LncRNA MEG3: Targeting the Molecular Mechanisms and Pathogenic causes of Metabolic Diseases


Cite item

Full Text

Abstract

Background:Non-coding RNA is a type of RNA that does not encode proteins, distributed among rRNA, tRNA, snRNA, snoRNA, microRNA and other RNAs with identified functions, where the Long non-coding RNA (lncRNA) displays a nucleotide length over 200. LncRNAs enable multiple biological processes in the human body, including cancer cell invasion and metastasis, apoptosis, cell autophagy, inflammation, etc. Recently, a growing body of studies has demonstrated the association of lncRNAs with obesity and obesity-induced insulin resistance and NAFLD, where MEG3 is related to glucose metabolism, such as insulin resistance. In addition, MEG3 has been demonstrated in the pathological processes of various cancers, such as mediating inflammation, cardiovascular disease, liver disease and other metabolic diseases.

Objective:To explore the regulatory role of lncRNA MEG3 in metabolic diseases. It provides new ideas for clinical treatment or experimental research.

Methods:In this paper, in order to obtain enough data, we integrate and analyze the data in the PubMed database.

Results:LncRNA MEG3 can regulate many metabolic diseases, such as insulin resistance, NAFLD, inflammation and so on.

Conclusion:LncRNA MEG3 has a regulatory role in a variety of metabolic diseases, which are currently difficult to be completely cured, and MEG3 is a potential target for the treatment of these diseases. Here, we review the role of lncRNA MEG3 in mechanisms of action and biological functions in human metabolic diseases.

About the authors

Yiyang Luo

Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University

Email: info@benthamscience.net

Hailin Wang

Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University

Email: info@benthamscience.net

Lijun Wang

Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University

Email: info@benthamscience.net

Wei Wu

Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University

Email: info@benthamscience.net

Jiale Zhao

Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University

Email: info@benthamscience.net

Xueqing Li

Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University

Email: info@benthamscience.net

Ruisi Xiong

Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University

Email: info@benthamscience.net

Xueliang Ding

Department of Clinical Laboratory, Affiliated Renhe Hospital of China Three Gorges University

Email: info@benthamscience.net

Ding Yuan

Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University

Author for correspondence.
Email: info@benthamscience.net

Chengfu Yuan

Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University

Author for correspondence.
Email: info@benthamscience.net

References

  1. Norton, L.; Shannon, C.; Gastaldelli, A.; DeFronzo, R.A. Insulin: The master regulator of glucose metabolism. Metabolism, 2022, 129, 155142. doi: 10.1016/j.metabol.2022.155142 PMID: 35066003
  2. Hou, J.C.; Min, L.; Pessin, J.E. Insulin granule biogenesis, trafficking and exocytosis. Vitam. Horm., 2009, 80, 473-506. doi: 10.1016/S0083-6729(08)00616-X PMID: 19251047
  3. Petersen, M.C.; Shulman, G.I. Mechanisms of insulin action and insulin resistance. Physiol. Rev., 2018, 98(4), 2133-2223. doi: 10.1152/physrev.00063.2017 PMID: 30067154
  4. Yang, W.; Lyu, Y.; Xiang, R.; Yang, J. Long noncoding RNAs in the pathogenesis of insulin resistance. Int. J. Mol. Sci., 2022, 23(24), 16054. doi: 10.3390/ijms232416054 PMID: 36555704
  5. Bozgeyik, E.; Bozgeyik, I. Non-coding RNA variations in oral cancers: A comprehensive review. Gene, 2023, 851, 147012. doi: 10.1016/j.gene.2022.147012 PMID: 36349577
  6. Chang, W.; Wang, J. Exosomes and their noncoding rna cargo are emerging as new modulators for diabetes mellitus. Cells, 2019, 8(8), 853. doi: 10.3390/cells8080853 PMID: 31398847
  7. Zhang, Y.Y.; Feng, H.M. MEG3 suppresses human pancreatic neuroendocrine tumor cells growth and metastasis by down-regulation of Mir-183. Cell. Physiol. Biochem., 2017, 44(1), 345-356. doi: 10.1159/000484906 PMID: 29132136
  8. Pan, T.; Ding, H.; Jin, L.; Zhang, S.; Wu, D.; Pan, W.; Dong, M.; Ma, X.; Chen, Z. DNMT1-mediated demethylation of lncRNA MEG3 promoter suppressed breast cancer progression by repressing Notch1 signaling pathway. Cell Cycle, 2022, 21(21), 2323-2337. doi: 10.1080/15384101.2022.2094662 PMID: 35822955
  9. Yan, H.; Luo, B.; Wu, X.; Guan, F.; Yu, X.; Zhao, L.; Ke, X.; Wu, J.; Yuan, J. Cisplatin induces pyroptosis via activation of MEG3/NLRP3/caspase-1/GSDMD pathway in triple-negative breast cancer. Int. J. Biol. Sci., 2021, 17(10), 2606-2621. doi: 10.7150/ijbs.60292 PMID: 34326697
  10. Du, Y.; Geng, G.; Zhao, C.; Gao, T.; Wei, B. LncRNA MEG3 promotes cisplatin sensitivity of cervical cancer cells by regulating the miR-21/PTEN axis. BMC Cancer, 2022, 22(1), 1145. doi: 10.1186/s12885-022-10188-0 PMID: 36344947
  11. Zhou, Y.; Zhang, X.; Klibanski, A. MEG3 noncoding RNA: A tumor suppressor. J. Mol. Endocrinol., 2012, 48(3), R45-R53. doi: 10.1530/JME-12-0008 PMID: 22393162
  12. Miyoshi, N.; Wagatsuma, H.; Wakana, S.; Shiroishi, T.; Nomura, M.; Aisaka, K.; Kohda, T.; Surani, M.A.; Kaneko-Ishino, T.; Ishino, F. Identification of an imprinted gene, Meg3 / Gtl2 and its human homologue MEG3, first mapped on mouse distal chromosome 12 and human chromosome 14q. Genes Cells, 2000, 5(3), 211-220. doi: 10.1046/j.1365-2443.2000.00320.x PMID: 10759892
  13. Zhang, X.; Zhou, Y.; Mehta, K.R.; Danila, D.C.; Scolavino, S.; Johnson, S.R.; Klibanski, A. A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J. Clin. Endocrinol. Metab., 2003, 88(11), 5119-5126. doi: 10.1210/jc.2003-030222 PMID: 14602737
  14. Al-Rugeebah, A.; Alanazi, M.; Parine, N.R. MEG3: An oncogenic long non-coding RNA in different cancers. Pathol. Oncol. Res., 2019, 25(3), 859-874. doi: 10.1007/s12253-019-00614-3 PMID: 30793226
  15. Oh, K.J.; Han, H.S.; Kim, M.J.; Koo, S.H. CREB and FoxO1: Two transcription factors for the regulation of hepatic gluconeogenesis. BMB Rep., 2013, 46(12), 567-574. doi: 10.5483/BMBRep.2013.46.12.248 PMID: 24238363
  16. Zhu, X.; Wu, Y.B.; Zhou, J.; Kang, D.M. Upregulation of lncRNA MEG3 promotes hepatic insulin resistance via increasing FoxO1 expression. Biochem. Biophys. Res. Commun., 2016, 469(2), 319-325. doi: 10.1016/j.bbrc.2015.11.048 PMID: 26603935
  17. Ghafouri-Fard, S.; Abak, A.; Tondro Anamag, F.; Shoorei, H.; Majidpoor, J.; Taheri, M. The emerging role of non-coding RNAs in the regulation of PI3K/AKT pathway in the carcinogenesis process. Biomed. Pharmacother., 2021, 137, 111279. doi: 10.1016/j.biopha.2021.111279 PMID: 33493969
  18. Li, H.; Meng, Q.; Xiao, F.; Chen, S.; Du, Y.; Yu, J.; Wang, C.; Guo, F. ATF4 deficiency protects mice from high-carbohydrate-diet-induced liver steatosis. Biochem. J., 2011, 438(2), 283-289. doi: 10.1042/BJ20110263 PMID: 21644928
  19. Zhu, X.; Li, H.; Wu, Y.; Zhou, J.; Yang, G.; Wang, W. lncRNA MEG3 promotes hepatic insulin resistance by serving as a competing endogenous RNA of miR-214 to regulate ATF4 expression. Int. J. Mol. Med., 2019, 43(1), 345-357. PMID: 30431065
  20. Zhu, X.; Li, H.; Wu, Y.; Zhou, J.; Yang, G.; Wang, W.; Kang, D.; Ye, S. CREB-upregulated lncRNA MEG3 promotes hepatic gluconeogenesis by regulating miR-302a-3p-CRTC2 axis. J. Cell. Biochem., 2019, 120(3), 4192-4202. doi: 10.1002/jcb.27706 PMID: 30260029
  21. Rui, L.; Yuan, M.; Frantz, D.; Shoelson, S.; White, M.F. SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J. Biol. Chem., 2002, 277(44), 42394-42398. doi: 10.1074/jbc.C200444200 PMID: 12228220
  22. Chen, D.L.; Shen, D.Y.; Han, C.K.; Tian, Y. LncRNA MEG3 aggravates palmitate-induced insulin resistance by regulating miR-185-5p/Egr2 axis in hepatic cells. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(12), 5456-5467. PMID: 31298399
  23. Shihabudeen Haider Ali, M.S.; Cheng, X.; Moran, M.; Haemmig, S.; Naldrett, M.J.; Alvarez, S.; Feinberg, M.W.; Sun, X. LncRNA Meg3 protects endothelial function by regulating the DNA damage response. Nucleic Acids Res., 2019, 47(3), 1505-1522. doi: 10.1093/nar/gky1190 PMID: 30476192
  24. Cheng, X.; Shihabudeen Haider Ali, M.S.; Moran, M.; Viana, M.P.; Schlichte, S.L.; Zimmerman, M.C.; Khalimonchuk, O.; Feinberg, M.W.; Sun, X. Long non-coding RNA Meg3 deficiency impairs glucose homeostasis and insulin signaling by inducing cellular senescence of hepatic endothelium in obesity. Redox Biol., 2021, 40, 101863. doi: 10.1016/j.redox.2021.101863 PMID: 33508742
  25. Younossi, Z.; Anstee, Q.M.; Marietti, M.; Hardy, T.; Henry, L.; Eslam, M.; George, J.; Bugianesi, E. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol., 2018, 15(1), 11-20. doi: 10.1038/nrgastro.2017.109 PMID: 28930295
  26. Byrne, C.D.; Targher, G. NAFLD: A multisystem disease. J. Hepatol., 2015, 62(1)(Suppl.), S47-S64. doi: 10.1016/j.jhep.2014.12.012 PMID: 25920090
  27. Huang, P.; Huang, F.; Liu, H.; Zhang, T.; Yang, M.; Sun, C. LncRNA MEG3 functions as a ceRNA in regulating hepatic lipogenesis by competitively binding to miR-21 with LRP6. Metabolism, 2019, 94, 1-8. doi: 10.1016/j.metabol.2019.01.018 PMID: 30711569
  28. Zou, D.; Liu, L.; Zeng, Y.; Wang, H.; Dai, D.; Xu, M. LncRNA MEG3 up-regulates SIRT6 by ubiquitinating EZH2 and alleviates nonalcoholic fatty liver disease. Cell Death Discov., 2022, 8(1), 103. doi: 10.1038/s41420-022-00889-7 PMID: 35256601
  29. Zhong, X.; Huang, M.; Kim, H.G.; Zhang, Y.; Chowdhury, K.; Cai, W.; Saxena, R.; Schwabe, R.F.; Liangpunsakul, S.; Dong, X.C. SIRT6 protects against liver fibrosis by deacetylation and suppression of SMAD3 in hepatic stellate cells. Cell. Mol. Gastroenterol. Hepatol., 2020, 10(2), 341-364. doi: 10.1016/j.jcmgh.2020.04.005 PMID: 32305562
  30. Maity, S.; Muhamed, J.; Sarikhani, M.; Kumar, S.; Ahamed, F.; Spurthi, K.M.; Ravi, V.; Jain, A.; Khan, D.; Arathi, B.P.; Desingu, P.A.; Sundaresan, N.R. Sirtuin 6 deficiency transcriptionally up-regulates TGF-β signaling and induces fibrosis in mice. J. Biol. Chem., 2020, 295(2), 415-434. doi: 10.1074/jbc.RA118.007212 PMID: 31744885
  31. Hao, L.; Bang, I.H.; Wang, J.; Mao, Y.; Yang, J.D.; Na, S.Y.; Seo, J.K.; Choi, H.S.; Bae, E.J.; Park, B.H. ERRγ suppression by Sirt6 alleviates cholestatic liver injury and fibrosis. JCI Insight, 2020, 5(17), e137566. doi: 10.1172/jci.insight.137566 PMID: 32701506
  32. Kim, H.G.; Huang, M.; Xin, Y.; Zhang, Y.; Zhang, X.; Wang, G.; Liu, S.; Wan, J.; Ahmadi, A.R.; Sun, Z.; Liangpunsakul, S.; Xiong, X.; Dong, X.C. The epigenetic regulator SIRT6 protects the liver from alcohol-induced tissue injury by reducing oxidative stress in mice. J. Hepatol., 2019, 71(5), 960-969. doi: 10.1016/j.jhep.2019.06.019 PMID: 31295533
  33. Xin, Y.; Xu, L.; Zhang, X.; Yang, C.; Wang, Q.; Xiong, X. Sirtuin 6 ameliorates alcohol-induced liver injury by reducing endoplasmic reticulum stress in mice. Biochem. Biophys. Res. Commun., 2021, 544, 44-51. doi: 10.1016/j.bbrc.2021.01.061 PMID: 33516881
  34. Tarantino, G.; Finelli, C.; Scopacasa, F.; Pasanisi, F.; Contaldo, F.; Capone, D.; Savastano, S. Circulating levels of sirtuin 4, a potential marker of oxidative metabolism, related to coronary artery disease in obese patients suffering from NAFLD, with normal or slightly increased liver enzymes. Oxid. Med. Cell. Longev., 2014, 2014, 1-10. doi: 10.1155/2014/920676 PMID: 25045415
  35. Wu, Y.Y.; Wu, S.; Li, X.F.; Luo, S.; Wang, A.; Yin, S.Q.; Huang, C.; Li, J. LncRNA MEG3 reverses CCl4-induced liver fibrosis by targeting NLRC5. Eur. J. Pharmacol., 2021, 911, 174462. doi: 10.1016/j.ejphar.2021.174462 PMID: 34536366
  36. Zhang, W.; Conway, S.J.; Liu, Y.; Snider, P.; Chen, H.; Gao, H.; Liu, Y.; Isidan, K.; Lopez, K.J.; Campana, G.; Li, P.; Ekser, B.; Francis, H.; Shou, W.; Kubal, C. Heterogeneity of hepatic stellate cells in fibrogenesis of the liver: Insights from single-cell transcriptomic analysis in liver injury. Cells, 2021, 10(8), 2129. doi: 10.3390/cells10082129 PMID: 34440898
  37. Yu, F.; Geng, W.; Dong, P.; Huang, Z.; Zheng, J. LncRNA-MEG3 inhibits activation of hepatic stellate cells through SMO protein and miR-212. Cell Death Dis., 2018, 9(10), 1014. doi: 10.1038/s41419-018-1068-x PMID: 30282972
  38. Marchesini, G.; Brizi, M.; Bianchi, G.; Tomassetti, S.; Bugianesi, E.; Lenzi, M.; McCullough, A.J.; Natale, S.; Forlani, G.; Melchionda, N. Nonalcoholic fatty liver disease: A feature of the metabolic syndrome. Diabetes, 2001, 50(8), 1844-1850. doi: 10.2337/diabetes.50.8.1844 PMID: 11473047
  39. Ekstedt, M.; Franzén, L.E.; Mathiesen, U.L.; Thorelius, L.; Holmqvist, M.; Bodemar, G.; Kechagias, S. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology, 2006, 44(4), 865-873. doi: 10.1002/hep.21327 PMID: 17006923
  40. Tarantino, G.; Crocetto, F.; Di Vito, C.; Creta, M.; Martino, R.; Pandolfo, S.D.; Pesce, S.; Napolitano, L.; Capone, D.; Imbimbo, C. Association of NAFLD and insulin resistance with non metastatic bladder cancer patients: A cross-sectional retrospective study. J. Clin. Med., 2021, 10(2), 346. doi: 10.3390/jcm10020346 PMID: 33477579
  41. Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Alonso, A.; Beaton, A.Z.; Bittencourt, M.S.; Boehme, A.K.; Buxton, A.E.; Carson, A.P.; Commodore-Mensah, Y.; Elkind, M.S.V.; Evenson, K.R.; Eze-Nliam, C.; Ferguson, J.F.; Generoso, G.; Ho, J.E.; Kalani, R.; Khan, S.S.; Kissela, B.M.; Knutson, K.L.; Levine, D.A.; Lewis, T.T.; Liu, J.; Loop, M.S.; Ma, J.; Mussolino, M.E.; Navaneethan, S.D.; Perak, A.M.; Poudel, R.; Rezk-Hanna, M.; Roth, G.A.; Schroeder, E.B.; Shah, S.H.; Thacker, E.L.; VanWagner, L.B.; Virani, S.S.; Voecks, J.H.; Wang, N.Y.; Yaffe, K.; Martin, S.S. Heart disease and stroke statistics—2022 update: A report from the american heart association. Circulation, 2022, 145(8), e153-e639. doi: 10.1161/CIR.0000000000001052 PMID: 35078371
  42. Zhang, J.; Liang, Y.; Huang, X.; Guo, X.; Liu, Y.; Zhong, J.; Yuan, J. STAT3-induced upregulation of lncRNA MEG3 regulates the growth of cardiac hypertrophy through miR-361-5p/HDAC9 axis. Sci. Rep., 2019, 9(1), 460. doi: 10.1038/s41598-018-36369-1 PMID: 30679521
  43. Cao, Y.; Wen, J.; Li, Y.; Chen, W.; Wu, Y.; Li, J.; Huang, G. Uric acid and sphingomyelin enhance autophagy in iPS cell-originated cardiomyocytes through lncRNA MEG3/miR-7-5p/EGFR axis. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 3774-3785. doi: 10.1080/21691401.2019.1667817 PMID: 31559872
  44. Zhang, Y.; Liu, X.; Bai, X.; Lin, Y.; Li, Z.; Fu, J.; Li, M.; Zhao, T.; Yang, H.; Xu, R.; Li, J.; Ju, J.; Cai, B.; Xu, C.; Yang, B. Melatonin prevents endothelial cell pyroptosis via regulation of long noncoding RNA MEG3/miR-223/NLRP3 axis. J. Pineal Res., 2018, 64(2), e12449. doi: 10.1111/jpi.12449 PMID: 29024030
  45. Liu, X.; Hou, L.; Huang, W.; Gao, Y.; Lv, X.; Tang, J. The mechanism of long non-coding RNA MEG3 for neurons apoptosis caused by hypoxia: Mediated by miR-181b-12/15-LOX signaling pathway. Front. Cell. Neurosci., 2016, 10, 201. doi: 10.3389/fncel.2016.00201 PMID: 27642276
  46. Kinyua, A.W.; Ko, C.M.; Doan, K.V.; Yang, D.J.; Huynh, M.K.Q.; Moh, S.H.; Choi, Y.H.; Kim, K.W. 4-hydroxy-3-methoxycinnamic acid regulates orexigenic peptides and hepatic glucose homeostasis through phosphorylation of FoxO1. Exp. Mol. Med., 2018, 50(2), e437. doi: 10.1038/emm.2017.253 PMID: 29391540
  47. Zhao, L.Y.; Li, X.; Gao, L.; Xu, Y. LncRNA MEG3 accelerates apoptosis of hypoxic myocardial cells via FoxO1 signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(3)(Suppl.), 334-340. PMID: 31389596
  48. Liu, D.; Liu, Y.; Zheng, X.; Liu, N. c-MYC-induced long noncoding RNA MEG3 aggravates kidney ischemia–reperfusion injury through activating mitophagy by upregulation of RTKN to trigger the Wnt/β-catenin pathway. Cell Death Dis., 2021, 12(2), 191. doi: 10.1038/s41419-021-03466-5 PMID: 33602903
  49. Piccoli, M.T.; Gupta, S.K.; Viereck, J.; Foinquinos, A.; Samolovac, S.; Kramer, F.L.; Garg, A.; Remke, J.; Zimmer, K.; Batkai, S.; Thum, T. Inhibition of the cardiac fibroblast–enriched lncRNA Meg3 prevents cardiac fibrosis and diastolic dysfunction. Circ. Res., 2017, 121(5), 575-583. doi: 10.1161/CIRCRESAHA.117.310624 PMID: 28630135
  50. Xing, Y.; Zheng, X.; Fu, Y.; Qi, J.; Li, M.; Ma, M.; Wang, S.; Li, S.; Zhu, D. Long noncoding RNA-maternally expressed gene 3 contributes to hypoxic pulmonary hypertension. Mol. Ther., 2022, 30(1), 501. doi: 10.1016/j.ymthe.2021.12.009 PMID: 34914904
  51. Xia, C.; Dong, X.; Li, H.; Cao, M.; Sun, D.; He, S.; Yang, F.; Yan, X.; Zhang, S.; Li, N.; Chen, W. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants. Chin. Med. J. (Engl.), 2022, 135(5), 584-590. doi: 10.1097/CM9.0000000000002108 PMID: 35143424
  52. Zhang, J.; Yao, T.; Wang, Y.; Yu, J.; Liu, Y.; Lin, Z. Long noncoding RNA MEG3 is downregulated in cervical cancer and affects cell proliferation and apoptosis by regulating miR-21. Cancer Biol. Ther., 2016, 17(1), 104-113. doi: 10.1080/15384047.2015.1108496 PMID: 26574780
  53. Zhang, W.; Shi, S.; Jiang, J.; Li, X.; Lu, H.; Ren, F. LncRNA MEG3 inhibits cell epithelial-mesenchymal transition by sponging miR-421 targeting E-cadherin in breast cancer. Biomed. Pharmacother., 2017, 91, 312-319. doi: 10.1016/j.biopha.2017.04.085 PMID: 28463794
  54. Zuo, S.; Wu, L.; Wang, Y.; Yuan, X. Long non-coding RNA MEG3 activated by vitamin D suppresses glycolysis in colorectal cancer via promoting c-Myc degradation. Front. Oncol., 2020, 10, 274. doi: 10.3389/fonc.2020.00274 PMID: 32219064
  55. Chen, P.Y.; Hsieh, P.L.; Peng, C.Y.; Liao, Y.W.; Yu, C.H.; Yu, C.C. LncRNA MEG3 inhibits self-renewal and invasion abilities of oral cancer stem cells by sponging miR-421. J. Formos. Med. Assoc., 2021, 120(4), 1137-1142. doi: 10.1016/j.jfma.2020.09.006 PMID: 33012637
  56. Huang, Z.F.; Tang, Y.L.; Shen, Z.L.; Yang, K.Y.; Gao, K. UXT, a novel DNMT3b-binding protein, promotes breast cancer progression via negatively modulating lncRNA MEG3/p53 axis. Mol. Ther. Oncolytics, 2022, 24, 497-506. doi: 10.1016/j.omto.2021.12.008 PMID: 35229028
  57. Dong, S.; Ma, M.; Li, M.; Guo, Y.; Zuo, X.; Gu, X.; Zhang, M.; Shi, Y. LncRNA MEG3 regulates breast cancer proliferation and apoptosis through miR-141-3p/RBMS3 axis. Genomics, 2021, 113(4), 1689-1704. doi: 10.1016/j.ygeno.2021.04.015 PMID: 33845141
  58. Gong, X.; Huang, M. Long non-coding RNA MEG3 promotes the proliferation of glioma cells through targeting Wnt/β-catenin signal pathway. Cancer Gene Ther., 2017, 24(9), 381-385. doi: 10.1038/cgt.2017.32 PMID: 29027534
  59. He, J.H.; Han, Z.P.; Liu, J.M.; Zhou, J.B.; Zou, M.X.; Lv, Y.B.; Li, Y.G.; Cao, M.R. Overexpression of long non-coding RNA MEG3 inhibits proliferation of hepatocellular carcinoma Huh7 cells via negative modulation of miRNA-664. J. Cell. Biochem., 2017, 118(11), 3713-3721. doi: 10.1002/jcb.26018 PMID: 28374914
  60. Gao, Y.; Chen, X.; Zhang, J. LncRNA MEG3 inhibits retinoblastoma invasion and metastasis by inducing β-catenin degradation. Am. J. Cancer Res., 2022, 12(7), 3111-3127. PMID: 35968358
  61. Dudea-Simon, M.; Mihu, D.; Pop, L.A.; Ciortea, R.; Malutan, A.M.; Diculescu, D.; Ciocan, C.A.; Cojocneanu, R.M.; Simon, V.; Bucuri, C.; Mocan-Hognogi, R.; Braicu, C.; Berindan-Neagoe, I. Alteration of gene and miRNA expression in cervical intraepithelial neoplasia and cervical cancer. Int. J. Mol. Sci., 2022, 23(11), 6054. doi: 10.3390/ijms23116054 PMID: 35682732
  62. Arulselvan, P.; Fard, M.T.; Tan, W.S.; Gothai, S.; Fakurazi, S.; Norhaizan, M.E.; Kumar, S.S. Role of Antioxidants and Natural Products in Inflammation. Oxid. Med. Cell. Longev., 2016, 2016, 1-15. doi: 10.1155/2016/5276130 PMID: 27803762
  63. Peng, J.W.; Gu, Y.Y.; Wei, J.; Sun, Y.; Zhu, C.L.; Zhang, L.; Song, Y.; Chen, L.; Chen, X.; Wang, Q.; Zhang, H.L. LncRNA MEG3-TRPV1 signaling regulates chronic inflammatory pain in rats. Mol. Pain, 2022, 18 doi: 10.1177/17448069221144246 PMID: 36424837
  64. Meng, J.; Ding, T.; Chen, Y.; Long, T.; Xu, Q.; Lian, W.; Liu, W. LncRNA-Meg3 promotes Nlrp3-mediated microglial inflammation by targeting miR-7a-5p. Int. Immunopharmacol., 2021, 90, 107141. doi: 10.1016/j.intimp.2020.107141 PMID: 33189612
  65. Tang, Z.L.; Zhang, K.; Lv, S.C.; Xu, G.W.; Zhang, J.F.; Jia, H.Y. LncRNA MEG3 suppresses PI3K/AKT/mTOR signalling pathway to enhance autophagy and inhibit inflammation in TNF-α-treated keratinocytes and psoriatic mice. Cytokine, 2021, 148, 155657. doi: 10.1016/j.cyto.2021.155657 PMID: 34425525
  66. Huang, Y.; Chen, D.; Yan, Z.; Zhan, J.; Xue, X.; Pan, X.; Yu, H. LncRNA MEG3 protects chondrocytes from IL-1β-induced inflammation via regulating miR-9-5p/KLF4 axis. Front. Physiol., 2021, 12, 617654. doi: 10.3389/fphys.2021.617654 PMID: 33776787
  67. Gao, H.; Zhang, X.; Tang, F.; Chen, L.; Tian, Z.; Xiao, D.; Li, X. Knockdown of lncRNA MEG3 protects against sepsis-induced acute lung injury in mice through miR-93–5p-dependent inhibition of NF-κB signaling pathway. Pathol. Res. Pract., 2022, 239, 154142. doi: 10.1016/j.prp.2022.154142 PMID: 36242967
  68. Liu, M.; Chen, L.; Wu, J.; Lin, Z.; Huang, S. Long noncoding RNA MEG3 expressed in human dental pulp regulates LPS-Induced inflammation and odontogenic differentiation in pulpitis. Exp. Cell Res., 2021, 400(2), 112495. doi: 10.1016/j.yexcr.2021.112495 PMID: 33524362
  69. Li, Y.; Zhang, S.; Zhang, C.; Wang, M. LncRNA MEG3 inhibits the inflammatory response of ankylosing spondylitis by targeting miR-146a. Mol. Cell. Biochem., 2020, 466(1-2), 17-24. doi: 10.1007/s11010-019-03681-x PMID: 31894531
  70. Liu, C.; Liang, T.; Zhang, Z.; Chen, J.; Xue, J.; Zhan, X.; Ren, L. MEG3 alleviates ankylosing spondylitis by suppressing osteogenic differentiation of mesenchymal stem cells through regulating microRNA-125a-5p-mediated TNFAIP3. Apoptosis, 2022. PMID: 36587050
  71. Tu, Y.; Song, E.; Wang, Z.; Ji, N.; Zhu, L.; Wang, K.; Sun, H.; Zhang, Y.; Zhu, Q.; Liu, X.; Zhu, M. Melatonin attenuates oxidative stress and inflammation of Müller cells in diabetic retinopathy via activating the Sirt1 pathway. Biomed. Pharmacother., 2021, 137, 111274. doi: 10.1016/j.biopha.2021.111274 PMID: 33517190
  72. Guo, J.; Zhang, N.; Liu, G.; Zhang, A.; Liu, X.; Zheng, J. Upregulated expression of long non-coding RNA MEG3 serves as a prognostic biomarker in severe pneumonia children and its regulatory mechanism. Bioengineered, 2021, 12(1), 7120-7131. doi: 10.1080/21655979.2021.1979351 PMID: 34558385
  73. Zhou, X.; He, J.; Chen, J.; Cui, Y.; Ou, Z.; Zu, X.; Liu, N. Silencing of MEG3 attenuated the role of lipopolysaccharides by modulating the miR-93-5p/PTEN pathway in Leydig cells. Reprod. Biol. Endocrinol., 2021, 19(1), 33. doi: 10.1186/s12958-021-00712-5 PMID: 33639974
  74. Liu, Y.; Yang, L.; Xu, Q.; Lu, X.Y.; Ma, T.T.; Huang, C.; Li, J. Long noncoding RNA MEG3 regulates rheumatoid arthritis by targeting NLRC5. J. Cell. Physiol., 2019, 234(8), 14270-14284. doi: 10.1002/jcp.28126 PMID: 30644097
  75. Yiu, W.H.; Lok, S.W.Y.; Xue, R.; Chen, J.; Lai, K.N.; Lan, H.Y.; Tang, S.C.W. The long noncoding RNA Meg3 mediates TLR4-induced inflammation in experimental obstructive nephropathy. Clin. Sci. (Lond.), 2023, 137(5), 317-331. doi: 10.1042/CS20220537 PMID: 36705251
  76. Liu, F.; Chen, Y.; Liu, R.; Chen, B.; Liu, C.; Xing, J. Long noncoding RNA (MEG3) in urinal exosomes functions as a biomarker for the diagnosis of Hunner-type interstitial cystitis (HIC). J. Cell. Biochem., 2020, 121(2), 1227-1237. doi: 10.1002/jcb.29356 PMID: 31595563
  77. Luo, Y.; Liu, C.Q.; He, H.B.; Wang, T.; He, Y.M.; Zhang, C.C.; Yuan, D.; Yuan, C.F. Effect of total saponins from Panax japonicus on non-alcoholic steatohepatitis by regulating autophagy. Zhongguo Zhongyao Zazhi, 2021, 46(9), 2260-2266. PMID: 34047129
  78. Sharif, R. Overview of idiopathic pulmonary fibrosis (IPF) and evidence-based guidelines. Am. J. Manag. Care, 2017, 23(11)(Suppl.), S176-S182. PMID: 28978212
  79. Oldham, J.M.; Ma, S.F.; Martinez, F.J.; Anstrom, K.J.; Raghu, G.; Schwartz, D.A.; Valenzi, E.; Witt, L.; Lee, C.; Vij, R.; Huang, Y.; Strek, M.E.; Noth, I. TOLLIP, MUC5B, and the response to N-acetylcysteine among individuals with idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med., 2015, 192(12), 1475-1482. doi: 10.1164/rccm.201505-1010OC PMID: 26331942
  80. Gao, Q.; Chang, X.; Yang, M.; Zheng, J.; Gong, X.; Liu, H.; Li, K.; Wang, X.; Zhan, H.; Li, S.; Feng, S.; Sun, X.; Sun, Y. LncRNA MEG3 restrained pulmonary fibrosis induced by NiO NPs via regulating hedgehog signaling pathway-mediated autophagy. Environ. Toxicol., 2022, 37(1), 79-91. doi: 10.1002/tox.23379 PMID: 34608745
  81. Zhan, H.; Chang, X.; Wang, X.; Yang, M.; Gao, Q.; Liu, H.; Li, C.; Li, S.; Sun, Y. LNCRNA MEG3 mediates nickel oxide nanoparticles-induced pulmonary fibrosis via suppressing TGF -β1 expression and epithelial-mesenchymal transition process. Environ. Toxicol., 2021, 36(6), 1099-1110. doi: 10.1002/tox.23109 PMID: 33547861
  82. Zhan, H.; Sun, X.; Wang, X.; Gao, Q.; Yang, M.; Liu, H.; Zheng, J.; Gong, X.; Feng, S.; Chang, X.; Sun, Y. LncRNA MEG3 involved in NiO NPs-induced pulmonary fibrosis via regulating TGF-β1-mediated PI3K/AKT pathway. Toxicol. Sci., 2021, 182(1), 120-131. doi: 10.1093/toxsci/kfab047 PMID: 33895847
  83. Li, X.; Li, G.; Jin, Y.; Yao, Q.; Li, R.; Wang, H. Long non-coding RNA maternally expressed 3 (MEG3) regulates isoflurane-induced cognitive dysfunction by targeting miR-7-5p. Toxicol. Mech. Methods, 2022, 32(6), 453-462. doi: 10.1080/15376516.2022.2042881 PMID: 35164634
  84. Royer, M.; Pai, B.; Menon, R.; Bludau, A.; Gryksa, K.; Perry, R.B.T.; Ulitsky, I.; Meister, G.; Neumann, I.D. Transcriptome and chromatin alterations in social fear indicate association of MEG3 with successful extinction of fear. Mol. Psychiatry, 2022, 27(10), 4064-4076. doi: 10.1038/s41380-022-01481-2 PMID: 35338311
