Advances of Oxidative Stress Impact in Periodontitis: Biomarkers and Effective Targeting Options
- Authors: Pouliou C.1, Piperi C.1
-
Affiliations:
- Dental School, National and Kapodistrian University of Athens
- Issue: Vol 31, No 38 (2024)
- Pages: 6187-6203
- Section: Anti-Infectives and Infectious Diseases
- URL: https://rjeid.com/0929-8673/article/view/645097
- DOI: https://doi.org/10.2174/0109298673297545240507091410
- ID: 645097
Cite item
Full Text
Abstract
:Periodontitis is the most common inflammatory oral disease that affects around 15% of adults and contributes to severe periodontal tissue destruction with subsequent tooth loosening and loss. Among the main pathogenic mechanisms underlying periodontitis, excessive reactive oxygen species production and oxidative stress play a predominant role in inducing both local and systemic damage. Current therapeutic approaches have expanded the conventional methods combined with herbal antioxidant compounds to free radical-scavenging nanomaterials and infrared laser therapy, offering promising pre-clinical evidence in periodontitis management. Herein, we review the pathogenic mechanisms of reactive oxygen species tissue damage, along with recent advances in oxidative stress biomarkers and novel targeting options.
About the authors
Chrysi Pouliou
Dental School, National and Kapodistrian University of Athens
Email: info@benthamscience.net
Christina Piperi
Dental School, National and Kapodistrian University of Athens
Author for correspondence.
Email: info@benthamscience.net
References
- Nazir, M.A. Prevalence of periodontal disease, its association with systemic diseases and prevention. Int. J. Health Sci., 2017, 11(2), 72-80. PMID: 28539867
- Benjamin, R.M. Oral health: the silent epidemic. Public Health Rep., 2010, 125(2), 158-159. doi: 10.1177/003335491012500202 PMID: 20297740
- Sies, H.; Berndt, C.; Jones, D.P. Oxidative stress. Annu. Rev. Biochem., 2017, 86(1), 715-748. doi: 10.1146/annurev-biochem-061516-045037 PMID: 28441057
- Jones, D.P. Radical-free biology of oxidative stress. Am. J. Physiol. Cell Physiol., 2008, 295(4), C849-C868. doi: 10.1152/ajpcell.00283.2008 PMID: 18684987
- Battino, M.; Bullon, P.; Wilson, M.; Newman, H. Oxidative injury and inflammatory periodontal diseases: the challenge of anti-oxidants to free radicals and reactive oxygen species. Crit. Rev. Oral Biol. Med., 1999, 10(4), 458-476. doi: 10.1177/10454411990100040301 PMID: 10634583
- Halliwell, B. Biochemistry of oxidative stress. Biochem. Soc. Trans., 2007, 35(5), 1147-1150. doi: 10.1042/BST0351147 PMID: 17956298
- Frijhoff, J.; Winyard, P.G.; Zarkovic, N.; Davies, S.S.; Stocker, R.; Cheng, D.; Knight, A.R.; Taylor, E.L.; Oettrich, J.; Ruskovska, T.; Gasparovic, A.C.; Cuadrado, A.; Weber, D.; Poulsen, H.E.; Grune, T.; Schmidt, H.H.H.W.; Ghezzi, P. Clinical relevance of biomarkers of oxidative stress. Antioxid. Redox Signal., 2015, 23(14), 1144-1170. doi: 10.1089/ars.2015.6317 PMID: 26415143
- Franco, R.; Vargas, M.R. Redox biology in neurological function, dysfunction, and aging. Antioxid. Redox Signal., 2018, 28(18), 1583-1586. doi: 10.1089/ars.2018.7509 PMID: 29634346
- Sadasivam, N.; Kim, Y.J.; Radhakrishnan, K.; Kim, D.K. Oxidative stress, genomic integrity, and liver diseases. Molecules, 2022, 27(10), 3159. doi: 10.3390/molecules27103159 PMID: 35630636
- Turrens, J.F. Mitochondrial formation of reactive oxygen species. J. Physiol., 2003, 552(2), 335-344. doi: 10.1113/jphysiol.2003.049478 PMID: 14561818
- Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem., 2015, 30(1), 11-26. doi: 10.1007/s12291-014-0446-0 PMID: 25646037
- Espinosa-Diez, C.; Miguel, V.; Mennerich, D.; Kietzmann, T.; Sánchez-Pérez, P.; Cadenas, S.; Lamas, S. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol., 2015, 6, 183-197. doi: 10.1016/j.redox.2015.07.008 PMID: 26233704
- Russell, E.G.; Cotter, T.G. New insight into the role of reactive oxygen species (ROS) in cellular signal-transduction processes. Int. Rev. Cell Mol. Biol., 2015, 319, 221-254. doi: 10.1016/bs.ircmb.2015.07.004 PMID: 26404470
- Finkel, T. Signal transduction by reactive oxygen species. J. Cell Biol., 2011, 194(1), 7-15. doi: 10.1083/jcb.201102095 PMID: 21746850
- Weidinger, A.; Kozlov, A. Biological activities of reactive oxygen and nitrogen species: oxidative stress versus signal transduction. Biomolecules, 2015, 5(2), 472-484. doi: 10.3390/biom5020472 PMID: 25884116
- Obeng-Gyasi, E. Lead exposure and oxidative stress-a life course approach in U.S. adults. Toxics, 2018, 6(3), 42. doi: 10.3390/toxics6030042 PMID: 30071602
- Besednova, N.N.; Andryukov, B.G.; Zaporozhets, T.S.; Kuznetsova, T.A.; Kryzhanovsky, S.P.; Ermakova, S.P.; Galkina, I.V.; Shchelkanov, M.Y. Molecular targets of brown algae phlorotannins for the therapy of inflammatory processes of various origins. Mar. Drugs, 2022, 20(4), 243. doi: 10.3390/md20040243 PMID: 35447916
- Perera, W.P.T.D.; Dissanayake, R.K.; Ranatunga, U.I.; Hettiarachchi, N.M.; Perera, K.D.C.; Unagolla, J.M.; De Silva, R.T.; Pahalagedara, L.R. Curcumin loaded zinc oxide nanoparticles for activity-enhanced antibacterial and anticancer applications. RSC Advances, 2020, 10(51), 30785-30795. doi: 10.1039/D0RA05755J PMID: 35516060
- Zhu, Y.; Luo, M.; Bai, X.; Li, J.; Nie, P.; Li, B.; Luo, P. SS-31, a mitochondria-targeting peptide, ameliorates kidney disease. Oxid. Med. Cell. Longev., 2022, 2022, 1-13. doi: 10.1155/2022/1295509 PMID: 35707274
- Su, L.J.; Zhang, J.H.; Gomez, H.; Murugan, R.; Hong, X.; Xu, D.; Jiang, F.; Peng, Z.Y. Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid. Med. Cell. Longev., 2019, 2019, 1-13. doi: 10.1155/2019/5080843 PMID: 31737171
- Ruan, Y.; Jiang, S.; Gericke, A. Age-related macular degeneration: role of oxidative stress and blood vessels. Int. J. Mol. Sci., 2021, 22(3), 1296. doi: 10.3390/ijms22031296 PMID: 33525498
- Chen, Z.; Gan, J.; Zhang, M.; Du, Y.; Zhao, H. Ferroptosis and its emerging role in pre-eclampsia. Antioxidants, 2022, 11(7), 1282. doi: 10.3390/antiox11071282 PMID: 35883776
- Caliri, A.W.; Tommasi, S.; Besaratinia, A. Relationships among smoking, oxidative stress, inflammation, macromolecular damage, and cancer. Mutat. Res. Rev. Mutat. Res., 2021, 787, 108365. doi: 10.1016/j.mrrev.2021.108365 PMID: 34083039
- Fu, Z.; Zhang, J.; Zhang, Y. Role of molecular hydrogen in ageing and ageing-related diseases. Oxid. Med. Cell. Longev., 2022, 2022, 1-17. doi: 10.1155/2022/2249749 PMID: 35340218
- Matsuo, K.; Hosoda, K.; Tanaka, J.; Yamamoto, Y.; Imahori, T.; Nakai, T.; Irino, Y.; Shinohara, M.; Sasayama, T.; Kohmura, E. Geranylgeranylacetone attenuates cerebral ischemiareperfusion injury in rats through the augmentation of HSP 27 phosphorylation: a preliminary study. BMC Neurosci., 2021, 22(1), 9. doi: 10.1186/s12868-021-00614-7 PMID: 33557752
- Sologova, S.S.; Zavadskiy, S.P.; Mokhosoev, I.M.; Moldogazieva, N.T. Short linear motifs orchestrate functioning of human proteins during embryonic development, redox regulation, and cancer. Metabolites, 2022, 12(5), 464. doi: 10.3390/metabo12050464 PMID: 35629968
- Khan, S.N.; Kumar, S.; Iqbal, S.; Joy, M.T.; Ramaprabha, G. Oxidative stress, antioxidants and periodontitis: how are they linked? Int. J. Oral Care Res., 2018, 6(2), 107-112.
- Jones, D.P. Redefining oxidative stress. Antioxid. Redox Signal., 2006, 8(9-10), 1865-1879. doi: 10.1089/ars.2006.8.1865 PMID: 16987039
- Trivedi, S.; Lal, N. Oxidative stress and periodontitis: cause or effect. J. Nepal Dent. Assoc., 2015, 15, 87.
- Jia, L.; Han, N.; Du, J.; Guo, L.; Luo, Z.; Liu, Y. Pathogenesis of important virulence factors of Porphyromonas gingivalis via toll-like receptors. Front. Cell. Infect. Microbiol., 2019, 9, 262. doi: 10.3389/fcimb.2019.00262 PMID: 31380305
- Sidhu, P.; Shankargouda, S.; Rath, A.; Hesarghatta Ramamurthy, P.; Fernandes, B.; Kumar Singh, A. Therapeutic benefits of liquorice in dentistry. J. Ayurveda Integr. Med., 2020, 11(1), 82-88. doi: 10.1016/j.jaim.2017.12.004 PMID: 30391123
- Miyasaki, K.T. The neutrophil: mechanisms of controlling periodontal bacteria. J. Periodontol., 1991, 62(12), 761-774. doi: 10.1902/jop.1991.62.12.761 PMID: 1765939
- Gustafsson, A.; Ito, H.; Åsman, B.; Bergström, K. Hyper-reactive mononuclear cells and neutrophils in chronic periodontitis. J. Clin. Periodontol., 2006, 33(2), 126-129. doi: 10.1111/j.1600-051X.2005.00883.x PMID: 16441737
- Matthews, J.B.; Wright, H.J.; Roberts, A.; Cooper, P.R.; Chapple, I.L.C. Hyperactivity and reactivity of peripheral blood neutrophils in chronic periodontitis. Clin. Exp. Immunol., 2007, 147(2), 255-264. doi: 10.1111/j.1365-2249.2006.03276.x PMID: 17223966
- Ling, M.R.; Chapple, I.L.C.; Matthews, J.B. Neutrophil superoxide release and plasma C-reactive protein levels pre- and post-periodontal therapy. J. Clin. Periodontol., 2016, 43(8), 652-658. doi: 10.1111/jcpe.12575 PMID: 27168055
- Chapple, I. L.; Matthews, J. B. The role of reactive oxygen and antioxidant species in periodontal tissue destruction. Periodontol, 2007, 43, 160-232. doi: 10.1111/j.1600-0757.2006.00178.x
- Gustafsson, A.; Åsman, B. Increased release of free oxygen radicals from peripheral neutrophils in adult periodontitis after Feγ-receptor stimulation. J. Clin. Periodontol., 1996, 23(1), 38-44. doi: 10.1111/j.1600-051X.1996.tb00502.x PMID: 8636455
- Fredriksson, M.; Gustafsson, A.; Åsman, B.; Bergström, K. Hyper-reactive peripheral neutrophils in adult periodontitis: generation of chemiluminescence and intracellular hydrogen peroxide after in vitro priming and FcγR-stimulation. J. Clin. Periodontol., 1998, 25(5), 394-398. doi: 10.1111/j.1600-051X.1998.tb02461.x PMID: 9650876
- Fredriksson, M.I.; Gustafsson, A.K.; Bergström, K.G.; Åsman, B.E. Constitutionally hyperreactive neutrophils in periodontitis. J. Periodontol., 2003, 74(2), 219-224. doi: 10.1902/jop.2003.74.2.219 PMID: 12666711
- Guarnieri, C.; Zucchelli, G.; Bernardi, F.; Scheda, M.; Valentini, A.F.; Calandriello, M. Enhanced superoxide production with no change of the antioxidant activity in gingival fluid of patients with chronic adult periodontitis. Free Radic. Res. Commun., 1991, 15(1), 11-16. doi: 10.3109/10715769109049120 PMID: 1663065
- Kimura, S.; Yonemura, T.; Kaya, H. Increased oxidative product formation by peripheral blood polymorphonuclear leukocytes in human periodontal diseases. J. Periodontal Res., 1993, 28(3), 197-203. doi: 10.1111/j.1600-0765.1993.tb01069.x PMID: 8496783
- Bullon, P.; Cordero, M.D.; Quiles, J.L.; Morillo, J.M.; Ramirez-Tortosa, M.C.; Battino, M. Mitochondrial dysfunction promoted by Porphyromonas gingivalis lip- opolysaccharide as a possible link between cardiovascular disease and periodontitis. Free Radic. Biol. Med., 2011, 50(10), 1336-1343. doi: 10.1016/j.freeradbiomed.2011.02.018 PMID: 21354301
- Gölz, L.; Memmert, S.; Rath-Deschner, B.; Jäger, A.; Appel, T.; Baumgarten, G.; Götz, W.; Frede, S. LPS from P. gingivalis and hypoxia increases oxidative stress in periodontal ligament fibroblasts and contributes to periodontitis. Mediators Inflamm., 2014, 2014, 1-13. doi: 10.1155/2014/986264 PMID: 25374447
- Govindaraj, P.; Khan, N.A.; Gopalakrishna, P.; Chandra, R.V.; Vanniarajan, A.; Reddy, A.A.; Singh, S.; Kumaresan, R.; Srinivas, G.; Singh, L.; Thangaraj, K. Mitochondrial dysfunction and genetic heterogeneity in chronic periodontitis. Mitochondrion, 2011, 11(3), 504-512. doi: 10.1016/j.mito.2011.01.009 PMID: 21296687
- Sui, L.; Wang, J.; Xiao, Z.; Yang, Y.; Yang, Z.; Ai, K. ROS-scavenging nanomaterials to treat periodontitis. Front Chem., 2020, 8, 595530. doi: 10.3389/fchem.2020.595530 PMID: 33330384
- Tottoli, E.M.; Dorati, R.; Genta, I.; Chiesa, E.; Pisani, S.; Conti, B. Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics, 2020, 12(8), 735. doi: 10.3390/pharmaceutics12080735 PMID: 32764269
- Cordani, M.; Resines-Urien, E.; Gamonal, A.; Milán-Rois, P.; Salmon, L.; Bousseksou, A.; Costa, J.S.; Somoza, Á. Water soluble iron-based coordination trimers as synergistic adjuvants for pancreatic cancer. Antioxidants, 2021, 10(1), 66. doi: 10.3390/antiox10010066 PMID: 33430324
- Lee, N.K.; Choi, Y.G.; Baik, J.Y.; Han, S.Y.; Jeong, D.; Bae, Y.S.; Kim, N.; Lee, S.Y. A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood, 2005, 106(3), 852-859. doi: 10.1182/blood-2004-09-3662 PMID: 15817678
- Cochran, D.L. Inflammation and bone loss in periodontal disease. J. Periodontol., 2008, 79(8S)(Suppl.), 1569-1576. doi: 10.1902/jop.2008.080233 PMID: 18673012
- Graves, D. Cytokines that promote periodontal tissue destruction. J. Periodontol., 2008, 79(8S)(Suppl.), 1585-1591. doi: 10.1902/jop.2008.080183 PMID: 18673014
- Garrett, I.R.; Boyce, B.F.; Oreffo, R.O.; Bonewald, L.; Poser, J.; Mundy, G.R. Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J. Clin. Invest., 1990, 85(3), 632-639. doi: 10.1172/JCI114485 PMID: 2312718
- Fearon, I.M.; Phillips, G.; Carr, T.; Taylor, M.; Breheny, D.; Faux, S.P. The role of oxidative stress in smoking-related diseases. Mini Rev. Org. Chem., 2011, 8, 360-371. doi: 10.2174/157019311797440317
- Caley, M.P.; Martins, V.L.C.; OToole, E.A. Metalloproteinases and wound healing. Adv. Wound Care (New Rochelle), 2015, 4(4), 225-234. doi: 10.1089/wound.2014.0581 PMID: 25945285
- Stanisic, D.; Obradovic, R.; Vujovic, S.; Jovanovic, M.; Zivkovic, V. The connection of periodontal disease and diabetes mellitus: the role of matrix metalloproteinases and oxidative stress. Serbian J. Exp. Clin. Res., 1019, 2019, 1-10.
- Franco, C.; Patricia, H.R.; Timo, S.; Claudia, B.; Marcela, H. Matrix metalloproteinases as regulators of periodontal inflammation. Int. J. Mol. Sci., 2017, 18(2), 440. doi: 10.3390/ijms18020440 PMID: 28218665
- Cook-Mills, J.M. Hydrogen peroxide activation of endothelial cell-associated MMPs during VCAM-1-dependent leukocyte migration. Cell. Mol. Biol., 2006, 52(4), 8-16. PMID: 17543193
- Osorio, C.; Cavalla, F.; Paula-Lima, A.; Díaz-Araya, G.; Vernal, R.; Ahumada, P.; Gamonal, J.; Hernández, M. H2O2 activates matrix metalloproteinases through the nuclear factor kappa B pathway and Ca2+ signals in human periodontal fibroblasts. J. Periodontal Res., 2015, 50(6), 798-806. doi: 10.1111/jre.12267 PMID: 25824649
- Hernández-Ríos, P.; Pussinen, P.J.; Vernal, R.; Hernández, M. Oxidative stress in the local and systemic events of apical periodontitis. Front. Physiol., 2017, 8, 869. doi: 10.3389/fphys.2017.00869 PMID: 29163211
- Desarda, H.; Gaikwad, S. Matrix metalloproteinases & Implication in periodontitis- A short review. Journal of Dental and Allied Sciences, 2013, 2(2), 66. doi: 10.4103/2277-4696.159288
- Moseley, R.; Waddington, R.J.; Embery, G. Degradation of glycosaminoglycans by reactive oxygen species derived from stimulated polymorphonuclear leukocytes. Biochim. Biophys. Acta Mol. Basis Dis., 1997, 1362(2-3), 221-231. doi: 10.1016/S0925-4439(97)00083-5 PMID: 9540853
- Montemurro, N.; Perrini, P.; Rapone, B. Clinical risk and overall survival in patients with diabetes mellitus, hyperglycemia and glioblastoma multiforme. a review of the current literature. Int. J. Environ. Res. Public Health, 2020, 17(22), 8501. doi: 10.3390/ijerph17228501 PMID: 33212778
- Pham, V.H.; Gargiulo Isacco, C.; Nguyen, K.C.D.; Le, S.H.; Tran, D.K.; Nguyen, Q.V.; Pham, H.T.; Aityan, S.; Pham, S.T.; Cantore, S.; Inchingolo, A.M.; Inchingolo, A.D.; Dipalma, G.; Ballini, A.; Inchingolo, F. Rapid and sensitive diagnostic procedure for multiple detection of pandemic Coronaviridae family members SARS-CoV-2, SARS-CoV, MERS-CoV and HCoV: a translational research and cooperation between the Phan Chau Trinh University in Vietnam and University of Bari "Aldo Moro" in Italy. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(12), 7173-7191. doi: 10.26355/eurrev_202006_21713 PMID: 32633414
- Rittié, L.; Monboisse, J.C.; Gorisse, M.C.; Gillery, P. Malondialdehyde binding to proteins dramatically alters fibroblast functions. J. Cell. Physiol., 2002, 191(2), 227-236. doi: 10.1002/jcp.10093 PMID: 12064466
- Żukowski, P.; Maciejczyk, M.; Waszkiel, D. Sources of free radicals and oxidative stress in the oral cavity. Arch. Oral Biol., 2018, 92, 8-17. doi: 10.1016/j.archoralbio.2018.04.018 PMID: 29729478
- Sam, C.H.; Lu, H.K. The role of hypochlorous acid as one of the reactive oxygen species in periodontal disease. J. Dent. Sci., 2009, 4(2), 45-54. doi: 10.1016/S1991-7902(09)60008-8
- Morgan, M.J.; Liu, Z. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res., 2011, 21(1), 103-115. doi: 10.1038/cr.2010.178 PMID: 21187859
- Souza, J.A.C.; Junior, C.R.; Garlet, G.P.; Nogueira, A.V.B.; Cirelli, J.A. Modulation of host cell signaling pathways as a therapeutic approach in periodontal disease. J. Appl. Oral Sci., 2012, 20(2), 128-138. doi: 10.1590/S1678-77572012000200002 PMID: 22666826
- Nakano, H.; Nakajima, A.; Sakon-Komazawa, S.; Piao, J-H.; Xue, X.; Okumura, K. Reactive oxygen species mediate crosstalk between NF-κB and JNK. Cell Death Differ., 2006, 13(5), 730-737. doi: 10.1038/sj.cdd.4401830 PMID: 16341124
- Kang, S.W.; Park, H.J.; Ban, J.Y.; Chung, J.H.; Chun, G.S.; Cho, J.O. Effects of nicotine on apoptosis in human gingival fibroblasts. Arch. Oral Biol., 2011, 56(10), 1091-1097. doi: 10.1016/j.archoralbio.2011.03.016 PMID: 21497792
- Oben, K.Z.; Alhakeem, S.S.; McKenna, M.K.; Brandon, J.A.; Mani, R.; Noothi, S.K.; Jinpeng, L.; Akunuru, S.; Dhar, S.K.; Singh, I.P.; Liang, Y.; Wang, C.; Abdel-Latif, A.; Stills, H.F., Jr; St Clair, D.K.; Geiger, H.; Muthusamy, N.; Tohyama, K.; Gupta, R.C.; Bondada, S. Oxidative stress-induced JNK/AP-1 signaling is a major pathway involved in selective apoptosis of myelodysplastic syndrome cells by Withaferin-A. Oncotarget, 2017, 8(44), 77436-77452. doi: 10.18632/oncotarget.20497 PMID: 29100399
- Guo, H.; Callaway, J.B.; Ting, J.P.Y. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat. Med., 2015, 21(7), 677-687. doi: 10.1038/nm.3893 PMID: 26121197
- Ding, P.H.; Yang, M.X.; Wang, N.N.; Jin, L.J.; Dong, Y.; Cai, X.; Chen, L.L. Porphyromonas gingivalis-induced NLRP3 inflammasome activation and its downstream interleukin-1β release depend on caspase-4. Front. Microbiol., 2020, 11, 1881. doi: 10.3389/fmicb.2020.01881 PMID: 32903638
- Marchesan, J.T.; Girnary, M.S.; Moss, K.; Monaghan, E.T.; Egnatz, G.J.; Jiao, Y.; Zhang, S.; Beck, J.; Swanson, K.V. Role of inflammasomes in the pathogenesis of periodontal disease and therapeutics. Periodontol. 2000, 2020, 82(1), 93-114. doi: 10.1111/prd.12269 PMID: 31850638
- Niture, S.K.; Khatri, R.; Jaiswal, A.K. Regulation of Nrf2-an update. Free Radic. Biol. Med., 2014, 66, 36-44. doi: 10.1016/j.freeradbiomed.2013.02.008 PMID: 23434765
- Yamaguchi, Y.; Kurita-Ochiai, T.; Kobayashi, R.; Suzuki, T.; Ando, T. Regulation of the NLRP3 inflammasome in Porphyromonas gingivalis-accelerated periodontal disease. Inflamm. Res., 2017, 66(1), 59-65. doi: 10.1007/s00011-016-0992-4 PMID: 27665233
- Franchi, L.; Eigenbrod, T.; Muñoz-Planillo, R.; Nuñez, G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat. Immunol., 2009, 10(3), 241-247. doi: 10.1038/ni.1703 PMID: 19221555
- Sima, C.; Aboodi, G.M.; Lakschevitz, F.S.; Sun, C.; Goldberg, M.B.; Glogauer, M. Nuclear Factor Erythroid 2-Related Factor 2 Down-Regulation in oral neutrophils is associated with periodontal oxidative damage and severe chronic periodontitis. Am. J. Pathol., 2016, 186(6), 1417-1426. doi: 10.1016/j.ajpath.2016.01.013 PMID: 27070823
- Hyeon, S.; Lee, H.; Yang, Y.; Jeong, W. Nrf2 deficiency induces oxidative stress and promotes RANKL-induced osteoclast differentiation. Free Radic. Biol. Med., 2013, 65, 789-799. doi: 10.1016/j.freeradbiomed.2013.08.005 PMID: 23954472
- Kataoka, K.; Ekuni, D.; Tomofuji, T.; Irie, K.; Kunitomo, M.; Uchida, Y.; Fukuhara, D.; Morita, M. Visualization of oxidative stress induced by experimental periodontitis in Keap1-dependent oxidative stress detector- luciferase mice. Int. J. Mol. Sci., 2016, 17(11), 1907. doi: 10.3390/ijms17111907 PMID: 27854327
- Ahmadi-Motamayel, F.; Goodarzi, M.T.; Jamshidi, Z.; Kebriaei, R. Evaluation of salivary and serum antioxidant and oxidative stress statuses in patients with chronic periodontitis: A case-control study. Front. Physiol., 2017, 8, 189. doi: 10.3389/fphys.2017.00189 PMID: 28408887
- Yagi, K. A simple fluorometric assay for lipoperoxide in blood plasma. Biochem. Med., 1976, 15(2), 212-216. doi: 10.1016/0006-2944(76)90049-1 PMID: 962904
- Panjamurthy, K.; Manoharan, S.; Ramachandran, C.R. Lipid peroxidation and antioxidant status in patients with periodontitis. Cell. Mol. Biol. Lett., 2005, 10(2), 255-264. PMID: 16010291
- Tonguç, M.Ö.; Öztürk, Ö.; Sütçü, R.; Ceyhan, B.M.; Kılınç, G.; Sönmez, Y.; Yetkin Ay, Z.; Şahin, Ü.; Baltacıoğlu, E.; Kırzıoğlu, F.Y. The impact of smoking status on antioxidant enzyme activity and malondialdehyde levels in chronic periodontitis. J. Periodontol., 2011, 82(9), 1320-1328. doi: 10.1902/jop.2011.100618 PMID: 21219099
- Ghallab, N.A.; Hamdy, E.; Shaker, O.G. Malondialdehyde, superoxide, dismutase and melatonin levels in GFC of aggressive and chronic periodontitis patients. Aust. Dent. J., 2016, 61, 53-61. doi: 10.1111/adj.12294 PMID: 25581300
- Dakovic, D. Malondialdehyde as an indicator of local oxidative cell damage in periodontitis patients. Master's thesis, Military Medical Academy, Sofia, Bulgaria, 2005.
- Wei, D.; Zhang, X-L.; Wang, Y-Z.; Yang, C-X.; Chen, G. Lipid peroxidation levels, total oxidant status and superoxide dismutase in serum, saliva and gingival crevicular fluid in chronic periodontitis patients before and after periodontal therapy. Aust. Dent. J., 2010, 55(1), 70-78. doi: 10.1111/j.1834-7819.2009.01123.x PMID: 20415915
- Petersen, D.R.; Doorn, J.A. Reactions of 4-hydroxynonenal with proteins and cellular targets. Free Radic. Biol. Med., 2004, 37(7), 937-945. doi: 10.1016/j.freeradbiomed.2004.06.012 PMID: 15336309
- Altıngöz, S.M.; Kurgan, Ş.; Önder, C.; Serdar, M.A.; Ünlütürk, U.; Uyanık, M.; Başkal, N.; Tatakis, D.N.; Günhan, M. Salivary and serum oxidative stress biomarkers and advanced glycation end products in periodontitis patients with or without diabetes: A cross-sectional study. J. Periodontol., 2021, 92(9), 1274-1285. doi: 10.1002/JPER.20-0406 PMID: 33277933
- Roberts, L.J., II; Morrow, J.D. Products of the isoprostane pathway: unique bioactive compounds and markers of lipid peroxidation. Cell. Mol. Life Sci., 2002, 59(5), 808-820. doi: 10.1007/s00018-002-8469-8 PMID: 12088281
- Su, H.; Gornitsky, M.; Velly, A.M.; Yu, H.; Benarroch, M.; Schipper, H.M. Salivary DNA, lipid, and protein oxidation in nonsmokers with periodontal disease. Free Radic. Biol. Med., 2009, 46(7), 914-921. doi: 10.1016/j.freeradbiomed.2009.01.008 PMID: 19280702
- Pradeep, A.R.; Rao, N.S.; Bajaj, P.; Agarwal, E. 8-Isoprostane: A lipid peroxidation product in gingival crevicular fluid in healthy, gingivitis and chronic periodontitis subjects. Arch. Oral Biol., 2013, 58(5), 500-504. doi: 10.1016/j.archoralbio.2013.01.011 PMID: 23453083
- Nguyen, T.T.; Ngo, L.Q.; Promsudthi, A.; Surarit, R. Salivary oxidative stress biomarkers in chronic periodontitis and acute coronary syndrome. Clin. Oral Investig., 2017, 21(7), 2345-2353. doi: 10.1007/s00784-016-2029-3 PMID: 27987039
- Halliwell, B. Why and how should we measure oxidative DNA damage in nutritional studies? How far have we come? Am. J. Clin. Nutr., 2000, 72(5), 1082-1087. doi: 10.1093/ajcn/72.5.1082 PMID: 11063432
- Ekuni, D.; Tomofuji, T.; Tamaki, N.; Sanbe, T.; Azuma, T.; Yamanaka, R.; Yamamoto, T.; Watanabe, T. Mechanical stimulation of gingiva reduces plasma 8-OHdG level in rat periodontitis. Arch. Oral Biol., 2008, 53(4), 324-329. doi: 10.1016/j.archoralbio.2007.10.005 PMID: 18031711
- Yang, X.; Li, C.; Pan, Y. The influences of periodontal status and periodontal pathogen quantity on salivary 8-hydroxydeoxyguanosine and interleukin-17 levels. J. Periodontol., 2016, 87(5), 591-600. doi: 10.1902/jop.2015.150390 PMID: 26654345
- Önder, C.; Kurgan, Ş.; Altıngöz, S.M.; Bağış, N.; Uyanık, M.; Serdar, M.A.; Kantarcı, A.; Günhan, M. Impact of non-surgical periodontal therapy on saliva and serum levels of markers of oxidative stress. Clin. Oral Investig., 2017, 21(6), 1961-1969. doi: 10.1007/s00784-016-1984-z PMID: 27807715
- Zamora-Perez, A.L.; Ortiz-García, Y.M.; Lazalde-Ramos, B.P.; Guerrero-Velázquez, C.; Gómez-Meda, B.C.; Ramírez-Aguilar, M.Á.; Zúñiga-González, G.M. Increased micronuclei and nuclear abnormalities in buccal mucosa and oxidative damage in saliva from patients with chronic and aggressive periodontal diseases. J. Periodontal Res., 2015, 50(1), 28-36. doi: 10.1111/jre.12175 PMID: 24666368
- Çanakçı, C.F.; Tatar, A.; Çanakçı, V.; Cicek, Y.; Oztas, S.; Orbak, R. New evidence of premature oxidative DNA damage: mitochondrial DNA deletion in gingival tissue of patients with periodontitis. J. Periodontol., 2006, 77(11), 1894-1900. doi: 10.1902/jop.2006.060108 PMID: 17076616
- Masi, S.; Salpea, K.D.; Li, K.; Parkar, M.; Nibali, L.; Donos, N.; Patel, K.; Taddei, S.; Deanfield, J.E.; DAiuto, F.; Humphries, S.E. Oxidative stress, chronic inflammation, and telomere length in patients with periodontitis. Free Radic. Biol. Med., 2011, 50(6), 730-735. doi: 10.1016/j.freeradbiomed.2010.12.031 PMID: 21195167
- Vo, T.T.T.; Chu, P.M.; Tuan, V.P.; Te, J.S.L.; Lee, I.T. The promising role of antioxidant phytochemicals in the prevention and preatment of periodontal disease via the inhibition of oxidative stress pathways: updated insights. Antioxidants, 2020, 9(12), 1211. doi: 10.3390/antiox9121211 PMID: 33271934
- Bouayed, J.; Bohn, T. Exogenous antioxidants-double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxid. Med. Cell. Longev., 2010, 3(4), 228-237. doi: 10.4161/oxim.3.4.12858 PMID: 20972369
- J Mbah, C.; Orabueze, I.; H Okorie, N. Antioxidants properties of natural and synthetic chemical compounds: Therapeutic effects on biological system. Acta Scientific Pharmaceutical Sciences, 2019, 3(6), 28-42. doi: 10.31080/ASPS.2019.03.0273
- Jindal, M.; Tripathi, P.; Blaggana, V.; Upadhyay, P.; Gupta, S.; Nishat, S. Antioxidant therapy (lycopene and green tea extract) in periodontal disease: A promising paradigm. J. Indian Soc. Periodontol., 2019, 23(1), 25-30. doi: 10.4103/jisp.jisp_277_18 PMID: 30692739
- Kaur, G.; Kathariya, R.; Bansal, S.; Singh, A.; Shahakar, D. Dietary antioxidants and their indispensable role in periodontal health. J. Food Drug Anal., 2016, 24(2), 239-246. doi: 10.1016/j.jfda.2015.11.003 PMID: 28911576
- Toraman, A.; Arabaci, T.; Aytekin, Z.; Albayrak, M.; Bayir, Y. Effects of vitamin C local application on ligature-induced periodontitis in diabetic rats. J. Appl. Oral Sci., 2020, 28, e20200444. doi: 10.1590/1678-7757-2020-0444 PMID: 33263670
- Li, L.; Zhang, Y.L.; Liu, X.Y.; Meng, X.; Zhao, R.Q.; Ou, L.L.; Li, B.Z.; Xing, T. Periodontitis exacerbates and promotes the progression of chronic kidney disease through oral flora, cytokines, and oxidative stress. Front. Microbiol., 2021, 12, 656372. doi: 10.3389/fmicb.2021.656372 PMID: 34211440
- Permuy, M.; López-Peña, M.; González-Cantalapiedra, A.; Muñoz, F. Melatonin: A review of its potential functions and effects on dental disease. Int. J. Mol. Sci., 2017, 18(4), 865. doi: 10.3390/ijms18040865 PMID: 28422058
- Ramesh, A.; Varghese, S.; Doraiswamy, J.; Malaiappan, S. Herbs as an antioxidant arsenal for periodontal diseases. J. Intercult. Ethnopharmacol., 2016, 5(1), 92-96. doi: 10.5455/jice.20160122065556 PMID: 27069730
- Stahl, W.; Sies, H. Antioxidant activity of carotenoids. Mol. Aspects Med., 2003, 24(6), 345-351. doi: 10.1016/S0098-2997(03)00030-X PMID: 14585305
- Kajiura, Y.; Nishikawa, Y.; Lew, J.H.; Kido, J.; Nagata, T.; Naruishi, K. β-carotene suppresses Porphyromonas gingivalis lipopolysaccharide-mediated cytokine production in THP-1 monocytes cultured with high glucose condition. Cell Biol. Int., 2018, 42(1), 105-111. doi: 10.1002/cbin.10873 PMID: 28906038
- Young, A.J.; Lowe, G.M. Antioxidant and prooxidant properties of carotenoids. Arch. Biochem. Biophys., 2001, 385(1), 20-27. doi: 10.1006/abbi.2000.2149 PMID: 11361018
- Nishigaki, M.; Yamamoto, T.; Ichioka, H.; Honjo, K.; Yamamoto, K.; Oseko, F.; Kita, M.; Mazda, O.; Kanamura, N. β-cryptoxanthin regulates bone resorption related-cytokine production in human periodontal ligament cells. Arch. Oral Biol., 2013, 58(7), 880-886. doi: 10.1016/j.archoralbio.2013.01.005 PMID: 23452546
- Balci Yuce, H.; Lektemur Alpan, A.; Gevrek, F.; Toker, H. Investigation of the effect of astaxanthin on alveolar bone loss in experimental periodontitis. J. Periodontal Res., 2018, 53(1), 131-138. doi: 10.1111/jre.12497 PMID: 29044575
- Martillanes, S.; Rocha-Pimienta, J.; Delgado-Adamez, J. Agrifood by-products as a source of phytochemical compounds. In: Descriptive food science; intechopen, 2018.
- Vuolo, M.M.; Lima, V.S.; Junior, M.R.M. Bioactive Compounds: Health Benefits and Potential Applications; Woodhead Publishing: Cambridge, UK, 2019, pp. 33-50. doi: 10.1016/B978-0-12-814774-0.00002-5
- Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. (Amst.), 2019, 24, e00370. doi: 10.1016/j.btre.2019.e00370 PMID: 31516850
- Nugala, B.; Namasi, A.; Emmadi, P.; Krishna, P.M. Role of green tea as an antioxidant in periodontal disease: The Asian paradox. J. Indian Soc. Periodontol., 2012, 16(3), 313-316. doi: 10.4103/0972-124X.100902 PMID: 23162321
- Cai, Y.; Chen, Z.; Liu, H.; Xuan, Y.; Wang, X.; Luan, Q. Green tea epigallocatechin-3-gallate alleviates Porphyromonas gingivalis -induced periodontitis in mice. Int. Immunopharmacol., 2015, 29(2), 839-845. doi: 10.1016/j.intimp.2015.08.033 PMID: 26359545
- Hrishi, T.S.; Kundapur, P.P.; Naha, A.; Thomas, B.S.; Kamath, S.; Bhat, G.S. Effect of adjunctive use of green tea dentifrice in periodontitis patients A Randomized Controlled Pilot Study. Int. J. Dent. Hyg., 2016, 14(3), 178-183. doi: 10.1111/idh.12131 PMID: 25690541
- Carocho, M.; Ferreira, I.C.F.R. A review on antioxidants, prooxidants and related controversy: Natural and synthetic compounds, screening and analysis methodologies and future perspectives. Food Chem. Toxicol., 2013, 51, 15-25. doi: 10.1016/j.fct.2012.09.021 PMID: 23017782
- Gutiérrez-Venegas, G.; Kawasaki-Cárdenas, P.; Rita Arroyo-Cruz, S.; Maldonado-Frías, S. Luteolin inhibits lipopolysaccharide actions on human gingival fibroblasts. Eur. J. Pharmacol., 2006, 541(1-2), 95-105. doi: 10.1016/j.ejphar.2006.03.069 PMID: 16762341
- Ben Lagha, A.; Dudonné, S.; Desjardins, Y.; Grenier, D. Wild blueberry (Vaccinium angustifolium Ait.) polyphenols target Fisobacterium nucleatum and the host inflammatory response: Potential innovative molecules for treating periodontal disease. J. Agric. Food Chem., 2015, 63(31), 6999-7008. doi: 10.1021/acs.jafc.5b01525 PMID: 26207764
- Ben Lagha, A.; Haas, B.; Grenier, D. Tea polyphenols inhibit the growth and virulence properties of Fusobacterium nucleatum. Sci. Rep., 2017, 7(1), 44815. doi: 10.1038/srep44815 PMID: 28322293
- Bouarab-Chibane, L.; Forquet, V.; Lantéri, P.; Clément, Y.; Léonard-Akkari, L.; Oulahal, N.; Degraeve, P.; Bordes, C. Antibacterial properties of polyphenols: characterization and QSAR (quantitative structure activity relationship) models. Front. Microbiol., 2019, 10, 829. doi: 10.3389/fmicb.2019.00829 PMID: 31057527
- Batchu, S.N.; Chaudhary, K.R.; Wiebe, G.J.; Seubert, J.M. Bioactive compounds in heart disease. In: Bioactive Food as Dietary Interventions for Cardiovascular Disease; Watson, R.R.; Preedy, V.R., Eds.; Academic Press: San Diego, CA, USA, 2013; pp. 431-442. doi: 10.1016/B978-0-12-396485-4.00026-8
- Chan, J.Y.Y.; Yuen, A.C.Y.; Chan, R.Y.K.; Chan, S.W. A review of the cardiovascular benefits and antioxidant properties of allicin. Phytother. Res., 2013, 27(5), 637-646. doi: 10.1002/ptr.4796 PMID: 22888009
- Provinciali, M.; Pierpaoli, E.; Piacenza, F.; Giacconi, R.; Costarelli, L.; Basso, A.; Recchioni, R.; Marcheselli, F.; Bray, D.; Benlhassan, K. Nutritional modulators of cellular senescence in vitro. In: Molecular Basis of Nutrition and Aging; Academic Press.: London, UK., 2016. doi: 10.1016/B978-0-12-801816-3.00022-4
- Shahzad, M.; Millhouse, E.; Culshaw, S.; Edwards, C.A.; Ramage, G.; Combet, E. Selected dietary (poly)phenols inhibit periodontal pathogen growth and biofilm formation. Food Funct., 2015, 6(3), 719-729. doi: 10.1039/C4FO01087F PMID: 25585200
- Elburki, M.S.; Moore, D.D.; Terezakis, N.G.; Zhang, Y.; Lee, H.M.; Johnson, F.; Golub, L.M. A novel chemically modified curcumin reduces inflammation-mediated connective tissue breakdown in a rat model of diabetes: periodontal and systemic effects. J. Periodontal Res., 2017, 52(2), 186-200. doi: 10.1111/jre.12381 PMID: 27038334
- Guimarães, M.R.; Coimbra, L.S.; de Aquino, S.G.; Spolidorio, L.C.; Kirkwood, K.L.; Rossa, C., Jr. Potent anti-inflammatory effects of systemically administered curcumin modulate periodontal disease in vivo. J. Periodontal Res., 2011, 46(2), 269-279. doi: 10.1111/j.1600-0765.2010.01342.x PMID: 21306385
- Elburki, M.S.; Rossa, C., Jr; Guimarães-Stabili, M.R.; Lee, H.M.; Curylofo-Zotti, F.A.; Johnson, F.; Golub, L.M. A chemically modified curcumin (CMC 2.24) inhibits nuclear factor kappaB activation and inflammatory bone loss in murine models of LPS-induced experimental periodontitis and diabetes-associated natural periodontitis. Inflammation, 2017, 40(4), 1436-1449. doi: 10.1007/s10753-017-0587-4 PMID: 28534138
- Guru, S.; Kothiwale, S.; Saroch, N.; Guru, R. Comparative evaluation of inhibitory effect of curcumin and doxycycline on matrix metalloproteinase-9 activity in chronic periodontitis. Indian J. Dent. Res., 2017, 28(5), 560-565. doi: 10.4103/ijdr.IJDR_461_16 PMID: 29072221
- Martins, C.A.; Leyhausen, G.; Volk, J.; Geurtsen, W. Curcumin in combination with piperine suppresses osteoclastogenesis in vitro. J. Endod., 2015, 41(10), 1638-1645. doi: 10.1016/j.joen.2015.05.009 PMID: 26300429
- de Almeida Brandão, D.; Spolidorio, L.C.; Johnson, F.; Golub, L.M.; Guimarães-Stabili, M.R.; Rossa, C., Jr Dose-response assessment of chemically modified curcumin in experimental periodontitis. J. Periodontol., 2019, 90(5), 535-545. doi: 10.1002/JPER.18-0392 PMID: 30394523
- Guimarães, M.R.; de Aquino, S.G.; Coimbra, L.S.; Spolidorio, L.C.; Kirkwood, K.L.; Rossa, C., Jr. Curcumin modulates the immune response associated with LPS-induced periodontal disease in rats. Innate Immun., 2012, 18(1), 155-163. doi: 10.1177/1753425910392935 PMID: 21242275
- Curylofo-Zotti, F.A.; Elburki, M.S.; Oliveira, P.A.; Cerri, P.S.; Santos, L.A.; Lee, H.M.; Johnson, F.; Golub, L.M.; Rossa, C.; Guimarães-Stabili, M.R. Differential effects of natural Curcumin and chemically modified curcumin on inflammation and bone resorption in model of experimental periodontitis. Arch. Oral Biol., 2018, 91, 42-50. doi: 10.1016/j.archoralbio.2018.04.007 PMID: 29669267
- Zambrano, L.M.G.; Brandao, D.A.; Rocha, F.R.G.; Marsiglio, R.P.; Longo, I.B.; Primo, F.L.; Tedesco, A.C.; Guimaraes-Stabili, M.R.; Rossa Junior, C. Local administration of curcumin-loaded nanoparticles effectively inhibits inflammation and bone resorption associated with experimental periodontal disease. Sci. Rep., 2018, 8(1), 6652. doi: 10.1038/s41598-018-24866-2 PMID: 29703905
- Mazzarino, L.; Borsali, R.; Lemos-Senna, E. Mucoadhesive films containing chitosan-coated nanoparticles: a new strategy for buccal curcumin release. J. Pharm. Sci., 2014, 103(11), 3764-3771. doi: 10.1002/jps.24142 PMID: 25187001
- Carbinatto, F.M.; Ribeiro, T.S.; Colnago, L.A.; Evangelista, R.C.; Cury, B.S.F. Preparation and characterization of amylose inclusion complexes for drug delivery applications. J. Pharm. Sci., 2016, 105(1), 231-241. doi: 10.1002/jps.24702 PMID: 26579874
- Nasra, M.M.A.; Khiri, H.M.; Hazzah, H.A.; Abdallah, O.Y. Formulation, in-vitro characterization and clinical evaluation of curcumin in-situ gel for treatment of periodontitis. Drug Deliv., 2017, 24(1), 133-142. doi: 10.1080/10717544.2016.1233591 PMID: 28156166
- Franck, F.C.; Benatti, B.B.; Andia, D.C.; Cirano, F.R.; Casarin, R.C.; Corrêa, M.G.; Ribeiro, F.V. Impact of resveratrol on bone repair in rats exposed to cigarette smoke inhalation: histomorphometric and bone-related gene expression analysis. Int. J. Oral Maxillofac. Surg., 2018, 47(4), 541-548. doi: 10.1016/j.ijom.2017.08.004 PMID: 28927744
- Ikeda, E.; Ikeda, Y.; Wang, Y.; Fine, N.; Sheikh, Z.; Viniegra, A.; Barzilay, O.; Ganss, B.; Tenenbaum, H.C.; Glogauer, M. Resveratrol derivative-rich melinjo seed extract induces healing in a murine model of established periodontitis. J. Periodontol., 2018, 89(5), 586-595. doi: 10.1002/JPER.17-0352 PMID: 29856488
- Orihuela-Campos, R.C.; Tamaki, N.; Mukai, R.; Fukui, M.; Miki, K.; Terao, J.; Ito, H.O. Biological impacts of resveratrol, quercetin, and N-acetylcysteine on oxidative stress in human gingival fibroblasts. J. Clin. Biochem. Nutr., 2015, 56(3), 220-227. doi: 10.3164/jcbn.14-129 PMID: 26060353
- Bhattarai, G.; Poudel, S.B.; Kook, S.H.; Lee, J.C. Resveratrol prevents alveolar bone loss in an experimental rat model of periodontitis. Acta Biomater., 2016, 29, 398-408. doi: 10.1016/j.actbio.2015.10.031 PMID: 26497626
- Rizzo, A.; Bevilacqua, N.; Guida, L.; Annunziata, M.; Romano Carratelli, C.; Paolillo, R. Effect of resveratrol and modulation of cytokine production on human periodontal ligament cells. Cytokine, 2012, 60(1), 197-204. doi: 10.1016/j.cyto.2012.06.004 PMID: 22749236
- Wadhwa, D.; Bey, A.; Hasija, M.; Moin, S.; Kumar, A.; Aman, S.; Sharma, V.K. Determination of levels of nitric oxide in smoker and nonsmoker patients with chronic periodontitis. J. Periodontal Implant Sci., 2013, 43(5), 215-220. doi: 10.5051/jpis.2013.43.5.215 PMID: 24236243
- Casati, M.Z.; Algayer, C.; Cardoso da Cruz, G.; Ribeiro, F.V.; Casarin, R.C.V.; Pimentel, S.P.; Cirano, F.R. Resveratrol decreases periodontal breakdown and modulates local levels of cytokines during periodontitis in rats. J. Periodontol., 2013, 84(10), e58-e64. doi: 10.1902/jop.2013.120746 PMID: 23489233
- Cirano, F.R.; Casarin, R.C.V.; Ribeiro, F.V.; Casati, M.Z.; Pimentel, S.P.; Taiete, T.; Bernardi, M.M. Effect of Resveratrol on periodontal pathogens during experimental periodontitis in rats. Braz. Oral Res., 2016, 30(1), e128. doi: 10.1590/1807-3107bor-2016.vol30.0128 PMID: 27901209
- Ornstrup, M.J.; Harsløf, T.; Sørensen, L.; Stenkjær, L.; Langdahl, B.L.; Pedersen, S.B. Resveratrol increases osteoblast differentiation in vitro independently of inflammation. Calcif. Tissue Int., 2016, 99(2), 155-163. doi: 10.1007/s00223-016-0130-x PMID: 27000750
- Tamaki, N.; Cristina Orihuela-Campos, R.; Inagaki, Y.; Fukui, M.; Nagata, T.; Ito, H.O. Resveratrol improves oxidative stress and prevents the progression of periodontitis via the activation of the Sirt1/AMPK and the Nrf2/antioxidant defense pathways in a rat periodontitis model. Free Radic. Biol. Med., 2014, 75, 222-229. doi: 10.1016/j.freeradbiomed.2014.07.034 PMID: 25091897
- Ribeiro, I.M.; de Souza Barroso, M.E.; Kampke, E.H.; Braga, L.T.F.; Campagnaro, B.P.; Meyrelles, S.S. Infrared laser therapy decreases systemic oxidative stress and inflammation in hypercholesterolemic mice with periodontitis. Lipids Health Dis., 2023, 22(1), 171. doi: 10.1186/s12944-023-01934-9 PMID: 37817126
- Bao, X.; Zhao, J.; Sun, J.; Hu, M.; Yang, X. Polydopamine nanoparticles as efficient scavengers for reactive oxygen species in periodontal disease. ACS Nano, 2018, 12(9), 8882-8892. doi: 10.1021/acsnano.8b04022 PMID: 30028940
- Higuchi, J.; Fortunato, G.; Woźniak, B.; Chodara, A.; Domaschke, S.; Męczyńska-Wielgosz, S.; Kruszewski, M.; Dommann, A.; Łojkowski, W. Polymer membranes sonocoated and electrosprayed with nano-hydroxyapatite for periodontal tissues regeneration. Nanomaterials (Basel), 2019, 9(11), 1625. doi: 10.3390/nano9111625 PMID: 31731775
- Kahraman, E.; ÿzhan, G.; ÿzsoy, Y.; Güngör, S. Polymeric micellar nanocarriers of benzoyl peroxide as potential follicular targeting approach for acne treatment. Colloids Surf. B Biointerfaces, 2016, 146, 692-699. doi: 10.1016/j.colsurfb.2016.07.029 PMID: 27434156
- Bhattarai, G.; Poudel, S.B.; Kook, S.H.; Lee, J.C. Anti-inflammatory, anti-osteoclastic, and antioxidant activities of genistein protect against alveolar bone loss and periodontal tissue degradation in a mouse model of periodontitis. J. Biomed. Mater. Res. A, 2017, 105(9), 2510-2521. doi: 10.1002/jbm.a.36109 PMID: 28509410
- Murgia, D.; Angellotti, G.; DAgostino, F.; De Caro, V. Bioadhesive matrix tablets loaded with lipophilic nanoparticles as vehicles for drugs for periodontitis treatment: development and characterization. Polymers (Basel), 2019, 11(11), 1801. doi: 10.3390/polym11111801 PMID: 31684081
- Goyal, G.; Garg, T.; Rath, G.; Goyal, A.K. Current nanotechnological strategies for an effective delivery of drugs in treatment of periodontal disease. Crit. Rev. Ther. Drug Carrier Syst., 2014, 31(2), 89-119. doi: 10.1615/CritRevTherDrugCarrierSyst.2014008117 PMID: 24940625
- Shaheen, M.A.; Elmeadawy, S.H.; Bazeed, F.B.; Anees, M.M.; Saleh, N.M. Innovative coenzyme Q10-loaded nanoformulation as an adjunct approach for the management of moderate periodontitis: preparation, evaluation, and clinical study. Drug Deliv. Transl. Res., 2020, 10(2), 548-564. doi: 10.1007/s13346-019-00698-z PMID: 31953677
- Alvarez Echazú, M.I.; Olivetti, C.E.; Peralta, I.; Alonso, M.R.; Anesini, C.; Perez, C.J.; Alvarez, G.S.; Desimone, M.F. Development of pH-responsive biopolymer-silica composites loaded with Larrea divaricata Cav. extract with antioxidant activity. Colloids Surf. B Biointerfaces, 2018, 169, 82-91. doi: 10.1016/j.colsurfb.2018.05.015 PMID: 29751344
- Saita, M.; Kaneko, J.; Sato, T.; Takahashi, S.; Wada-Takahashi, S.; Kawamata, R.; Sakurai, T.; Lee, M.C.; Hamada, N.; Kimoto, K.; Nagasaki, Y. Novel antioxidative nanotherapeutics in a rat periodontitis model: Reactive oxygen species scavenging by redox injectable gel suppresses alveolar bone resorption. Biomaterials, 2016, 76, 292-301. doi: 10.1016/j.biomaterials.2015.10.077 PMID: 26559357
- Mills, M.P.; Rosen, P.S.; Chambrone, L.; Greenwell, H.; Kao, R.T.; Klokkevold, P.R.; McAllister, B.S.; Reynolds, M.A.; Romanos, G.E.; Wang, H.L. American Academy of Periodontology best evidence consensus statement on the efficacy of laser therapy used alone or as an adjunct to non-surgical and surgical treatment of periodontitis and peri-implant diseases. J. Periodontol., 2018, 89(7), 737-742. doi: 10.1002/JPER.17-0356 PMID: 29693260
- Santos, M.A.F.M.; Silva, D.N.; Rovaris, K.; Sousa, F.B.; Dantas, E.L.A.; Loureiro, L.A.; Pereira, T.M.C.; Meyrelles, S.S.; Bertollo, R.M.; Vasquez, E.C. Optimal parameters of laser therapy to improve critical calvarial defects. Front. Physiol., 2022, 13, 841146. doi: 10.3389/fphys.2022.841146 PMID: 35283760
- Marques, M.M.; Pereira, A.N.; Fujihara, N.A.; Nogueira, F.N.; Eduardo, C.P. Effect of low-power laser irradiation on protein synthesis and ultrastructure of human gingival fibroblasts. Lasers Surg. Med., 2004, 34(3), 260-265. doi: 10.1002/lsm.20008 PMID: 15022254
- R Hamblin, M. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys., 2017, 4(3), 337-361. doi: 10.3934/biophy.2017.3.337 PMID: 28748217
- Karu, T.I. Low-power laser therapy. In: Biomedical Photonics Handbook, 1st ed; Vo-Dinh, T., Ed.; CRC Press: Boca Raton, FL, 2003; pp. 1-25. doi: 10.1201/9780203008997.ch48
Supplementary files
