in bitter taste receptors. J. Recept. Signal Transduct. Res., 2006, 26(5-6), 611-630. doi: 10.1080/10799890600928210 PMID: 17118801
  142. Tan, J.; Abrol, R.; Trzaskowski, B.; Goddard, W.A., III 3D structure prediction of TAS2R38 bitter receptors bound to agonists phenylthiocarbamide (PTC) and 6-n-propylthiouracil (PROP). J. Chem. Inf. Model., 2012, 52(7), 1875-1885. doi: 10.1021/ci300133a PMID: 22656649
  143. Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol., 2015, 1263, 243-250.
  144. Andola, P.; Pagag, J.; Laxman, D.; Guruprasad, L. Fragment-based inhibitor design for SARS-CoV2 main protease. Struct. Chem., 2022, 33(5), 1467-1487. doi: 10.1007/s11224-022-01995-z PMID: 35811782
  145. Kumari, R.; Kumar, R.; Lynn, A.; Lynn, A. g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model., 2014, 54(7), 1951-1962. doi: 10.1021/ci500020m PMID: 24850022
  146. Bakan, A.; Meireles, L.M.; Bahar, I. ProDy: Protein dynamics inferred from theory and experiments. Bioinformatics, 2011, 27(11), 1575-1577. doi: 10.1093/bioinformatics/btr168 PMID: 21471012
  147. Eyal, E.; Yang, L.W.; Bahar, I. Anisotropic network model: Systematic evaluation and a new web interface. Bioinformatics, 2006, 22(21), 2619-2627. doi: 10.1093/bioinformatics/btl448 PMID: 16928735
  148. Ross, C.; Nizami, B.; Glenister, M.; Amamuddy, S.O.; Atilgan, A.R.; Atilgan, C.; Bishop, T.Ö. MODE-TASK: Large-scale protein motion tools. Bioinformatics, 2018, 34(21), 3759-3763. doi: 10.1093/bioinformatics/bty427 PMID: 29850770
  149. Hubbard, R.E. Fragment approaches in structure-based drug discovery. J. Synchrotron Radiat., 2008, 15(3), 227-230. doi: 10.1107/S090904950705666X PMID: 18421145
  150. Palmer, N.; Peakman, T.M.; Norton, D.; Rees, D.C. Design and synthesis of dihydroisoquinolones for fragment-based drug discovery (FBDD). Org. Biomol. Chem., 2016, 14(5), 1599-1610. doi: 10.1039/C5OB02461G PMID: 26741115

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers