LncRNA MEG3: Targeting the Molecular Mechanisms and Pathogenic causes of Metabolic Diseases
- Authors: Luo Y.1, Wang H.1, Wang L.1, Wu W.1, Zhao J.1, Li X.1, Xiong R.1, Ding X.2, Yuan D.1, Yuan C.1
-
Affiliations:
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University
- Department of Clinical Laboratory, Affiliated Renhe Hospital of China Three Gorges University
- Issue: Vol 31, No 37 (2024)
- Pages: 6140-6153
- Section: Anti-Infectives and Infectious Diseases
- URL: https://rjeid.com/0929-8673/article/view/645094
- DOI: https://doi.org/10.2174/0109298673268051231009075027
- ID: 645094
Cite item
Full Text
Abstract
Background:Non-coding RNA is a type of RNA that does not encode proteins, distributed among rRNA, tRNA, snRNA, snoRNA, microRNA and other RNAs with identified functions, where the Long non-coding RNA (lncRNA) displays a nucleotide length over 200. LncRNAs enable multiple biological processes in the human body, including cancer cell invasion and metastasis, apoptosis, cell autophagy, inflammation, etc. Recently, a growing body of studies has demonstrated the association of lncRNAs with obesity and obesity-induced insulin resistance and NAFLD, where MEG3 is related to glucose metabolism, such as insulin resistance. In addition, MEG3 has been demonstrated in the pathological processes of various cancers, such as mediating inflammation, cardiovascular disease, liver disease and other metabolic diseases.
Objective:To explore the regulatory role of lncRNA MEG3 in metabolic diseases. It provides new ideas for clinical treatment or experimental research.
Methods:In this paper, in order to obtain enough data, we integrate and analyze the data in the PubMed database.
Results:LncRNA MEG3 can regulate many metabolic diseases, such as insulin resistance, NAFLD, inflammation and so on.
Conclusion:LncRNA MEG3 has a regulatory role in a variety of metabolic diseases, which are currently difficult to be completely cured, and MEG3 is a potential target for the treatment of these diseases. Here, we review the role of lncRNA MEG3 in mechanisms of action and biological functions in human metabolic diseases.
About the authors
Yiyang Luo
Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University
Email: info@benthamscience.net
Hailin Wang
Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University
Email: info@benthamscience.net
Lijun Wang
Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University
Email: info@benthamscience.net
Wei Wu
Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University
Email: info@benthamscience.net
Jiale Zhao
Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University
Email: info@benthamscience.net
Xueqing Li
Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University
Email: info@benthamscience.net
Ruisi Xiong
Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University
Email: info@benthamscience.net
Xueliang Ding
Department of Clinical Laboratory, Affiliated Renhe Hospital of China Three Gorges University
Email: info@benthamscience.net
Ding Yuan
Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University
Author for correspondence.
Email: info@benthamscience.net
Chengfu Yuan
Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University
Author for correspondence.
Email: info@benthamscience.net
References
- Norton, L.; Shannon, C.; Gastaldelli, A.; DeFronzo, R.A. Insulin: The master regulator of glucose metabolism. Metabolism, 2022, 129, 155142. doi: 10.1016/j.metabol.2022.155142 PMID: 35066003
- Hou, J.C.; Min, L.; Pessin, J.E. Insulin granule biogenesis, trafficking and exocytosis. Vitam. Horm., 2009, 80, 473-506. doi: 10.1016/S0083-6729(08)00616-X PMID: 19251047
- Petersen, M.C.; Shulman, G.I. Mechanisms of insulin action and insulin resistance. Physiol. Rev., 2018, 98(4), 2133-2223. doi: 10.1152/physrev.00063.2017 PMID: 30067154
- Yang, W.; Lyu, Y.; Xiang, R.; Yang, J. Long noncoding RNAs in the pathogenesis of insulin resistance. Int. J. Mol. Sci., 2022, 23(24), 16054. doi: 10.3390/ijms232416054 PMID: 36555704
- Bozgeyik, E.; Bozgeyik, I. Non-coding RNA variations in oral cancers: A comprehensive review. Gene, 2023, 851, 147012. doi: 10.1016/j.gene.2022.147012 PMID: 36349577
- Chang, W.; Wang, J. Exosomes and their noncoding rna cargo are emerging as new modulators for diabetes mellitus. Cells, 2019, 8(8), 853. doi: 10.3390/cells8080853 PMID: 31398847
- Zhang, Y.Y.; Feng, H.M. MEG3 suppresses human pancreatic neuroendocrine tumor cells growth and metastasis by down-regulation of Mir-183. Cell. Physiol. Biochem., 2017, 44(1), 345-356. doi: 10.1159/000484906 PMID: 29132136
- Pan, T.; Ding, H.; Jin, L.; Zhang, S.; Wu, D.; Pan, W.; Dong, M.; Ma, X.; Chen, Z. DNMT1-mediated demethylation of lncRNA MEG3 promoter suppressed breast cancer progression by repressing Notch1 signaling pathway. Cell Cycle, 2022, 21(21), 2323-2337. doi: 10.1080/15384101.2022.2094662 PMID: 35822955
- Yan, H.; Luo, B.; Wu, X.; Guan, F.; Yu, X.; Zhao, L.; Ke, X.; Wu, J.; Yuan, J. Cisplatin induces pyroptosis via activation of MEG3/NLRP3/caspase-1/GSDMD pathway in triple-negative breast cancer. Int. J. Biol. Sci., 2021, 17(10), 2606-2621. doi: 10.7150/ijbs.60292 PMID: 34326697
- Du, Y.; Geng, G.; Zhao, C.; Gao, T.; Wei, B. LncRNA MEG3 promotes cisplatin sensitivity of cervical cancer cells by regulating the miR-21/PTEN axis. BMC Cancer, 2022, 22(1), 1145. doi: 10.1186/s12885-022-10188-0 PMID: 36344947
- Zhou, Y.; Zhang, X.; Klibanski, A. MEG3 noncoding RNA: A tumor suppressor. J. Mol. Endocrinol., 2012, 48(3), R45-R53. doi: 10.1530/JME-12-0008 PMID: 22393162
- Miyoshi, N.; Wagatsuma, H.; Wakana, S.; Shiroishi, T.; Nomura, M.; Aisaka, K.; Kohda, T.; Surani, M.A.; Kaneko-Ishino, T.; Ishino, F. Identification of an imprinted gene, Meg3 / Gtl2 and its human homologue MEG3, first mapped on mouse distal chromosome 12 and human chromosome 14q. Genes Cells, 2000, 5(3), 211-220. doi: 10.1046/j.1365-2443.2000.00320.x PMID: 10759892
- Zhang, X.; Zhou, Y.; Mehta, K.R.; Danila, D.C.; Scolavino, S.; Johnson, S.R.; Klibanski, A. A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J. Clin. Endocrinol. Metab., 2003, 88(11), 5119-5126. doi: 10.1210/jc.2003-030222 PMID: 14602737
- Al-Rugeebah, A.; Alanazi, M.; Parine, N.R. MEG3: An oncogenic long non-coding RNA in different cancers. Pathol. Oncol. Res., 2019, 25(3), 859-874. doi: 10.1007/s12253-019-00614-3 PMID: 30793226
- Oh, K.J.; Han, H.S.; Kim, M.J.; Koo, S.H. CREB and FoxO1: Two transcription factors for the regulation of hepatic gluconeogenesis. BMB Rep., 2013, 46(12), 567-574. doi: 10.5483/BMBRep.2013.46.12.248 PMID: 24238363
- Zhu, X.; Wu, Y.B.; Zhou, J.; Kang, D.M. Upregulation of lncRNA MEG3 promotes hepatic insulin resistance via increasing FoxO1 expression. Biochem. Biophys. Res. Commun., 2016, 469(2), 319-325. doi: 10.1016/j.bbrc.2015.11.048 PMID: 26603935
- Ghafouri-Fard, S.; Abak, A.; Tondro Anamag, F.; Shoorei, H.; Majidpoor, J.; Taheri, M. The emerging role of non-coding RNAs in the regulation of PI3K/AKT pathway in the carcinogenesis process. Biomed. Pharmacother., 2021, 137, 111279. doi: 10.1016/j.biopha.2021.111279 PMID: 33493969
- Li, H.; Meng, Q.; Xiao, F.; Chen, S.; Du, Y.; Yu, J.; Wang, C.; Guo, F. ATF4 deficiency protects mice from high-carbohydrate-diet-induced liver steatosis. Biochem. J., 2011, 438(2), 283-289. doi: 10.1042/BJ20110263 PMID: 21644928
- Zhu, X.; Li, H.; Wu, Y.; Zhou, J.; Yang, G.; Wang, W. lncRNA MEG3 promotes hepatic insulin resistance by serving as a competing endogenous RNA of miR-214 to regulate ATF4 expression. Int. J. Mol. Med., 2019, 43(1), 345-357. PMID: 30431065
- Zhu, X.; Li, H.; Wu, Y.; Zhou, J.; Yang, G.; Wang, W.; Kang, D.; Ye, S. CREB-upregulated lncRNA MEG3 promotes hepatic gluconeogenesis by regulating miR-302a-3p-CRTC2 axis. J. Cell. Biochem., 2019, 120(3), 4192-4202. doi: 10.1002/jcb.27706 PMID: 30260029
- Rui, L.; Yuan, M.; Frantz, D.; Shoelson, S.; White, M.F. SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J. Biol. Chem., 2002, 277(44), 42394-42398. doi: 10.1074/jbc.C200444200 PMID: 12228220
- Chen, D.L.; Shen, D.Y.; Han, C.K.; Tian, Y. LncRNA MEG3 aggravates palmitate-induced insulin resistance by regulating miR-185-5p/Egr2 axis in hepatic cells. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(12), 5456-5467. PMID: 31298399
- Shihabudeen Haider Ali, M.S.; Cheng, X.; Moran, M.; Haemmig, S.; Naldrett, M.J.; Alvarez, S.; Feinberg, M.W.; Sun, X. LncRNA Meg3 protects endothelial function by regulating the DNA damage response. Nucleic Acids Res., 2019, 47(3), 1505-1522. doi: 10.1093/nar/gky1190 PMID: 30476192
- Cheng, X.; Shihabudeen Haider Ali, M.S.; Moran, M.; Viana, M.P.; Schlichte, S.L.; Zimmerman, M.C.; Khalimonchuk, O.; Feinberg, M.W.; Sun, X. Long non-coding RNA Meg3 deficiency impairs glucose homeostasis and insulin signaling by inducing cellular senescence of hepatic endothelium in obesity. Redox Biol., 2021, 40, 101863. doi: 10.1016/j.redox.2021.101863 PMID: 33508742
- Younossi, Z.; Anstee, Q.M.; Marietti, M.; Hardy, T.; Henry, L.; Eslam, M.; George, J.; Bugianesi, E. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol., 2018, 15(1), 11-20. doi: 10.1038/nrgastro.2017.109 PMID: 28930295
- Byrne, C.D.; Targher, G. NAFLD: A multisystem disease. J. Hepatol., 2015, 62(1)(Suppl.), S47-S64. doi: 10.1016/j.jhep.2014.12.012 PMID: 25920090
- Huang, P.; Huang, F.; Liu, H.; Zhang, T.; Yang, M.; Sun, C. LncRNA MEG3 functions as a ceRNA in regulating hepatic lipogenesis by competitively binding to miR-21 with LRP6. Metabolism, 2019, 94, 1-8. doi: 10.1016/j.metabol.2019.01.018 PMID: 30711569
- Zou, D.; Liu, L.; Zeng, Y.; Wang, H.; Dai, D.; Xu, M. LncRNA MEG3 up-regulates SIRT6 by ubiquitinating EZH2 and alleviates nonalcoholic fatty liver disease. Cell Death Discov., 2022, 8(1), 103. doi: 10.1038/s41420-022-00889-7 PMID: 35256601
- Zhong, X.; Huang, M.; Kim, H.G.; Zhang, Y.; Chowdhury, K.; Cai, W.; Saxena, R.; Schwabe, R.F.; Liangpunsakul, S.; Dong, X.C. SIRT6 protects against liver fibrosis by deacetylation and suppression of SMAD3 in hepatic stellate cells. Cell. Mol. Gastroenterol. Hepatol., 2020, 10(2), 341-364. doi: 10.1016/j.jcmgh.2020.04.005 PMID: 32305562
- Maity, S.; Muhamed, J.; Sarikhani, M.; Kumar, S.; Ahamed, F.; Spurthi, K.M.; Ravi, V.; Jain, A.; Khan, D.; Arathi, B.P.; Desingu, P.A.; Sundaresan, N.R. Sirtuin 6 deficiency transcriptionally up-regulates TGF-β signaling and induces fibrosis in mice. J. Biol. Chem., 2020, 295(2), 415-434. doi: 10.1074/jbc.RA118.007212 PMID: 31744885
- Hao, L.; Bang, I.H.; Wang, J.; Mao, Y.; Yang, J.D.; Na, S.Y.; Seo, J.K.; Choi, H.S.; Bae, E.J.; Park, B.H. ERRγ suppression by Sirt6 alleviates cholestatic liver injury and fibrosis. JCI Insight, 2020, 5(17), e137566. doi: 10.1172/jci.insight.137566 PMID: 32701506
- Kim, H.G.; Huang, M.; Xin, Y.; Zhang, Y.; Zhang, X.; Wang, G.; Liu, S.; Wan, J.; Ahmadi, A.R.; Sun, Z.; Liangpunsakul, S.; Xiong, X.; Dong, X.C. The epigenetic regulator SIRT6 protects the liver from alcohol-induced tissue injury by reducing oxidative stress in mice. J. Hepatol., 2019, 71(5), 960-969. doi: 10.1016/j.jhep.2019.06.019 PMID: 31295533