  85. Samii, A.; Nutt, J.G.; Ransom, B.R. Parkinson’s disease. Lancet, 2004, 363(9423), 1783-1793. doi: 10.1016/S0140-6736(04)16305-8 PMID: 15172778
  86. Huang, H.; Zheng, S.; Lu, M. Downregulation of lncRNA MEG3 is involved in Parkinson’s disease. Metab. Brain Dis., 2021, 36(8), 2323-2328. doi: 10.1007/s11011-021-00835-z PMID: 34643842
  87. Liu, J.; Qi, X.; Wang, X.H.; Miao, H.S.; Xue, Z.C.; Zhang, L.L.; Zhao, S.H.; Wu, L.H.; Gao, G.Y.; Lou, M.Q.; Yi, C.Q. Downregulation of the LncRNA MEG3 promotes osteogenic differentiation of BMSCs and bone repairing by activating Wnt/β-catenin signaling pathway. J. Clin. Med., 2022, 11(2), 395. doi: 10.3390/jcm11020395 PMID: 35054086
  88. Zhu, J.; Fu, Q.; Shao, J.; Peng, J.; Qian, Q.; Zhou, Y.; Chen, Y. Over-expression of MEG3 promotes differentiation of bone marrow mesenchymal stem cells into chondrocytes by regulating miR-129-5p/RUNX1 axis. Cell Cycle, 2021, 20(1), 96-111. doi: 10.1080/15384101.2020.1863043 PMID: 33410373
  89. Wang, S.; Xiong, G.; Ning, R.; Pan, Z.; Xu, M.; Zha, Z.; Liu, N. LncRNA MEG3 promotes osteogenesis of hBMSCs by regulating miR-21-5p / SOD3 axis. Acta Biochim. Pol., 2022, 69(1), 71-77. doi: 10.18388/abp.2020_5661 PMID: 35231166
  90. Li, H.; Xu, X.; Wang, D.; Zhang, Y.; Chen, J.; Li, B.; Su, S.; Wei, L.; You, H.; Fang, Y.; Wang, Y.; Liu, Y. Hypermethylation-mediated downregulation of long non-coding RNA MEG3 inhibits osteogenic differentiation of bone marrow mesenchymal stem cells and promotes pediatric aplastic anemia. Int. Immunopharmacol., 2021, 93, 107292. doi: 10.1016/j.intimp.2020.107292 PMID: 33529912
  91. Gao, X.; Ge, J.; Zhou, W.; Xu, L.; Geng, D. IL-10 inhibits osteoclast differentiation and osteolysis through MEG3/IRF8 pathway. Cell. Signal., 2022, 95, 110353. doi: 10.1016/j.cellsig.2022.110353 PMID: 35525407
  92. Yu, Z.; Wen, Y.; Jiang, N.; Li, Z.; Guan, J.; Zhang, Y.; Deng, C.; Zhao, L.; Zheng, S.G.; Zhu, Y.; Su, W.; Zhuo, Y. TNF-α stimulation enhances the neuroprotective effects of gingival MSCs derived exosomes in retinal ischemia-reperfusion injury via the MEG3/miR-21a-5p axis. Biomaterials, 2022, 284, 121484. doi: 10.1016/j.biomaterials.2022.121484 PMID: 35378413
  93. He, Y.; Dan, Y.; Gao, X.; Huang, L.; Lv, H.; Chen, J. DNMT1-mediated lncRNA MEG3 methylation accelerates endothelial-mesenchymal transition in diabetic retinopathy through the PI3K/Akt/mTOR signaling pathway. Am. J. Physiol. Endocrinol. Metab., 2021, 320(3), E598-E608. doi: 10.1152/ajpendo.00089.2020 PMID: 33284093
  94. Yamamura, S.; Imai-Sumida, M.; Tanaka, Y.; Dahiya, R. Interaction and cross-talk between non-coding RNAs. Cell. Mol. Life Sci., 2018, 75(3), 467-484. doi: 10.1007/s00018-017-2626-6 PMID: 28840253
  95. Fang, C.Y.; Chen, S.H.; Huang, C.C.; Liao, Y.W.; Chao, S.C.; Yu, C.C. Fucoidan-mediated inhibition of fibrotic properties in oral submucous fibrosis via the MEG3/miR-181a/Egr1 axis. Pharmaceuticals (Basel), 2022, 15(7), 833. doi: 10.3390/ph15070833 PMID: 35890132
  96. Chen, Y.; Zhang, Z.; Zhu, D.; Zhao, W.; Li, F. Long non-coding RNA MEG3 serves as a ceRNA for microRNA-145 to induce apoptosis of AC16 cardiomyocytes under high glucose condition. Biosci. Rep., 2019, 39(6), BSR20190444. doi: 10.1042/BSR20190444 PMID: 31085717
  97. Sun, H.J.; Zhang, F.F.; Xiao, Q.; Xu, J.; Zhu, L.J. lncRNA MEG3, acting as a ceRNA, modulates RPE differentiation through the miR-7-5p/Pax6 axis. Biochem. Genet., 2021, 59(6), 1617-1630. doi: 10.1007/s10528-021-10072-9 PMID: 34018078
  98. Zhang, S.; Ji, W.W.; Wei, W.; Zhan, L.X.; Huang, X. Long noncoding RNA Meg3 sponges miR-708 to inhibit intestinal tumorigenesis via SOCS3-repressed cancer stem cells growth. Cell Death Dis., 2021, 13(1), 25. doi: 10.1038/s41419-021-04470-5 PMID: 34934045

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers