Polyphenolic Nano-formulations: A New Avenue against Bacterial Infection
- Autores: Farhadi F.1, Eghbali S.2, Torabi Parizi S.3, Jamialahmadi T.4, Gumpricht E.5, Sahebkar A.4
-
Afiliações:
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences
- Department of Pharmacognosy and Traditional Pharmacy, School of Pharmacy, Birgand University of Medical Science
- Department of Biochemistry, Shahrood Branch Islamic Azad University
- Applied Biomedical Research Center, Mashhad University of Medical Sciences
- , Isagenix International LLC
- Edição: Volume 31, Nº 37 (2024)
- Páginas: 6154-6171
- Seção: Anti-Infectives and Infectious Diseases
- URL: https://rjeid.com/0929-8673/article/view/645095
- DOI: https://doi.org/10.2174/0929867330666230607125432
- ID: 645095
Citar
Texto integral
Resumo
:The gradual emergence of new bacterial strains impervious to one or more antibiotics necessitates discovering and applying natural alternatives. Among natural products, various polyphenols exhibit antibacterial activity. However, polyphenols with biocompatible and potent antibacterial characteristics are limited due to low aqueous solubility and bioavailability; therefore, recent studies are considering new polyphenol formulations. Nanoformulations of polyphenols, especially metal nanoparticles, are currently being investigated for their potential antibacterial activity. Nanonization of such products increases their solubility and helps attain a high surface-to-volume ratio and, therefore, a higher reactivity of the nanonized products with better remedial potential than nonnanonized products. Polyphenolic compounds with catechol and pyrogallol moieties efficiently bond with many metal ions, especially Au and Ag. These synergistic effects exhibit antibacterial pro-oxidant ROS generation, membrane damage, and biofilm eradication. This review discusses various nano-delivery systems for considering polyphenols as antibacterial agents.
Palavras-chave
Sobre autores
Faegheh Farhadi
Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences
Email: info@benthamscience.net
Samira Eghbali
Department of Pharmacognosy and Traditional Pharmacy, School of Pharmacy, Birgand University of Medical Science
Email: info@benthamscience.net
Sousan Torabi Parizi
Department of Biochemistry, Shahrood Branch Islamic Azad University
Email: info@benthamscience.net
Tannaz Jamialahmadi
Applied Biomedical Research Center, Mashhad University of Medical Sciences
Email: info@benthamscience.net
Eric Gumpricht
, Isagenix International LLC
Email: info@benthamscience.net
Amirhossein Sahebkar
Applied Biomedical Research Center, Mashhad University of Medical Sciences
Autor responsável pela correspondência
Email: info@benthamscience.net
Bibliografia
- Sivasakthi, S.; Usharani, G.; Saranraj, P. Biocontrol potentiality of plant growth promoting bacteria (pgpr)-pseudomonas fluorescens and Bacillus subtilis: A review. Afr. J. Agric. Res., 2014, 9(16), 1265-1277.
- Li, J.; Huang, Q.; Zheng, X.; Ge, Z.; Lin, K.; Zhang, D.; Chen, Y.; Wang, B.; Shi, X. Investigation of the lactic acid bacteria in kazak cheese and their contributions to cheese fermentation. Front. Microbiol., 2020, 11, 228. doi: 10.3389/fmicb.2020.00228 PMID: 32226414
- Yamano, Y. In vitro activity of cefiderocol against a broad range of clinically important gram-negative bacteria. Clin. Infect. Dis., 2019, 69(Suppl. 7), S544-S551. doi: 10.1093/cid/ciz827 PMID: 31724049
- Ghosh, S.; Nandi, S.; Basu, T. Nano-Antibacterials using medicinal plant components: An overview. Front. Microbiol., 2021, 12, 768739. PMID: 35273578
- Crunkhorn, S. Predicting novel antibacterial agents. Nat. Rev. Drug Discov., 2020, 19(4), 238-239. PMID: 32152457
- Boy, H.I.A.; Rutilla, A.J.H.; Santos, K.A.; Ty, A.M.T.; Yu, A.I.; Mahboob, T.; Tangpoong, J.; Nissapatorn, V. Recommended medicinal plants as source of natural products: A review. DCM, 2018, 1(2), 131-142. doi: 10.1016/S2589-3777(19)30018-7
- Rasouli, H.; Farzaei, M.H.; Khodarahmi, R. Polyphenols and their benefits: A review. Int. J. Food Prop., 2017, 20(2), 1700-1741. doi: 10.1080/10942912.2017.1354017
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The role of polyphenols in human health and food systems: A mini-review. Front. Nutr., 2018, 5, 87. doi: 10.3389/fnut.2018.00087 PMID: 30298133
- Ahmadi, A.; Jamialahmadi, T.; Sahebkar, A. Polyphenols and atherosclerosis: A critical review of clinical effects on LDL oxidation. Pharmacol. Res., 2022, 184, 106414. doi: 10.1016/j.phrs.2022.106414 PMID: 36028188
- Pérez-Jiménez, J.; Neveu, V.; Vos, F.; Scalbert, A. Identification of the 100 richest dietary sources of polyphenols: An application of the phenol-explorer database. Eur. J. Clin. Nutr., 2010, 64(S3), S112-S120. doi: 10.1038/ejcn.2010.221 PMID: 21045839
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longev., 2009, 2(5), 270-278. doi: 10.4161/oxim.2.5.9498 PMID: 20716914
- Polia, F.; Pastor-Belda, M.; Martínez-Blázquez, A.; Horcajada, M.N.; Tomás-Barberán, F.A.; García-Villalba, R. Technological and biotechnological processes to enhance the bioavailability of dietary (poly)phenols in humans. J. Agric. Food Chem., 2022, 70(7), 2092-2107. doi: 10.1021/acs.jafc.1c07198 PMID: 35156799
- Amawi, H.; Ashby, C., Jr; Samuel, T.; Peraman, R.; Tiwari, A. Polyphenolic nutrients in cancer chemoprevention and metastasis: Role of the epithelial-to-mesenchymal (EMT) pathway. Nutrients, 2017, 9(8), 911. doi: 10.3390/nu9080911 PMID: 28825675
- Carregosa, D.; Mota, S.; Ferreira, S.; Alves-Dias, B.; Loncarevic-Vasiljkovic, N.; Crespo, C.L.; Menezes, R.; Teodoro, R.; Santos, C.N. Overview of beneficial effects of (Poly)phenol metabolites in the context of neurodegenerative diseases on model organisms. Nutrients, 2021, 13(9), 2940. doi: 10.3390/nu13092940 PMID: 34578818
- Abbas, M.; Saeed, F.; Anjum, F.M.; Afzaal, M.; Tufail, T.; Bashir, M.S.; Ishtiaq, A.; Hussain, S.; Suleria, H.A.R. Natural polyphenols: An overview. Int. J. Food Prop., 2017, 20(8), 1689-1699. doi: 10.1080/10942912.2016.1220393
- Działo, M.; Mierziak, J.; Korzun, U.; Preisner, M.; Szopa, J.; Kulma, A. The potential of plant phenolics in prevention and therapy of skin disorders. Int. J. Mol. Sci., 2016, 17(2), 160. doi: 10.3390/ijms17020160 PMID: 26901191
- Niranjan, A.; Prakash, D. Chemical constituents and biological activities of turmeric (Curcuma longa l.)- A review. J. Food Sci. Technol., 2008, 45(2), 109.
- El Khawand, T.; Courtois, A.; Valls, J.; Richard, T.; Krisa, S. A review of dietary stilbenes: Sources and bioavailability. Phytochem. Rev., 2018, 17(5), 1007-1029. doi: 10.1007/s11101-018-9578-9
- Niesen, D.B.; Hessler, C.; Seeram, N.P. Beyond resveratrol: A review of natural stilbenoids identified from 20092013. J. Berry Res., 2013, 3(4), 181-196. doi: 10.3233/JBR-130062
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr., 2004, 79(5), 727-747. doi: 10.1093/ajcn/79.5.727 PMID: 15113710
- Brodowska, K.M. Natural flavonoids: Classification, potential role, and application of flavonoid analogues. Eur. J. Biol. Res., 2017, 7(2), 108-123.
- Nagula, R.L.; Wairkar, S. Recent advances in topical delivery of flavonoids: A review. J. Control. Release, 2019, 296, 190-201. doi: 10.1016/j.jconrel.2019.01.029 PMID: 30682442
- Baião, D.; de Freitas, C.; Gomes, L.; da Silva, D.; Correa, A.; Pereira, P.; Aguila, E.; Paschoalin, V. Polyphenols from root, tubercles and grains cropped in Brazil: Chemical and nutritional characterization and their effects on human health and diseases. Nutrients, 2017, 9(9), 1044. doi: 10.3390/nu9091044 PMID: 28930173
- Xiao, J.; Kai, G.; Yamamoto, K.; Chen, X. Advance in dietary polyphenols as α-glucosidases inhibitors: A review on structure-activity relationship aspect. Crit. Rev. Food Sci. Nutr., 2013, 53(8), 818-836. doi: 10.1080/10408398.2011.561379 PMID: 23768145
- Kondratyuk, T.P.; Pezzuto, J.M. Natural product polyphenols of relevance to human health. Pharm. Biol., 2004, 42(1), 46-63.
- Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.E.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal., 2013, 18(14), 1818-1892. doi: 10.1089/ars.2012.4581 PMID: 22794138
- Yadav, A.K.; Thakur, J.; Prakash, O.; Khan, F.; Saikia, D.; Gupta, M.M. Screening of flavonoids for antitubercular activity and their structureactivity relationships. Med. Chem. Res., 2013, 22(6), 2706-2716. doi: 10.1007/s00044-012-0268-7
- Ya, C.; Gaffney, S.; Lilley, T.; Haslam, E. Carbohydrate polyphenol complexation. In: Chemistry and Significance of Condensed Tannins; Plenum Press: New York, USA, 1988.
- Cushnie, T.P.T.; Lamb, A.J. Recent advances in understanding the antibacterial properties of flavonoids. Int. J. Antimicrob. Agents, 2011, 38(2), 99-107. doi: 10.1016/j.ijantimicag.2011.02.014 PMID: 21514796
- Bouarab-Chibane, L.; Forquet, V.; Lantéri, P.; Clément, Y.; Léonard-Akkari, L.; Oulahal, N.; Degraeve, P.; Bordes, C. Antibacterial properties of polyphenols: Characterization and QSAR (Quantitative structureactivity relationship) models. Front. Microbiol., 2019, 10, 829. doi: 10.3389/fmicb.2019.00829 PMID: 31057527
- Farhadi, F.; Khameneh, B.; Iranshahi, M.; Iranshahy, M. Antibacterial activity of flavonoids and their structureactivity relationship: An update review. Phytother. Res., 2019, 33(1), 13-40. doi: 10.1002/ptr.6208 PMID: 30346068
- Bjarnsholt, T. The role of bacterial biofilms in chronic infections. Acta Pathol. Microbiol. Scand. Suppl., 2013, 121(136), 1-58. doi: 10.1111/apm.12099 PMID: 23635385
- Levy, S.B.; Marshall, B. Antibacterial resistance worldwide: Causes, challenges and responses. Nat. Med., 2004, 10(S12), S122-S129. doi: 10.1038/nm1145 PMID: 15577930
- Taylor, D.W.; Hickey, L.J. An aptian plant with attached leaves and flowers: Implications for angiosperm origin. Science, 1990, 247(4943), 702-704. doi: 10.1126/science.247.4943.702 PMID: 17771888
- Soenen, S.J.; Rivera-Gil, P.; Montenegro, J.M.; Parak, W.J.; De Smedt, S.C.; Braeckmans, K. Cellular toxicity of inorganic nanoparticles: Common aspects and guidelines for improved nanotoxicity evaluation. Nano Today, 2011, 6(5), 446-465. doi: 10.1016/j.nantod.2011.08.001
- Gibson, J.; Olivia, S.; Boe-Gibson, G. Night lights in economics: Sources and uses 1. J. Econ. Surv., 2020, 34(5), 955-980. doi: 10.1111/joes.12387
- Sarmukaddam, S.; Chopra, A.; Tillu, G. Efficacy and safety of Ayurvedic medicines: Recommending equivalence trial design and proposing safety index. Int. J. Ayurveda Res., 2010, 1(3), 175-180. doi: 10.4103/0974-7788.72491 PMID: 21170211
- Karas, D.; Ulrichová, J.; Valentová, K. Galloylation of polyphenols alters their biological activity. Food Chem. Toxicol., 2017, 105, 223-240. doi: 10.1016/j.fct.2017.04.021 PMID: 28428085
- Zanotti, I.; DallAsta, M.; Mena, P.; Mele, L.; Bruni, R.; Ray, S.; Del Rio, D. Atheroprotective effects of (poly)phenols: A focus on cell cholesterol metabolism. Food Funct., 2015, 6(1), 13-31. doi: 10.1039/C4FO00670D PMID: 25367393
- Marín, L.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Bioavailability of dietary polyphenols and gut microbiota metabolism: Antimicrobial properties. BioMed Res. Int., 2015, 2015, 905215. doi: 10.1155/2015/905215
- Ribeiro, D.; Proenca, C.; Rocha, S.; Lima, J.L.F.C.; Carvalho, F.; Fernandes, E.; Freitas, M. Immunomodulatory effects of flavonoids in the prophylaxis and treatment of inflammatory bowel diseases: A comprehensive review. Curr. Med. Chem., 2018, 25(28), 3374-3412. doi: 10.2174/0929867325666180214121734 PMID: 29446723
- Bowey, E.; Adlercreutz, H.; Rowland, I. Metabolism of isoflavones and lignans by the gut microflora: A study in germ-free and human flora associated rats. Food Chem. Toxicol., 2003, 41(5), 631-636. doi: 10.1016/S0278-6915(02)00324-1 PMID: 12659715
- DArchivio, M.; Filesi, C.; Varì, R.; Scazzocchio, B.; Masella, R. Bioavailability of the polyphenols: Status and controversies. Int. J. Mol. Sci., 2010, 11(4), 1321-1342. doi: 10.3390/ijms11041321 PMID: 20480022
- Scalbert, A.; Williamson, G. Dietary intake and bioavailability of polyphenols. J. Nutr., 2000, 130(8), 2073S-2085S. doi: 10.1093/jn/130.8.2073S PMID: 10917926
- Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr., 2005, 81(1), 230S-242S. doi: 10.1093/ajcn/81.1.230S PMID: 15640486
- Crozier, A.; Del Rio, D.; Clifford, M.N. Bioavailability of dietary flavonoids and phenolic compounds. Mol. Aspects Med., 2010, 31(6), 446-467. doi: 10.1016/j.mam.2010.09.007 PMID: 20854839
- Tenover, F.C. Mechanisms of antimicrobial resistance in bacteria. Am. J. Med., 2006, 119(6), S3-S10. doi: 10.1016/j.amjmed.2006.03.011 PMID: 16735149
- Omosa, L.K.; Midiwo, J.O.; Mbaveng, A.T.; Tankeo, S.B.; Seukep, J.A.; Voukeng, I.K.; Dzotam, J.K.; Isemeki, J.; Derese, S.; Omolle, R.A.; Efferth, T.; Kuete, V. Antibacterial activities and structureactivity relationships of a panel of 48 compounds from Kenyan plants against multidrug resistant phenotypes. Springerplus, 2016, 5(1), 901. doi: 10.1186/s40064-016-2599-1 PMID: 27386347
- Borges, A; Ferreira, C; Saavedra, MJ; Simões, M Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microbial drug resistance, 2013, 19(4), 256-265. doi: 10.1089/mdr.2012.0244
- Xie, Y.; Yang, W.; Tang, F.; Chen, X.; Ren, L. Antibacterial activities of flavonoids: Structure-activity relationship and mechanism. Curr. Med. Chem., 2014, 22(1), 132-149. doi: 10.2174/0929867321666140916113443 PMID: 25245513
- Khameneh, B.; Iranshahy, M.; Soheili, V.; Fazly Bazzaz, B.S. Review on plant antimicrobials: A mechanistic viewpoint. Antimicrob. Resist. Infect. Control, 2019, 8(1), 118. doi: 10.1186/s13756-019-0559-6 PMID: 31346459
- Deng, J.; Yang, H.; Capanoglu, E.; Cao, H.; Xiao, J. 9 - Technological aspects and stability of polyphenols. In: Polyphenols: Properties, Recovery, and Applications; Elsevier, 2018; pp. 295-323.
- Tai, K.; Rappolt, M.; Mao, L.; Gao, Y.; Yuan, F. Stability and release performance of curcumin-loaded liposomes with varying content of hydrogenated phospholipids. Food Chem., 2020, 326, 126973. doi: 10.1016/j.foodchem.2020.126973 PMID: 32413757
- Qin, R.; Xiao, K.; Li, B.; Jiang, W.; Peng, W.; Zheng, J.; Zhou, H. The combination of catechin and epicatechin callate from Fructus Crataegi potentiates β-lactam antibiotics against methicillin-resistant staphylococcus aureus (MRSA) in vitro and in vivo. Int. J. Mol. Sci., 2013, 14(1), 1802-1821. doi: 10.3390/ijms14011802 PMID: 23325048
- Kesharwani, P.; Gorain, B.; Low, S.Y.; Tan, S.A.; Ling, E.C.S.; Lim, Y.K.; Chin, C.M.; Lee, P.Y.; Lee, C.M.; Ooi, C.H.; Choudhury, H.; Pandey, M. Nanotechnology based approaches for anti-diabetic drugs delivery. Diabetes Res. Clin. Pract., 2018, 136, 52-77. doi: 10.1016/j.diabres.2017.11.018 PMID: 29196152
- Duncan, R.; Gaspar, R. Nanomedicine(s) under the microscope. Mol. Pharm., 2011, 8(6), 2101-2141. doi: 10.1021/mp200394t PMID: 21974749
- Drug Products, Including Biological Products, that Contain Nanomaterials - Guidance for Industry. 2017. Available from: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/drug-products-including-biological-products-contain-nanomaterials-guidance-industry
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71. doi: 10.1186/s12951-018-0392-8 PMID: 30231877
- Farjadian, F.; Ghasemi, A.; Gohari, O.; Roointan, A.; Karimi, M.; Hamblin, M.R. Nanopharmaceuticals and nanomedicines currently on the market: Challenges and opportunities. Nanomedicine, 2019, 14(1), 93-126. doi: 10.2217/nnm-2018-0120 PMID: 30451076
- Hashemi Goradel, N.; Ghiyami-Hour, F.; Jahangiri, S.; Negahdari, B.; Sahebkar, A.; Masoudifar, A.; Mirzaei, H. Nanoparticles as new tools for inhibition of cancer angiogenesis. J. Cell. Physiol., 2018, 233(4), 2902-2910. doi: 10.1002/jcp.26029 PMID: 28543172
- Javid-Naderi, M.J.; Mahmoudi, A.; Kesharwani, P.; Jamialahmadi, T.; Sahebkar, A. Recent advances of nanotechnology in the treatment and diagnosis of polycystic ovary syndrome. J. Drug Deliv. Sci. Technol., 2023, 79, 104014. doi: 10.1016/j.jddst.2022.104014
- Moosavian, S.A.; Sathyapalan, T.; Jamialahmadi, T.; Sahebkar, A. The emerging role of nanomedicine in the management of nonalcoholic fatty liver disease: A state-of-the-art review. Bioinorg. Chem. Appl., 2021, 4041415. doi: 10.1155/2021/4041415
- Attia, M.F.; Anton, N.; Wallyn, J.; Omran, Z.; Vandamme, T.F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J. Pharm. Pharmacol., 2019, 71(8), 1185-1198. doi: 10.1111/jphp.13098 PMID: 31049986
- Tran, T.T.; Hadinoto, K. A Potential Quorum-sensing inhibitor for bronchiectasis therapy: Quercetinchitosan nanoparticle complex exhibiting superior inhibition of biofilm formation and swimming motility of Pseudomonas aeruginosa to the native quercetin. Int. J. Mol. Sci., 2021, 22(4), 1541. doi: 10.3390/ijms22041541 PMID: 33546487
- Crisan, C.M.; Mocan, T.; Manolea, M.; Lasca, L.I.; Tăbăran, F.A.; Mocan, L. Review on silver nanoparticles as a novel class of antibacterial solutions. Appl. Sci., 2021, 11(3), 1120. doi: 10.3390/app11031120
- Clinical toxicities encountered with paclitaxel (Taxol). Rowinsky, E.; Eisenhauer, E.; Chaudhry, V.; Arbuck, S.; Donehower, R., Eds.; Semin Oncol, 1993, 20(4 Suppl. 3), 1-15.
- Yoon, H.S.; Cho, C.H.; Yun, M.S.; Jang, S.J.; You, H.J.; Kim, J.; Han, D.; Cha, K.H.; Moon, S.H.; Lee, K.; Kim, Y.J.; Lee, S.J.; Nam, T.W.; Ko, G. Akkermansia muciniphila secretes a glucagon-like peptide-1-inducing protein that improves glucose homeostasis and ameliorates metabolic disease in mice. Nat. Microbiol., 2021, 6(5), 563-573. doi: 10.1038/s41564-021-00880-5 PMID: 33820962
- Bhatia, E.; Banerjee, R. Hybrid silvergold nanoparticles suppress drug resistant polymicrobial biofilm formation and intracellular infection. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(22), 4890-4898. doi: 10.1039/D0TB00158A PMID: 32285904
- Adnan, N.N.M.; Cheng, Y.Y.; Ong, N.M.N.; Kamaruddin, T.T.; Rozlan, E.; Schmidt, T.W.; Duong, H.T.T.; Boyer, C. Effect of gold nanoparticle shapes for phototherapy and drug delivery. Polym. Chem., 2016, 7(16), 2888-2903. doi: 10.1039/C6PY00465B
- Yougbaré, S.; Chou, H.L.; Yang, C.H.; Krisnawati, D.I.; Jazidie, A.; Nuh, M.; Kuo, T.R. Facet-dependent gold nanocrystals for effective photothermal killing of bacteria. J. Hazard. Mater., 2021, 407, 124617. doi: 10.1016/j.jhazmat.2020.124617 PMID: 33359972
- Alsamhary, K.; Al-Enazi, N.; Alshehri, W.A.; Ameen, F. Gold nanoparticles synthesised by flavonoid tricetin as a potential antibacterial nanomedicine to treat respiratory infections causing opportunistic bacterial pathogens. Microb. Pathog., 2020, 139, 103928. doi: 10.2217/fvl-2015-0010
- Richards, D.A.; Maruani, A.; Chudasama, V. Antibody fragments as nanoparticle targeting ligands: A step in the right direction. Chem. Sci., 2017, 8(1), 63-77. doi: 10.1039/C6SC02403C PMID: 28451149
- Kumar, A.; Mazinder Boruah, B. Liang, X-J Gold nanoparticles: Promising nanomaterials for the diagnosis of cancer and HIV/AIDS. J. Nanomater., 2011, 2011, 202187.
- Fan, F.R.F.; Bard, A.J. Chemical, electrochemical, gravimetric, and microscopic studies on antimicrobial silver films. J. Phys. Chem. B, 2002, 106(2), 279-287. doi: 10.1021/jp012548d
- Lok, C.N.; Ho, C.M.; Chen, R.; He, Q.Y.; Yu, W.Y.; Sun, H.; Tam, P.K.H.; Chiu, J.F.; Che, C.M. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res., 2006, 5(4), 916-924. doi: 10.1021/pr0504079 PMID: 16602699
- Varaprasad, K.; Mohan, Y.M.; Vimala, K.; Mohana Raju, K. Synthesis and characterization of hydrogel-silver nanoparticle-curcumin composites for wound dressing and antibacterial application. J. Appl. Polym. Sci., 2011, 121(2), 784-796. doi: 10.1002/app.33508
- Wu, Y.; Yang, Y.; Zhang, Z.; Wang, Z.; Zhao, Y.; Sun, L. A facile method to prepare size-tunable silver nanoparticles and its antibacterial mechanism. Adv. Powder Technol., 2018, 29(2), 407-415. doi: 10.1016/j.apt.2017.11.028
- Li, W.R.; Xie, X.B.; Shi, Q.S.; Duan, S.S.; Ouyang, Y.S.; Chen, Y.B. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals, 2011, 24(1), 135-141. doi: 10.1007/s10534-010-9381-6 PMID: 20938718
- Tong, C.; Zhong, X.; Yang, Y.; Liu, X.; Zhong, G.; Xiao, C.; Liu, B.; Wang, W.; Yang, X.P.B. @PDA@Ag nanosystem for synergistically eradicating MRSA and accelerating diabetic wound healing assisted with laser irradiation. Biomaterials, 2020, 243, 119936. doi: 10.1016/j.biomaterials.2020.119936 PMID: 32171103
- Akintelu, S.A.; Bo, Y.; Folorunso, A.S. A review on synthesis, optimization, mechanism, characterization, and antibacterial application of silver nanoparticles synthesized from plants. J. Chem., 2020, 2020, 3189043. doi: 10.1155/2020/3189043
- Das, R.K.; Brar, S.K. Plant mediated green synthesis: Modified approaches. Nanoscale, 2013, 5(21), 10155-10162. doi: 10.1039/c3nr02548a PMID: 24056951
- Kim, J-H.; Eguchi, H.; Umemura, M.; Sato, I.; Yamada, S.; Hoshino, Y. Magnetic metal-complex-conducting copolymer coreshell nanoassemblies for a single-drug anticancer platform. NPG Asia Mater., 2017, 9(3), e367. doi: 10.1038/am.2017.29
- Aisida, S.O.; Ugwoke, E.; Uwais, A.; Iroegbu, C.; Botha, S.; Ahmad, I.; Maaza, M.; Ezema, F.I. Incubation period induced biogenic synthesis of PEG enhanced Moringa oleifera silver nanocapsules and its antibacterial activity. J. Polym. Res., 2019, 26(9), 225. doi: 10.1007/s10965-019-1897-z
- Xie, W.; Guo, Z.; Gao, F.; Gao, Q.; Wang, D.; Liaw, B.; Cai, Q.; Sun, X.; Wang, X.; Zhao, L. Shape, size and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics. Theranostics, 2018, 8(12), 3284-3307. doi: 10.7150/thno.25220 PMID: 29930730
- Tietze, R.; Zaloga, J.; Unterweger, H.; Lyer, S.; Friedrich, R.P.; Janko, C.; Pöttler, M.; Dürr, S.; Alexiou, C. Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem. Biophys. Res. Commun., 2015, 468(3), 463-470. doi: 10.1016/j.bbrc.2015.08.022 PMID: 26271592
- Igartúa, D.E.; Azcona, P.L.; Martinez, C.S.; Alonso, S.V.; Lassalle, V.L.; Prieto, M.J. Folic acid magnetic nanotheranostics for delivering doxorubicin: Toxicological and biocompatibility studies on Zebrafish embryo and larvae. Toxicol. Appl. Pharmacol., 2018, 358, 23-34. doi: 10.1016/j.taap.2018.09.009 PMID: 30205093
- Bobo, D.; Robinson, K.J.; Islam, J.; Thurecht, K.J.; Corrie, S.R. Nanoparticle-based medicines: A review of FDA-approved materials and clinical trials to date. Pharm. Res., 2016, 33(10), 2373-2387. doi: 10.1007/s11095-016-1958-5 PMID: 27299311
- Zhang, M.; Zheng, Y.; Jin, Y.; Wang, D.; Wang, G.; Zhang, X.; Li, Y.; Lee, S. Ag@MOF-loaded p-coumaric acid modified chitosan/chitosan nanoparticle and polyvinyl alcohol/starch bilayer films for food packing applications. Int. J. Biol. Macromol., 2022, 202, 80-90. doi: 10.1016/j.ijbiomac.2022.01.074 PMID: 35038467
- Ong, T.H.; Chitra, E.; Ramamurthy, S.; Siddalingam, R.P.; Yuen, K.H.; Ambu, S.P.; Davamani, F. Chitosan-propolis nanoparticle formulation demonstrates anti-bacterial activity against Enterococcus faecalis biofilms. PLoS One, 2017, 12(3), e0174888. doi: 10.1371/journal.pone.0174888 PMID: 28362873
- Mirzahosseinipour, M.; Khorsandi, K.; Hosseinzadeh, R.; Ghazaeian, M.; Shahidi, F.K. Antimicrobial photodynamic and wound healing activity of curcumin encapsulated in silica nanoparticles. Photodiagn. Photodyn. Ther., 2020, 29, 101639. doi: 10.1016/j.pdpdt.2019.101639 PMID: 31899378
- Oves, M.; Rauf, M.A.; Ansari, M.O.; Aslam Parwaz Khan, A.; A Qari, H. Alajmi, M.F.; Sau, S.; Iyer, A.K. Graphene decorated zinc oxide and curcumin to disinfect the methicillin-resistant Staphylococcus aureus. Nanomaterials, 2020, 10(5), 1004. doi: 10.3390/nano10051004 PMID: 32466085
- Della Rocca, J.; Liu, D.; Lin, W. Are high drug loading nanoparticles the next step forward for chemotherapy? Nanomedicine, 2012, 7(3), 303-305. doi: 10.2217/nnm.11.191 PMID: 22385191
- Xu, L.; Liang, Y.; Chen, X.; Chen, B.; Han, Y.; Zhang, L. Hyperlipidemia affects the absorption, distribution and excretion of seven catechins in rats following oral administration of tea polyphenols. RSC Advances, 2015, 5(119), 97988-97994. doi: 10.1039/C5RA19699J
- Agrahari, V.; Agrahari, V. Facilitating the translation of nanomedicines to a clinical product: Challenges and opportunities. Drug Discov. Today, 2018, 23(5), 974-991. doi: 10.1016/j.drudis.2018.01.047 PMID: 29406263
- Raie, D.S.; Mhatre, E.; Thiele, M.; Labena, A.; El-Ghannam, G.; Farahat, L.A.; Youssef, T.; Fritzsche, W.; Kovács, Á.T. Application of quercetin and its bio-inspired nanoparticles as anti-adhesive agents against Bacillus subtilis attachment to surface. Mater. Sci. Eng. C, 2017, 70(Pt 1), 753-762. doi: 10.1016/j.msec.2016.09.038 PMID: 27770951
- Keihanian, F.; Saeidinia, A.; Bagheri, R.K.; Johnston, T.P.; Sahebkar, A. Curcumin, hemostasis, thrombosis, and coagulation. J. Cell Physiol., 2018, 233(6), 4497-4511. Epub 2017 Dec 26. doi: 10.1002/jcp.26249. PMID: 29052850
- Hasanzadeh, S.; Read, M.I.; Bland, A.R.; Majeed, M.; Jamialahmadi, T.; Sahebkar, A. Curcumin: An inflammasome silencer. Pharmacol. Res., 2020, 159, 104921. doi: 10.1016/j.phrs.2020.104921 PMID: 32464325
- Heidari, H.; Bagherniya, M.; Majeed, M.; Sathyapalan, T.; Jamialahmadi, T.; Sahebkar, A. Curcumin‐piperine co‐supplementation and human health: A comprehensive review of preclinical and clinical studies. Phytother. Res., 2023, 37(4), 1462-1487. doi: 10.1002/ptr.7737 PMID: 36720711
- Momtazi, A.A.; Sahebkar, A. Difluorinated curcumin: A promising curcumin analogue with improved anti-tumor activity and pharmacokinetic profile. Curr Pharm Des., 2016, 22(28), 4386-97. doi: 10.2174/1381612822666160527113501 PMID: 27229723
- Sahebkar, A.; Takasaki, M.; Konoshima, T.; Tokuda, H. Cancer chemopreventive activity of the prenylated coumarin, umbelliprenin, in vivo. Eur. J. Cancer Prev., 2009, 18(5), 412-415. doi: 10.1097/CEJ.0b013e32832c389e PMID: 19531956
- Sahebkar, A. Molecular mechanisms for curcumin benefits against ischemic injury. Fertil. Steril., 2010, 94(5), e75-e77. doi: 10.1016/j.fertnstert.2010.07.1071
- Momtazi-Borojeni, A.A.; Haftcheshmeh, S.M.; Esmaeili, S.A.; Johnston, T.P.; Abdollahi, E.; Sahebkar, A. Curcumin: A natural modulator of immune cells in systemic lupus erythematosus. Autoimmun. Rev., 2018, 17(2), 125-135. doi: 10.1016/j.autrev.2017.11.016 PMID: 29180127
- Mohajeri, M.; Sahebkar, A. Protective effects of curcumin against doxorubicin-induced toxicity and resistance: A review. Crit. Rev. Oncol. Hematol., 2018, 122, 30-51. Epub 2017 Dec 14. doi: 10.1016/j.critrevonc.2017.12.005 PMID: 29458788
- Soltani, S.; Boozari, M.; Cicero, A.F.G.; Jamialahmadi, T.; Sahebkar, A. Effects of phytochemicals on macrophage cholesterol efflux capacity: Impact on atherosclerosis. Phytother. Res., 2021, 35(6), 2854-2878. doi: 10.1002/ptr.6991 PMID: 33464676
- Jaiswal, S.; Mishra, P. Antimicrobial and antibiofilm activity of curcumin-silver nanoparticles with improved stability and selective toxicity to bacteria over mammalian cells. Med. Microbiol. Immunol., 2018, 207(1), 39-53. doi: 10.1007/s00430-017-0525-y PMID: 29081001
- Shome, S.; Talukdar, A.D.; Tewari, S.; Choudhury, S.; Bhattacharya, M.K.; Upadhyaya, H. Conjugation of micro/nanocurcumin particles to ZNO nanoparticles changes the surface charge and hydrodynamic size thereby enhancing its antibacterial activity against Escherichia Coli and Staphylococcus aureus. Biotechnol. Appl. Biochem., 2021, 68(3), 603-615. doi: 10.1002/bab.1968 PMID: 32533898
- Fogacci, F.; Tocci, G.; Presta, V.; Fratter, A.; Borghi, C.; Cicero, A.F.G. Effect of resveratrol on blood pressure: A systematic review and meta-analysis of randomized, controlled, clinical trials. Crit. Rev. Food Sci. Nutr., 2019, 59(10), 1605-1618. doi: 10.1080/10408398.2017.1422480 PMID: 29359958
- Haghighatdoost, F.; Hariri, M. Can resveratrol supplement change inflammatory mediators? A systematic review and meta-analysis on randomized clinical trials. Eur. J. Clin. Nutr., 2019, 73(3), 345-355. doi: 10.1038/s41430-018-0253-4 PMID: 30013206
- Singh, A.P.; Singh, R.; Verma, S.S.; Rai, V.; Kaschula, C.H.; Maiti, P.; Gupta, S.C. Health benefits of resveratrol: Evidence from clinical studies. Med. Res. Rev., 2019, 39(5), 1851-1891. doi: 10.1002/med.21565 PMID: 30741437
- Sahebkar, A. Effects of resveratrol supplementation on plasma lipids: A systematic review and meta-analysis of randomized controlled trials. Nutr. Rev., 2013, 71(12), 822-835. doi: 10.1111/nure.12081 PMID: 24111838
- Sahebkar, A.; Serban, C.; Ursoniu, S.; Wong, N.D.; Muntner, P.; Graham, I.M.; Mikhailidis, D.P.; Rizzo, M.; Rysz, J.; Sperling, L.S.; Lip, G.Y.H.; Banach, M. Lack of efficacy of resveratrol on C-reactive protein and selected cardiovascular risk factors Results from a systematic review and meta-analysis of randomized controlled trials. Int. J. Cardiol., 2015, 189(1), 47-55. doi: 10.1016/j.ijcard.2015.04.008 PMID: 25885871
- Park, S.; Cha, S.H.; Cho, I.; Park, S.; Park, Y.; Cho, S.; Park, Y. Antibacterial nanocarriers of resveratrol with gold and silver nanoparticles. Mater. Sci. Eng. C, 2016, 58, 1160-1169. doi: 10.1016/j.msec.2015.09.068 PMID: 26478416
- Shukla, S.P.; Roy, M.; Mukherjee, P.; Das, L.; Neogy, S.; Srivastava, D.; Adhikari, S. Size selective green synthesis of silver and gold nanoparticles: Enhanced antibacterial efficacy of resveratrol capped silver sol. J. Nanosci. Nanotechnol., 2016, 16(3), 2453-2463. doi: 10.1166/jnn.2016.10772 PMID: 27455655
- Riaz, S.; Fatima Rana, N.; Hussain, I.; Tanweer, T.; Nawaz, A.; Menaa, F.; Janjua, H.A.; Alam, T.; Batool, A.; Naeem, A.; Hameed, M.; Ali, S.M. Effect of flavonoid-coated gold nanoparticles on bacterial colonization in mice organs. Nanomaterials, 2020, 10(9), 1769. doi: 10.3390/nano10091769 PMID: 32906828
Arquivos suplementares