- Xin, Y.; Xu, L.; Zhang, X.; Yang, C.; Wang, Q.; Xiong, X. Sirtuin 6 ameliorates alcohol-induced liver injury by reducing endoplasmic reticulum stress in mice. Biochem. Biophys. Res. Commun., 2021, 544, 44-51. doi: 10.1016/j.bbrc.2021.01.061 PMID: 33516881
- Tarantino, G.; Finelli, C.; Scopacasa, F.; Pasanisi, F.; Contaldo, F.; Capone, D.; Savastano, S. Circulating levels of sirtuin 4, a potential marker of oxidative metabolism, related to coronary artery disease in obese patients suffering from NAFLD, with normal or slightly increased liver enzymes. Oxid. Med. Cell. Longev., 2014, 2014, 1-10. doi: 10.1155/2014/920676 PMID: 25045415
- Wu, Y.Y.; Wu, S.; Li, X.F.; Luo, S.; Wang, A.; Yin, S.Q.; Huang, C.; Li, J. LncRNA MEG3 reverses CCl4-induced liver fibrosis by targeting NLRC5. Eur. J. Pharmacol., 2021, 911, 174462. doi: 10.1016/j.ejphar.2021.174462 PMID: 34536366
- Zhang, W.; Conway, S.J.; Liu, Y.; Snider, P.; Chen, H.; Gao, H.; Liu, Y.; Isidan, K.; Lopez, K.J.; Campana, G.; Li, P.; Ekser, B.; Francis, H.; Shou, W.; Kubal, C. Heterogeneity of hepatic stellate cells in fibrogenesis of the liver: Insights from single-cell transcriptomic analysis in liver injury. Cells, 2021, 10(8), 2129. doi: 10.3390/cells10082129 PMID: 34440898
- Yu, F.; Geng, W.; Dong, P.; Huang, Z.; Zheng, J. LncRNA-MEG3 inhibits activation of hepatic stellate cells through SMO protein and miR-212. Cell Death Dis., 2018, 9(10), 1014. doi: 10.1038/s41419-018-1068-x PMID: 30282972
- Marchesini, G.; Brizi, M.; Bianchi, G.; Tomassetti, S.; Bugianesi, E.; Lenzi, M.; McCullough, A.J.; Natale, S.; Forlani, G.; Melchionda, N. Nonalcoholic fatty liver disease: A feature of the metabolic syndrome. Diabetes, 2001, 50(8), 1844-1850. doi: 10.2337/diabetes.50.8.1844 PMID: 11473047
- Ekstedt, M.; Franzén, L.E.; Mathiesen, U.L.; Thorelius, L.; Holmqvist, M.; Bodemar, G.; Kechagias, S. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology, 2006, 44(4), 865-873. doi: 10.1002/hep.21327 PMID: 17006923
- Tarantino, G.; Crocetto, F.; Di Vito, C.; Creta, M.; Martino, R.; Pandolfo, S.D.; Pesce, S.; Napolitano, L.; Capone, D.; Imbimbo, C. Association of NAFLD and insulin resistance with non metastatic bladder cancer patients: A cross-sectional retrospective study. J. Clin. Med., 2021, 10(2), 346. doi: 10.3390/jcm10020346 PMID: 33477579
- Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Alonso, A.; Beaton, A.Z.; Bittencourt, M.S.; Boehme, A.K.; Buxton, A.E.; Carson, A.P.; Commodore-Mensah, Y.; Elkind, M.S.V.; Evenson, K.R.; Eze-Nliam, C.; Ferguson, J.F.; Generoso, G.; Ho, J.E.; Kalani, R.; Khan, S.S.; Kissela, B.M.; Knutson, K.L.; Levine, D.A.; Lewis, T.T.; Liu, J.; Loop, M.S.; Ma, J.; Mussolino, M.E.; Navaneethan, S.D.; Perak, A.M.; Poudel, R.; Rezk-Hanna, M.; Roth, G.A.; Schroeder, E.B.; Shah, S.H.; Thacker, E.L.; VanWagner, L.B.; Virani, S.S.; Voecks, J.H.; Wang, N.Y.; Yaffe, K.; Martin, S.S. Heart disease and stroke statistics2022 update: A report from the american heart association. Circulation, 2022, 145(8), e153-e639. doi: 10.1161/CIR.0000000000001052 PMID: 35078371
- Zhang, J.; Liang, Y.; Huang, X.; Guo, X.; Liu, Y.; Zhong, J.; Yuan, J. STAT3-induced upregulation of lncRNA MEG3 regulates the growth of cardiac hypertrophy through miR-361-5p/HDAC9 axis. Sci. Rep., 2019, 9(1), 460. doi: 10.1038/s41598-018-36369-1 PMID: 30679521
- Cao, Y.; Wen, J.; Li, Y.; Chen, W.; Wu, Y.; Li, J.; Huang, G. Uric acid and sphingomyelin enhance autophagy in iPS cell-originated cardiomyocytes through lncRNA MEG3/miR-7-5p/EGFR axis. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 3774-3785. doi: 10.1080/21691401.2019.1667817 PMID: 31559872
- Zhang, Y.; Liu, X.; Bai, X.; Lin, Y.; Li, Z.; Fu, J.; Li, M.; Zhao, T.; Yang, H.; Xu, R.; Li, J.; Ju, J.; Cai, B.; Xu, C.; Yang, B. Melatonin prevents endothelial cell pyroptosis via regulation of long noncoding RNA MEG3/miR-223/NLRP3 axis. J. Pineal Res., 2018, 64(2), e12449. doi: 10.1111/jpi.12449 PMID: 29024030
- Liu, X.; Hou, L.; Huang, W.; Gao, Y.; Lv, X.; Tang, J. The mechanism of long non-coding RNA MEG3 for neurons apoptosis caused by hypoxia: Mediated by miR-181b-12/15-LOX signaling pathway. Front. Cell. Neurosci., 2016, 10, 201. doi: 10.3389/fncel.2016.00201 PMID: 27642276
- Kinyua, A.W.; Ko, C.M.; Doan, K.V.; Yang, D.J.; Huynh, M.K.Q.; Moh, S.H.; Choi, Y.H.; Kim, K.W. 4-hydroxy-3-methoxycinnamic acid regulates orexigenic peptides and hepatic glucose homeostasis through phosphorylation of FoxO1. Exp. Mol. Med., 2018, 50(2), e437. doi: 10.1038/emm.2017.253 PMID: 29391540
- Zhao, L.Y.; Li, X.; Gao, L.; Xu, Y. LncRNA MEG3 accelerates apoptosis of hypoxic myocardial cells via FoxO1 signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(3)(Suppl.), 334-340. PMID: 31389596
- Liu, D.; Liu, Y.; Zheng, X.; Liu, N. c-MYC-induced long noncoding RNA MEG3 aggravates kidney ischemiareperfusion injury through activating mitophagy by upregulation of RTKN to trigger the Wnt/β-catenin pathway. Cell Death Dis., 2021, 12(2), 191. doi: 10.1038/s41419-021-03466-5 PMID: 33602903
- Piccoli, M.T.; Gupta, S.K.; Viereck, J.; Foinquinos, A.; Samolovac, S.; Kramer, F.L.; Garg, A.; Remke, J.; Zimmer, K.; Batkai, S.; Thum, T. Inhibition of the cardiac fibroblastenriched lncRNA Meg3 prevents cardiac fibrosis and diastolic dysfunction. Circ. Res., 2017, 121(5), 575-583. doi: 10.1161/CIRCRESAHA.117.310624 PMID: 28630135
- Xing, Y.; Zheng, X.; Fu, Y.; Qi, J.; Li, M.; Ma, M.; Wang, S.; Li, S.; Zhu, D. Long noncoding RNA-maternally expressed gene 3 contributes to hypoxic pulmonary hypertension. Mol. Ther., 2022, 30(1), 501. doi: 10.1016/j.ymthe.2021.12.009 PMID: 34914904
- Xia, C.; Dong, X.; Li, H.; Cao, M.; Sun, D.; He, S.; Yang, F.; Yan, X.; Zhang, S.; Li, N.; Chen, W. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin. Med. J. (Engl.), 2022, 135(5), 584-590. doi: 10.1097/CM9.0000000000002108 PMID: 35143424
- Zhang, J.; Yao, T.; Wang, Y.; Yu, J.; Liu, Y.; Lin, Z. Long noncoding RNA MEG3 is downregulated in cervical cancer and affects cell proliferation and apoptosis by regulating miR-21. Cancer Biol. Ther., 2016, 17(1), 104-113. doi: 10.1080/15384047.2015.1108496 PMID: 26574780
- Zhang, W.; Shi, S.; Jiang, J.; Li, X.; Lu, H.; Ren, F. LncRNA MEG3 inhibits cell epithelial-mesenchymal transition by sponging miR-421 targeting E-cadherin in breast cancer. Biomed. Pharmacother., 2017, 91, 312-319. doi: 10.1016/j.biopha.2017.04.085 PMID: 28463794
- Zuo, S.; Wu, L.; Wang, Y.; Yuan, X. Long non-coding RNA MEG3 activated by vitamin D suppresses glycolysis in colorectal cancer via promoting c-Myc degradation. Front. Oncol., 2020, 10, 274. doi: 10.3389/fonc.2020.00274 PMID: 32219064
- Chen, P.Y.; Hsieh, P.L.; Peng, C.Y.; Liao, Y.W.; Yu, C.H.; Yu, C.C. LncRNA MEG3 inhibits self-renewal and invasion abilities of oral cancer stem cells by sponging miR-421. J. Formos. Med. Assoc., 2021, 120(4), 1137-1142. doi: 10.1016/j.jfma.2020.09.006 PMID: 33012637
- Huang, Z.F.; Tang, Y.L.; Shen, Z.L.; Yang, K.Y.; Gao, K. UXT, a novel DNMT3b-binding protein, promotes breast cancer progression via negatively modulating lncRNA MEG3/p53 axis. Mol. Ther. Oncolytics, 2022, 24, 497-506. doi: 10.1016/j.omto.2021.12.008 PMID: 35229028
- Dong, S.; Ma, M.; Li, M.; Guo, Y.; Zuo, X.; Gu, X.; Zhang, M.; Shi, Y. LncRNA MEG3 regulates breast cancer proliferation and apoptosis through miR-141-3p/RBMS3 axis. Genomics, 2021, 113(4), 1689-1704. doi: 10.1016/j.ygeno.2021.04.015 PMID: 33845141
- Gong, X.; Huang, M. Long non-coding RNA MEG3 promotes the proliferation of glioma cells through targeting Wnt/β-catenin signal pathway. Cancer Gene Ther., 2017, 24(9), 381-385. doi: 10.1038/cgt.2017.32 PMID: 29027534
- He, J.H.; Han, Z.P.; Liu, J.M.; Zhou, J.B.; Zou, M.X.; Lv, Y.B.; Li, Y.G.; Cao, M.R. Overexpression of long non-coding RNA MEG3 inhibits proliferation of hepatocellular carcinoma Huh7 cells via negative modulation of miRNA-664. J. Cell. Biochem., 2017, 118(11), 3713-3721. doi: 10.1002/jcb.26018 PMID: 28374914
- Gao, Y.; Chen, X.; Zhang, J. LncRNA MEG3 inhibits retinoblastoma invasion and metastasis by inducing β-catenin degradation. Am. J. Cancer Res., 2022, 12(7), 3111-3127. PMID: 35968358
- Dudea-Simon, M.; Mihu, D.; Pop, L.A.; Ciortea, R.; Malutan, A.M.; Diculescu, D.; Ciocan, C.A.; Cojocneanu, R.M.; Simon, V.; Bucuri, C.; Mocan-Hognogi, R.; Braicu, C.; Berindan-Neagoe, I. Alteration of gene and miRNA expression in cervical intraepithelial neoplasia and cervical cancer. Int. J. Mol. Sci., 2022, 23(11), 6054. doi: 10.3390/ijms23116054 PMID: 35682732
- Arulselvan, P.; Fard, M.T.; Tan, W.S.; Gothai, S.; Fakurazi, S.; Norhaizan, M.E.; Kumar, S.S. Role of Antioxidants and Natural Products in Inflammation. Oxid. Med. Cell. Longev., 2016, 2016, 1-15. doi: 10.1155/2016/5276130 PMID: 27803762
- Peng, J.W.; Gu, Y.Y.; Wei, J.; Sun, Y.; Zhu, C.L.; Zhang, L.; Song, Y.; Chen, L.; Chen, X.; Wang, Q.; Zhang, H.L. LncRNA MEG3-TRPV1 signaling regulates chronic inflammatory pain in rats. Mol. Pain, 2022, 18 doi: 10.1177/17448069221144246 PMID: 36424837
- Meng, J.; Ding, T.; Chen, Y.; Long, T.; Xu, Q.; Lian, W.; Liu, W. LncRNA-Meg3 promotes Nlrp3-mediated microglial inflammation by targeting miR-7a-5p. Int. Immunopharmacol., 2021, 90, 107141. doi: 10.1016/j.intimp.2020.107141 PMID: 33189612
- Tang, Z.L.; Zhang, K.; Lv, S.C.; Xu, G.W.; Zhang, J.F.; Jia, H.Y. LncRNA MEG3 suppresses PI3K/AKT/mTOR signalling pathway to enhance autophagy and inhibit inflammation in TNF-α-treated keratinocytes and psoriatic mice. Cytokine, 2021, 148, 155657. doi: 10.1016/j.cyto.2021.155657 PMID: 34425525
- Huang, Y.; Chen, D.; Yan, Z.; Zhan, J.; Xue, X.; Pan, X.; Yu, H. LncRNA MEG3 protects chondrocytes from IL-1β-induced inflammation via regulating miR-9-5p/KLF4 axis. Front. Physiol., 2021, 12, 617654. doi: 10.3389/fphys.2021.617654 PMID: 33776787
- Gao, H.; Zhang, X.; Tang, F.; Chen, L.; Tian, Z.; Xiao, D.; Li, X. Knockdown of lncRNA MEG3 protects against sepsis-induced acute lung injury in mice through miR-935p-dependent inhibition of NF-κB signaling pathway. Pathol. Res. Pract., 2022, 239, 154142. doi: 10.1016/j.prp.2022.154142 PMID: 36242967
- Liu, M.; Chen, L.; Wu, J.; Lin, Z.; Huang, S. Long noncoding RNA MEG3 expressed in human dental pulp regulates LPS-Induced inflammation and odontogenic differentiation in pulpitis. Exp. Cell Res., 2021, 400(2), 112495. doi: 10.1016/j.yexcr.2021.112495 PMID: 33524362
- Li, Y.; Zhang, S.; Zhang, C.; Wang, M. LncRNA MEG3 inhibits the inflammatory response of ankylosing spondylitis by targeting miR-146a. Mol. Cell. Biochem., 2020, 466(1-2), 17-24. doi: 10.1007/s11010-019-03681-x PMID: 31894531
- Liu, C.; Liang, T.; Zhang, Z.; Chen, J.; Xue, J.; Zhan, X.; Ren, L. MEG3 alleviates ankylosing spondylitis by suppressing osteogenic differentiation of mesenchymal stem cells through regulating microRNA-125a-5p-mediated TNFAIP3. Apoptosis, 2022. PMID: 36587050
- Tu, Y.; Song, E.; Wang, Z.; Ji, N.; Zhu, L.; Wang, K.; Sun, H.; Zhang, Y.; Zhu, Q.; Liu, X.; Zhu, M. Melatonin attenuates oxidative stress and inflammation of Müller cells in diabetic retinopathy via activating the Sirt1 pathway. Biomed. Pharmacother., 2021, 137, 111274. doi: 10.1016/j.biopha.2021.111274 PMID: 33517190
- Guo, J.; Zhang, N.; Liu, G.; Zhang, A.; Liu, X.; Zheng, J. Upregulated expression of long non-coding RNA MEG3 serves as a prognostic biomarker in severe pneumonia children and its regulatory mechanism. Bioengineered, 2021, 12(1), 7120-7131. doi: 10.1080/21655979.2021.1979351 PMID: 34558385
- Zhou, X.; He, J.; Chen, J.; Cui, Y.; Ou, Z.; Zu, X.; Liu, N. Silencing of MEG3 attenuated the role of lipopolysaccharides by modulating the miR-93-5p/PTEN pathway in Leydig cells. Reprod. Biol. Endocrinol., 2021, 19(1), 33. doi: 10.1186/s12958-021-00712-5 PMID: 33639974
- Liu, Y.; Yang, L.; Xu, Q.; Lu, X.Y.; Ma, T.T.; Huang, C.; Li, J. Long noncoding RNA MEG3 regulates rheumatoid arthritis by targeting NLRC5. J. Cell. Physiol., 2019, 234(8), 14270-14284. doi: 10.1002/jcp.28126 PMID: 30644097
- Yiu, W.H.; Lok, S.W.Y.; Xue, R.; Chen, J.; Lai, K.N.; Lan, H.Y.; Tang, S.C.W. The long noncoding RNA Meg3 mediates TLR4-induced inflammation in experimental obstructive nephropathy. Clin. Sci. (Lond.), 2023, 137(5), 317-331. doi: 10.1042/CS20220537 PMID: 36705251
- Liu, F.; Chen, Y.; Liu, R.; Chen, B.; Liu, C.; Xing, J. Long noncoding RNA (MEG3) in urinal exosomes functions as a biomarker for the diagnosis of Hunner-type interstitial cystitis (HIC). J. Cell. Biochem., 2020, 121(2), 1227-1237. doi: 10.1002/jcb.29356 PMID: 31595563
- Luo, Y.; Liu, C.Q.; He, H.B.; Wang, T.; He, Y.M.; Zhang, C.C.; Yuan, D.; Yuan, C.F. Effect of total saponins from Panax japonicus on non-alcoholic steatohepatitis by regulating autophagy. Zhongguo Zhongyao Zazhi, 2021, 46(9), 2260-2266. PMID: 34047129
- Sharif, R. Overview of idiopathic pulmonary fibrosis (IPF) and evidence-based guidelines. Am. J. Manag. Care, 2017, 23(11)(Suppl.), S176-S182. PMID: 28978212
- Oldham, J.M.; Ma, S.F.; Martinez, F.J.; Anstrom, K.J.; Raghu, G.; Schwartz, D.A.; Valenzi, E.; Witt, L.; Lee, C.; Vij, R.; Huang, Y.; Strek, M.E.; Noth, I. TOLLIP, MUC5B, and the response to N-acetylcysteine among individuals with idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med., 2015, 192(12), 1475-1482. doi: 10.1164/rccm.201505-1010OC PMID: 26331942
- Gao, Q.; Chang, X.; Yang, M.; Zheng, J.; Gong, X.; Liu, H.; Li, K.; Wang, X.; Zhan, H.; Li, S.; Feng, S.; Sun, X.; Sun, Y. LncRNA MEG3 restrained pulmonary fibrosis induced by NiO NPs via regulating hedgehog signaling pathway-mediated autophagy. Environ. Toxicol., 2022, 37(1), 79-91. doi: 10.1002/tox.23379 PMID: 34608745
- Zhan, H.; Chang, X.; Wang, X.; Yang, M.; Gao, Q.; Liu, H.; Li, C.; Li, S.; Sun, Y. LNCRNA MEG3 mediates nickel oxide nanoparticles-induced pulmonary fibrosis via suppressing TGF -β1 expression and epithelial-mesenchymal transition process. Environ. Toxicol., 2021, 36(6), 1099-1110. doi: 10.1002/tox.23109 PMID: 33547861
- Zhan, H.; Sun, X.; Wang, X.; Gao, Q.; Yang, M.; Liu, H.; Zheng, J.; Gong, X.; Feng, S.; Chang, X.; Sun, Y. LncRNA MEG3 involved in NiO NPs-induced pulmonary fibrosis via regulating TGF-β1-mediated PI3K/AKT pathway. Toxicol. Sci., 2021, 182(1), 120-131. doi: 10.1093/toxsci/kfab047 PMID: 33895847
- Li, X.; Li, G.; Jin, Y.; Yao, Q.; Li, R.; Wang, H. Long non-coding RNA maternally expressed 3 (MEG3) regulates isoflurane-induced cognitive dysfunction by targeting miR-7-5p. Toxicol. Mech. Methods, 2022, 32(6), 453-462. doi: 10.1080/15376516.2022.2042881 PMID: 35164634
- Royer, M.; Pai, B.; Menon, R.; Bludau, A.; Gryksa, K.; Perry, R.B.T.; Ulitsky, I.; Meister, G.; Neumann, I.D. Transcriptome and chromatin alterations in social fear indicate association of MEG3 with successful extinction of fear. Mol. Psychiatry, 2022, 27(10), 4064-4076. doi: 10.1038/s41380-022-01481-2 PMID: 35338311
- Samii, A.; Nutt, J.G.; Ransom, B.R. Parkinsons disease. Lancet, 2004, 363(9423), 1783-1793. doi: 10.1016/S0140-6736(04)16305-8 PMID: 15172778
- Huang, H.; Zheng, S.; Lu, M. Downregulation of lncRNA MEG3 is involved in Parkinsons disease. Metab. Brain Dis., 2021, 36(8), 2323-2328. doi: 10.1007/s11011-021-00835-z PMID: 34643842
- Liu, J.; Qi, X.; Wang, X.H.; Miao, H.S.; Xue, Z.C.; Zhang, L.L.; Zhao, S.H.; Wu, L.H.; Gao, G.Y.; Lou, M.Q.; Yi, C.Q. Downregulation of the LncRNA MEG3 promotes osteogenic differentiation of BMSCs and bone repairing by activating Wnt/β-catenin signaling pathway. J. Clin. Med., 2022, 11(2), 395. doi: 10.3390/jcm11020395 PMID: 35054086
- Zhu, J.; Fu, Q.; Shao, J.; Peng, J.; Qian, Q.; Zhou, Y.; Chen, Y. Over-expression of MEG3 promotes differentiation of bone marrow mesenchymal stem cells into chondrocytes by regulating miR-129-5p/RUNX1 axis. Cell Cycle, 2021, 20(1), 96-111. doi: 10.1080/15384101.2020.1863043 PMID: 33410373
- Wang, S.; Xiong, G.; Ning, R.; Pan, Z.; Xu, M.; Zha, Z.; Liu, N. LncRNA MEG3 promotes osteogenesis of hBMSCs by regulating miR-21-5p / SOD3 axis. Acta Biochim. Pol., 2022, 69(1), 71-77. doi: 10.18388/abp.2020_5661 PMID: 35231166
- Li, H.; Xu, X.; Wang, D.; Zhang, Y.; Chen, J.; Li, B.; Su, S.; Wei, L.; You, H.; Fang, Y.; Wang, Y.; Liu, Y. Hypermethylation-mediated downregulation of long non-coding RNA MEG3 inhibits osteogenic differentiation of bone marrow mesenchymal stem cells and promotes pediatric aplastic anemia. Int. Immunopharmacol., 2021, 93, 107292. doi: 10.1016/j.intimp.2020.107292 PMID: 33529912
- Gao, X.; Ge, J.; Zhou, W.; Xu, L.; Geng, D. IL-10 inhibits osteoclast differentiation and osteolysis through MEG3/IRF8 pathway. Cell. Signal., 2022, 95, 110353. doi: 10.1016/j.cellsig.2022.110353 PMID: 35525407
- Yu, Z.; Wen, Y.; Jiang, N.; Li, Z.; Guan, J.; Zhang, Y.; Deng, C.; Zhao, L.; Zheng, S.G.; Zhu, Y.; Su, W.; Zhuo, Y. TNF-α stimulation enhances the neuroprotective effects of gingival MSCs derived exosomes in retinal ischemia-reperfusion injury via the MEG3/miR-21a-5p axis. Biomaterials, 2022, 284, 121484. doi: 10.1016/j.biomaterials.2022.121484 PMID: 35378413
- He, Y.; Dan, Y.; Gao, X.; Huang, L.; Lv, H.; Chen, J. DNMT1-mediated lncRNA MEG3 methylation accelerates endothelial-mesenchymal transition in diabetic retinopathy through the PI3K/Akt/mTOR signaling pathway. Am. J. Physiol. Endocrinol. Metab., 2021, 320(3), E598-E608. doi: 10.1152/ajpendo.00089.2020 PMID: 33284093
- Yamamura, S.; Imai-Sumida, M.; Tanaka, Y.; Dahiya, R. Interaction and cross-talk between non-coding RNAs. Cell. Mol. Life Sci., 2018, 75(3), 467-484. doi: 10.1007/s00018-017-2626-6 PMID: 28840253
- Fang, C.Y.; Chen, S.H.; Huang, C.C.; Liao, Y.W.; Chao, S.C.; Yu, C.C. Fucoidan-mediated inhibition of fibrotic properties in oral submucous fibrosis via the MEG3/miR-181a/Egr1 axis. Pharmaceuticals (Basel), 2022, 15(7), 833. doi: 10.3390/ph15070833 PMID: 35890132
- Chen, Y.; Zhang, Z.; Zhu, D.; Zhao, W.; Li, F. Long non-coding RNA MEG3 serves as a ceRNA for microRNA-145 to induce apoptosis of AC16 cardiomyocytes under high glucose condition. Biosci. Rep., 2019, 39(6), BSR20190444. doi: 10.1042/BSR20190444 PMID: 31085717
- Sun, H.J.; Zhang, F.F.; Xiao, Q.; Xu, J.; Zhu, L.J. lncRNA MEG3, acting as a ceRNA, modulates RPE differentiation through the miR-7-5p/Pax6 axis. Biochem. Genet., 2021, 59(6), 1617-1630. doi: 10.1007/s10528-021-10072-9 PMID: 34018078
- Zhang, S.; Ji, W.W.; Wei, W.; Zhan, L.X.; Huang, X. Long noncoding RNA Meg3 sponges miR-708 to inhibit intestinal tumorigenesis via SOCS3-repressed cancer stem cells growth. Cell Death Dis., 2021, 13(1), 25. doi: 10.1038/s41419-021-04470-5 PMID: 34934045
Supplementary files
