Biochemistry, Mechanistic Intricacies, and Therapeutic Potential of Antimicrobial Peptides: An Alternative to Traditional Antibiotics


Cite item

Full Text

Abstract

:The emergence of drug-resistant strains of pathogens becomes a major obstacle to treating human diseases. Antibiotics and antivirals are in the application for a long time but now these drugs are not much effective anymore against disease-causing drugresistant microbes and gradually it is becoming a serious complication worldwide. The development of new antibiotics cannot be a stable solution to treat drug-resistant strains due to their evolving nature and escaping antibiotics. At this stage, antimicrobial peptides (AMPs) may provide us with novel therapeutic leads against drug-resistant pathogens. Structurally, antimicrobial peptides are mostly α-helical peptide molecules with amphiphilic properties that carry the positive charge (cationic) and belong to host defense peptides. These positively charged AMPs can interact with negatively charged bacterial cell membranes and may cause the alteration in electrochemical potential on bacterial cell membranes and consequently lead to the death of microbial cells. In the present study, we will elaborate on the implication of AMPs in the treatment of various diseases along with their specific structural and functional properties. This review will provide information which assists in the development of new synthetic peptide analogues to natural AMPs. These analogues will eliminate the limitations of natural AMPs like toxicity and severe hemolytic activities.

About the authors

Manish Dwivedi

Amity Institute of Biotechnology, Amity University Uttar Pradesh

Author for correspondence.
Email: info@benthamscience.net

Meet Parmar

Department of Biological Sciences and Biotechnology, Institute of Advanced Research

Email: info@benthamscience.net

Debalina Mukherjee

Department of Zoology, West Bengal State University

Email: info@benthamscience.net

Anuradha Yadava

Amity Institute of Biotechnology, Amity University Uttar Pradesh

Email: info@benthamscience.net

Hitendra Yadav

Amity Institute of Biotechnology, Amity University Uttar Pradesh

Email: info@benthamscience.net

Nandini Saini

Amity Institute of Biotechnology, Amity University Uttar Pradesh

Email: info@benthamscience.net

References

  1. Bahar, A.; Ren, D. Antimicrobial peptides. Pharmaceuticals, 2013, 6(12), 1543-1575. doi: 10.3390/ph6121543 PMID: 24287494
  2. Dhingra, S; Rahman, NAA; Peile, E; Rahman, M; Sartelli, M; Hassali, MA; Islam, T; Islam, S; Haque, M Microbial resistance movements: An overview of global public health threats posed by antimicrobial resistance, and how best to counter. Front Public Health., 2020, 4(8), 535668.
  3. Huemer, M; Mairpady, S.S; Brugger, SD; Zinkernagel, AS Antibiotic resistance and persistence-Implications for human health and treatment perspectives. EMBO Rep,, 2020, 21(12), e51034. doi: 10.15252/embr.202051034
  4. Reddy, K.V.R.; Yedery, R.D.; Aranha, C. Antimicrobial peptides: Premises and promises. Int. J. Antimicrob. Agents, 2004, 24(6), 536-547. doi: 10.1016/j.ijantimicag.2004.09.005 PMID: 15555874
  5. Kumar, P.; Kizhakkedathu, J.; Straus, S. Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules, 2018, 8(1), 4. doi: 10.3390/biom8010004 PMID: 29351202
  6. Wang, G; Li, X; Wang, Z APD3: The antimicrobial peptide database as a tool for research and education. Nucleic Acids Res, 2016, 44(D1), D1087-D1093. doi: 10.1093/nar/gkv1278
  7. Jenssen, H.; Hamill, P.; Hancock, R.E.W. Peptide antimicrobial agents. Clin. Microbiol. Rev., 2006, 19(3), 491-511. doi: 10.1128/CMR.00056-05 PMID: 16847082
  8. Mardirossian, M.; Grzela, R.; Giglione, C.; Meinnel, T.; Gennaro, R.; Mergaert, P.; Scocchi, M. The host antimicrobial peptide Bac71-35 binds to bacterial ribosomal proteins and inhibits protein synthesis. Chem Biol., 2014, 21(12), 1639-1647. doi: 10.1016/j.chembiol.2014.10.009
  9. Subbalakshmi, C.; Sitaram, N. Mechanism of antimicrobial action of indolicidin. FEMS Microbiol Lett., 1998, 160(1), 91.96) doi: 10.1111/j.1574-6968.1998.tb12896.x
  10. Cociancich, S.; Dupont, A.; Hegy, G.; Lanot, R.; Holder, F.; Hetru, C.; Hoffmann, J.A.; Bulet, P. Novel inducible antibacterial peptides from a hemipteran insect, the sap-sucking bug Pyrrhocoris apterus. Biochem J., 1994, 300 doi: 10.1042/bj3000567
  11. Miura, K.; Ueno, S.; Kamiya, K.; Kobayashi, J.; Matsuoka, H.; Ando, K.; Chinzei, Y. Cloning of mRNA sequences for two antibacterial peptides in a hemipteran insect, Riptortus clavatus. Zool. Sci., 1996, 13(1), 111-117. doi: 10.2108/zsj.13.111 PMID: 8688805
  12. McCann, K.B.; Lee, A.; Wan, J.; Roginski, H.; Coventry, M.J. The effect of bovine lactoferrin and lactoferricin B on the ability of feline calicivirus (a norovirus surrogate) and poliovirus to infect cell cultures. J. Appl. Microbiol., 2003, 95(5), 1026-1033. doi: 10.1046/j.1365-2672.2003.02071.x PMID: 14633031
  13. Pietrantoni, A.; Ammendolia, M.; Tinari, A.; Siciliano, R.; Valenti, P.; Superti, F. Bovine lactoferrin peptidic fragments involved in inhibition of Echovirus 6 in vitro infection. Antiviral Res., 2006, 69(2), 98-106. doi: 10.1016/j.antiviral.2005.10.006 PMID: 16386316
  14. Belaid, A.; Aouni, M.; Khelifa, R.; Trabelsi, A.; Jemmali, M.; Hani, K. In vitro antiviral activity of dermaseptins against herpes simplex virus type 1. J. Med. Virol., 2002, 66(2), 229-234. doi: 10.1002/jmv.2134 PMID: 11782932
  15. Mettenleiter, T.C. Brief overview on cellular virus receptors. Virus Res., 2001, 82(1-2), 3-8. doi: 10.1016/S0168-1702(01)00380-X PMID: 11885946
  16. WuDunn, D.; Spear, P.G. Initial interaction of herpes simplex virus with cells is binding to heparan sulfate. J. Virol., 1989, 63(1), 52-58. doi: 10.1128/jvi.63.1.52-58.1989 PMID: 2535752
  17. Sharma, M.; Sharma, S.; Prasad, R.; Rajwanshi, A.; Sethi, S.; Samanta, P.; Malhotra, S. Characterization of low molecular weight antimicrobial peptide from human female reproductive tract. Indian J. Med. Res., 2011, 134(5), 679-687. doi: 10.4103/0971-5916.90996 PMID: 22199108
  18. Viruly, L.; Suhartono, M.T.; Nurilmala, M.; Saraswati, S.; Andarwulan, N. Identification and characterization of antimicrobial peptide (AMP) candidate from Gonggong Sea Snail (Leavistrombus turturella) extract. J. Food Sci. Technol., 2023, 60(1), 44-52. doi: 10.1007/s13197-022-05585-z PMID: 36618044
  19. Jirakkakul, J.; Punya, J.; Pongpattanakitshote, S.; Paungmoung, P.; Vorapreeda, N.; Tachaleat, A.; Klomnara, C.; Tanticharoen, M.; Cheevadhanarak, S. Identification of the nonribosomal peptide synthetase gene responsible for bassianolide synthesis in wood-decaying fungus Xylaria sp. BCC1067. Microbiology, 2008, 154(4), 995-1006. doi: 10.1099/mic.0.2007/013995-0 PMID: 18375793
  20. Mahlapuu, M.; Björn, C.; Ekblom, J. Antimicrobial peptides as therapeutic agents: Opportunities and challenges. Crit. Rev. Biotechnol., 2020, 40(7), 978-992. doi: 10.1080/07388551.2020.1796576 PMID: 32781848
  21. Andersson, D.I.; Hughes, D.; Kubicek-Sutherland, J.Z. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist. Updat., 2016, 26, 43-57. doi: 10.1016/j.drup.2016.04.002 PMID: 27180309
  22. Wang, G.; Mishra, B.; Lau, K.; Lushnikova, T.; Golla, R.; Wang, X. Antimicrobial peptides in 2014. Pharmaceuticals, 2015, 8(1), 123-150. doi: 10.3390/ph8010123 PMID: 25806720
  23. a) Vaara, M.; Vaara, T. Polycations as outer membrane-disorganizing agents. Antimicrob Agents Chemother., 1983, 24(1), 114-122. doi: 10.1128/AAC.24.1.114; b) Teixeira, V.; Feio, M.J.; Bastos, M. Role of lipids in the interaction of antimicrobial peptides with membranes. Prog Lipid Res., 1912, 51(2), 149-177.
  24. Hancock, R.E.; Chapple, D.S. Peptide antibiotics. Antimicrob Agents Chemother., 1999, 43(6), 1317-1323.
  25. Yin, L.M.; Edwards, M.A.; Li, J.; Yip, C.M.; Deber, C.M. Roles of hydrophobicity and charge distribution of cationic antimicrobial peptides in peptide-membrane interactions. J. Biol. Chem., 2012, 287(10), 7738-7745. doi: 10.1074/jbc.M111.303602 PMID: 22253439
  26. Marion, D.; Zasloff, M.; Bax, A. A two-dimensional NMR study of the antimicrobial peptide magainin 2. FEBS Lett., 1988, 227(1), 21-26. doi: 10.1016/0014-5793(88)81405-4 PMID: 3338566
  27. Haney, E.F.; Mansour, S.C.; Hancock, R.E. Antimicrobial peptides: An introduction. In: Antimicrobial Peptides; Humana Press: New York, NY, 2017; pp. 3-22. doi: 10.1007/978-1-4939-6737-7_1
  28. Hara, T.; Kodama, H.; Kondo, M.; Wakamatsu, K.; Takeda, A.; Tachi, T.; Matsuzaki, K. Effects of peptide dimerization on pore formation: Antiparallel disulfide-dimerized magainin 2 analogue. Biopolymers., 2001, 58(4), 437-446.
  29. Jin, Y.; Hammer, J.; Pate, M.; Zhang, Y.; Zhu, F.; Zmuda, E.; Blazyk, J. Antimicrobial activities and structures of two linear cationic peptide families with various amphipathic beta-sheet and alpha-helical potentials. Antimicrob. Agents Chemother., 2005, 49(12), 4957-4964. doi: 10.1128/AAC.49.12.4957-4964.2005 PMID: 16304158
  30. Yonezawa, A.; Kuwahara, J.; Fujii, N.; Sugiura, Y. Binding of tachyplesin I to DNA revealed by footprinting analysis: significant contribution of secondary structure to DNA binding and implication for biological action. Biochemistry, 1992, 31(11), 2998-3004. doi: 10.1021/bi00126a022 PMID: 1372516
  31. Fahrner, R.L.; Dieckmann, T.; Harwig, S.S.; Lehrer, R.I.; Eisenberg, D.; Feigon, J. Solution structure of protegrin-1, a broad-spectrum antimicrobial peptide from porcine leukocytes. Chemistry & biology, 3(7), 543-550.1996,
  32. Slavokhotova, A.A.; Shelenkov, A.A.; Korostyleva, T.V.; Rogozhin, E.A.; Melnikova, N.V.; Kudryavtseva, A.V.; Odintsova, T.I. Defense peptide repertoire of Stellaria media predicted by high throughput next generation sequencing. Biochimie, 2017, 135, 15-27. doi: 10.1016/j.biochi.2016.12.017 PMID: 28038935
  33. Pushpanathan, M.; Gunasekaran, P.; Rajendhran, J. Antimicrobial peptides: Versatile biological properties. Int. J. Pept., 2013, 2013, 1-15. doi: 10.1155/2013/675391 PMID: 23935642
  34. Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature, 2002, 415(6870), 389-395. doi: 10.1038/415389a PMID: 11807545
  35. Ganz, T. Defensins: Antimicrobial peptides of innate immunity. Nat. Rev. Immunol., 2003, 3(9), 710-720. doi: 10.1038/nri1180 PMID: 12949495
  36. Selsted, M.E.; Ouellette, A.J. Mammalian defensins in the antimicrobial immune response. Nat. Immunol., 2005, 6(6), 551-557. doi: 10.1038/ni1206 PMID: 15908936
  37. Tang, YQ.; Yuan, J.; Osapay, G.; Osapay, K.; Tran, D.; Miller, C.J.; Ouellette, A.J.; Selsted, M.E. A cyclic antimicrobial peptide produced in primate leukocytes by the ligation of two truncated alpha-defensins. Science., 1999, 286, 498, 502.
  38. Lehrer, R.I.; Lu, W. α-Defensins in human innate immunity. Immunol. Rev., 2012, 245(1), 84-112. doi: 10.1111/j.1600-065X.2011.01082.x PMID: 22168415
  39. Bevins, C.L.; Salzman, N.H. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat. Rev. Microbiol., 2011, 9(5), 356-368. doi: 10.1038/nrmicro2546 PMID: 21423246
  40. Michaut, L.; Fehlbaum, P.; Moniatte, M.; Van Dorsselaer, A.; Reichhart, J.M.; Bulet, P. Determination of the disulfide array of the first inducible antifungal peptide from insects: drosomycin from Drosophila melanogaster. FEBS Lett., 1996, 395(1), 6-10. doi: 10.1016/0014-5793(96)00992-1 PMID: 8849679
  41. Landon, C.; Sodano, P.; Hetru, C.; Hoffmann, J.; Ptak, M. Solution structure of drosomycin, the first inducible antifungal protein from insects. Protein Sci., 1997, 6(9), 1878-1884. doi: 10.1002/pro.5560060908 PMID: 9300487
  42. Jhong, J.H.; Chi, Y.H.; Li, W.C.; Lin, T.H.; Huang, K.Y.; Lee, T.Y. dbAMP: An integrated resource for exploring antimicrobial peptides with functional activities and physicochemical properties on transcriptome and proteome data. Nucleic Acids Res., 2019, 47(D1), D285-D297. doi: 10.1093/nar/gky1030 PMID: 30380085
  43. Shi, G.; Kang, X.; Dong, F.; Liu, Y.; Zhu, N.; Hu, Y.; Xu, H.; Lao, X.; Zheng, H. DRAMP 3.0: An enhanced comprehensive data repository of antimicrobial peptides. Nucleic Acids Res., 2022, 50(D1), D488-D496. doi: 10.1093/nar/gkab651 PMID: 34390348
  44. Lin, T.T.; Yang, L.Y.; Lu, I.H.; Cheng, W.C.; Hsu, Z.R.; Chen, S.H.; Lin, C.Y. AI4AMP: An antimicrobial peptide predictor using physicochemical property-based encoding method and deep learning. mSystems, 2021, 6(6), e00299-21. doi: 10.1128/mSystems.00299-21 PMID: 34783578
  45. Dwivedi, R.; Aggarwal, P.; Bhavesh, N.S.; Kaur, K.J. Design of therapeutically improved analogue of the antimicrobial peptide, indolicidin, using a glycosylation strategy. Amino Acids, 2019, 51(10-12), 1443-1460. doi: 10.1007/s00726-019-02779-2 PMID: 31485742
  46. Collin, F.; Maxwell, A. The microbial toxin microcin B17: Prospects for the development of new antibacterial agents. J. Mol. Biol., 2019, 431(18), 3400-3426. doi: 10.1016/j.jmb.2019.05.050 PMID: 31181289
  47. Naimi, S.; Zirah, S.; Taher, M.B.; Theolier, J.; Fernandez, B.; Rebuffat, S.F.; Fliss, I. Microcin J25 exhibits inhibitory activity against Salmonella Newport in continuous fermentation model mimicking swine colonic conditions. Front. Microbiol., 2020, 11, 988. doi: 10.3389/fmicb.2020.00988 PMID: 32528437
  48. Yeaman, M.R.; Yount, N.Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev., 2003, 55(1), 27-55. doi: 10.1124/pr.55.1.2 PMID: 12615953
  49. McMillan, K.A.M.; Coombs, M.R.P. Review: Examining the natural role of amphibian antimicrobial peptide magainin. Molecules, 2020, 25(22), 5436. doi: 10.3390/molecules25225436 PMID: 33233580
  50. Han, E.; Lee, H. Synergistic effects of magainin 2 and PGLa on their heterodimer formation, aggregation, and insertion into the bilayer. RSC Advances, 2015, 5(3), 2047-2055. doi: 10.1039/C4RA08480B
  51. Shen, W.; He, P.; Xiao, C.; Chen, X. From antimicrobial peptides to antimicrobial poly(α-amino acid)s. Adv. Healthc. Mater., 2018, 7(20), 1800354. doi: 10.1002/adhm.201800354 PMID: 29923332
  52. Hale, J.D.F.; Hancock, R.E.W. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev. Anti Infect. Ther., 2007, 5(6), 951-959. doi: 10.1586/14787210.5.6.951 PMID: 18039080
  53. Hancock, R.; Patrzykat, A. Clinical development of cationic antimicrobial peptides: From natural to novel antibiotics. Curr. Drug Targets Infect. Disord., 2002, 2(1), 79-83. doi: 10.2174/1568005024605855 PMID: 12462155
  54. Rausch, J.M.; Marks, J.R.; Rathinakumar, R.; Wimley, W.C. β-sheet pore-forming peptides selected from a rational combinatorial library: mechanism of pore formation in lipid vesicles and activity in biological membranes. Biochemistry, 2007, 46(43), 12124-12139. doi: 10.1021/bi700978h PMID: 17918962
  55. Subramanian, H.; Gupta, K.; Guo, Q.; Price, R.; Ali, H. Mas-related gene X2 (MrgX2) is a novel G protein-coupled receptor for the antimicrobial peptide LL-37 in human mast cells: Resistance to receptor phosphorylation, desensitization, and internalization. J. Biol. Chem., 2011, 286(52), 44739-44749. doi: 10.1074/jbc.M111.277152 PMID: 22069323
  56. Afacan, N.J.; Yeung, A.T.; Pena, O.M.; Hancock, R.E. Therapeutic potential of host defense peptides in antibiotic-resistant infections. Curr. Pharm. Des., 2012, 18(6), 807-819. doi: 10.2174/138161212799277617 PMID: 22236127
  57. Niyonsaba, F.; Iwabuchi, K.; Someya, A.; Hirata, M.; Matsuda, H.; Ogawa, H.; Nagaoka, I. A cathelicidin family of human antibacterial peptide LL-37 induces mast cell chemotaxis. Immunology, 2002, 106(1), 20-26. doi: 10.1046/j.1365-2567.2002.01398.x PMID: 11972628
  58. García, J.R.; Jaumann, F.; Schulz, S.; Krause, A.; Rodríguez-Jiménez, J.; Forssmann, U.; Adermann, K.; Klüver, E.; Vogelmeier, C.; Becker, D.; Hedrich, R.; Forssmann, W.G.; Bals, R. Identification of a novel, multifunctional β-defensin (human β-defensin 3) with specific antimicrobial activity. Its interaction with plasma membranes of Xenopus oocytes and the induction of macrophage chemoattraction. Cell Tissue Res., 2001, 306(2), 257-264. doi: 10.1007/s004410100433 PMID: 11702237
  59. Liu, Y.J. Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell, 2001, 106(3), 259-262. doi: 10.1016/S0092-8674(01)00456-1 PMID: 11509173
  60. Lang, J.; Yang, N.; Deng, J.; Liu, K.; Yang, P.; Zhang, G.; Jiang, C. Inhibition of SARS pseudovirus cell entry by lactoferrin binding to heparan sulfate proteoglycans. PLoS One., 2011, 6(8), e23710.
  61. Campione, E.; Lanna, C.; Cosio, T.; Rosa, L.; Conte, M.P.; Iacovelli, F.; Romeo, A.; Falconi, M.; Del Vecchio, C.; Franchin, E.; Lia, M.S.; Minieri, M.; Chiaramonte, C.; Ciotti, M.; Nuccetelli, M.; Terrinoni, A.; Iannuzzi, I.; Coppeda, L.; Magrini, A.; Bernardini, S.; Sabatini, S.; Rosapepe, F.; Bartoletti, P.L.; Moricca, N.; Di Lorenzo, A.; Andreoni, M.; Sarmati, L.; Miani, A.; Piscitelli, P.; Valenti, P.; Bianchi, L. Lactoferrin against SARS-CoV-2: in vitro and in silico evidences. Front. Pharmacol., 2021, 12, 666600. doi: 10.3389/fphar.2021.666600 PMID: 34220505
  62. Elnagdy, S.; AlKhazindar, M. The potential of antimicrobial peptides as an antiviral therapy against COVID-19. ACS Pharmacol. Transl. Sci., 2020, 3(4), 780-782. doi: 10.1021/acsptsci.0c00059 PMID: 32821884
  63. Spohn, R.; Daruka, L.; Lázár, V.; Martins, A.; Vidovics, F.; Grézal, G.; Méhi, O.; Kintses, B.; Számel, M.; Jangir, P.K.; Csörgő, B.; Györkei, Á.; Bódi, Z.; Faragó, A.; Bodai, L.; Földesi, I.; Kata, D.; Maróti, G.; Pap, B.; Wirth, R.; Papp, B.; Pál, C. Integrated evolutionary analysis reveals antimicrobial peptides with limited resistance. Nat Commun, 2019, 10(1), 4538. doi: 10.1038/s41467-019-12364-6
  64. Shi, J.; Chen, C.; Wang, D.; Wang, Z.; Liu, Y. The antimicrobial peptide LI14 combats multidrug-resistant bacterial infections. Commun. Biol., 2022, 5(1), 926. doi: 10.1038/s42003-022-03899-4 PMID: 36071151
  65. Kintses, B.; Jangir, P.K.; Fekete, G.; Számel, M.; Méhi, O.; Spohn, R.; Daruka, L.; Martins, A.; Hosseinnia, A.; Gagarinova, A.; Kim, S.; Phanse, S.; Csörgő, B.; Györkei, Á.; Ari, E.; Lázár, V.; Nagy, I.; Babu, M.; Pál, C.; Papp, B. Chemical-genetic profiling reveals limited cross-resistance between antimicrobial peptides with different modes of action. Nat. Commun., 2019, 10(1), 5731. doi: 10.1038/s41467-019-13618-z PMID: 31844052
  66. Oyston, P.C.F.; Fox, M.A.; Richards, S.J.; Clark, G.C. Novel peptide therapeutics for treatment of infections. J. Med. Microbiol., 2009, 58(8), 977-987. doi: 10.1099/jmm.0.011122-0 PMID: 19528155
  67. Sierra, J.M.; Fusté, E.; Rabanal, F.; Vinuesa, T.; Viñas, M. An overview of antimicrobial peptides and the latest advances in their development. Expert Opin. Biol. Ther., 2017, 17(6), 663-676. doi: 10.1080/14712598.2017.1315402 PMID: 28368216
  68. Wang, T.T.; Nestel, F.P.; Bourdeau, V.; Nagai, Y.; Wang, Q.; Liao, J.; Tavera-Mendoza, L.; Lin, R.; Hanrahan, J.W.; Mader, S.; White, J.H. Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J. Immunol., 2004, 173(5), 2909-2912. doi: 10.4049/jimmunol.173.5.2909 PMID: 15322146
  69. Wiig, M.E.; Dahlin, L.B.; Fridén, J.; Hagberg, L.; Larsen, S.E.; Wiklund, K.; Mahlapuu, M. PXL01 in sodium hyaluronate for improvement of hand recovery after flexor tendon repair surgery: Randomized controlled trial. PLoS One., 2014, 9(10), e110735.
  70. DrugDataBase. Available from: http://www.drugsdb.eu/index.php?l=c (Accessed on: July 2018).
  71. Usmani, S.S.; Bedi, G.; Samuel, J.S.; Singh, S.; Kalra, S.; Kumar, P.; Ahuja, A.A.; Sharma, M.; Gautam, A.; Raghava, G.P.S. THPdb: Database of FDA-approved peptide and protein therapeutics. PLoS One, 2017, 12(7), e0181748. doi: 10.1371/journal.pone.0181748 PMID: 28759605
  72. Davis, C.A.; Janssen, E.M.L. Environmental fate processes of antimicrobial peptides daptomycin, bacitracins, and polymyxins. Environ. Int., 2020, 134, 105271. doi: 10.1016/j.envint.2019.105271 PMID: 31704562
  73. Lang, C.; Staiger, C. Tyrothricin--An underrated agent for the treatment of bacterial skin infections and superficial wounds? Pharmazie, 2016, 71(6), 299-305. PMID: 27455547
  74. Berditsch, M.; Trapp, M.; Afonin, S.; Weber, C.; Misiewicz, J.; Turkson, J.; Ulrich, A.S. Antimicrobial peptide gramicidin S is accumulated in granules of producer cells for storage of bacterial phosphagens. Sci Rep., 2017, 7, 44324. doi: 10.1038/srep44324
  75. Cunha, B.; Sessa, J.; Blum, S. Enhanced efficacy of high dose oral vancomycin therapy in Clostridium difficile diarrhea for hospitalized adults not responsive to conventional oral vancomycin therapy: Antibiotic stewardship implications. J. Clin. Med., 2018, 7(4), 75. doi: 10.3390/jcm7040075 PMID: 29642570
  76. Golan, Y. Current treatment options for acute skin and skin-structure infections. Clin Infect Dis., 2019, 68(S3), S206-S212. doi: 10.1093/cid/ciz004
  77. Giannella, M.; Bartoletti, M.; Gatti, M.; Viale, P. Advances in the therapy of bacterial bloodstream infections. Clin. Microbiol. Infect., 2020, 26(2), 158-167. doi: 10.1016/j.cmi.2019.11.001 PMID: 31733377
  78. Gomes, B.; Augusto, M.T.; Felício, M.R.; Hollmann, A.; Franco, O.L.; Gonçalves, S.; Santos, N.C. Designing improved active peptides for therapeutic approaches against infectious diseases. Biotechnol. Adv., 2018, 36(2), 415-429. doi: 10.1016/j.biotechadv.2018.01.004 PMID: 29330093
  79. Estrada, S.; Lodise, T.P.; Tillotson, G.S.; Delaportas, D. The real-world economic and clinical management of adult patients with skin and soft tissue infections (SSTIs) with oritavancin: Data from two multicenter observational cohort studies. Drugs Real World Outcomes, 2020, 7(S1), 6-12. doi: 10.1007/s40801-020-00199-3 PMID: 32588389
  80. Durante-Mangoni, E.; Gambardella, M.; Iula, V.D.; De Stefano, G.F.; Corrado, M.F.; Esposito, V.; Gentile, I.; Coppola, N. Current trends in the real-life use of dalbavancin: Report of a study panel. Int. J. Antimicrob. Agents, 2020, 56(4), 106107. doi: 10.1016/j.ijantimicag.2020.106107 PMID: 32721599
  81. Kirker, K.R.; Fisher, S.T.; James, G.A. Potency and penetration of telavancin in staphylococcal biofilms. Int. J. Antimicrob. Agents, 2015, 46(4), 451-455. doi: 10.1016/j.ijantimicag.2015.05.022 PMID: 26213381
  82. Venkatraman, S. Discovery of boceprevir, a direct-acting NS3/4A protease inhibitor for treatment of chronic hepatitis C infections. Trends Pharmacol. Sci., 2012, 33(5), 289-294. doi: 10.1016/j.tips.2012.03.012 PMID: 22521415
  83. Njoroge, F.G.; Chen, K.X.; Shih, N.Y.; Piwinski, J.J. Challenges in modern drug discovery: A case study of boceprevir, an HCV protease inhibitor for the treatment of hepatitis C virus infection. Acc. Chem. Res., 2008, 41(1), 50-59. doi: 10.1021/ar700109k PMID: 18193821
  84. Saravolatz, L.D.; Stein, G.E. Oritavancin: A long-half-life lipoglycopeptide. Clin. Infect. Dis., 2015, 61(4), 627-632. doi: 10.1093/cid/civ311 PMID: 25900171
  85. Saravolatz, L.D.; Pawlak, J.; Johnson, L.B. In vitro activity of oritavancin against community-associated meticillin-resistant Staphylococcus aureus (CA-MRSA), vancomycin-intermediate S. aureus (VISA), vancomycin-resistant S. aureus (VRSA) and daptomycin-non-susceptible S. aureus (DNSSA). Int. J. Antimicrob. Agents, 2010, 36(1), 69-72. doi: 10.1016/j.ijantimicag.2010.02.023 PMID: 20413274
  86. Popovic, N.; Korac, M.; Nesic, Z.; Milosevic, B.; Urosevic, A.; Jevtovic, D.; Pelemis, M.; Delic, D.; Prostran, M.; Milosevic, I. Oral teicoplanin for successful treatment of severe refractory Clostridium difficile infection. J. Infect. Dev. Ctries., 2015, 9(10), 1062-1067. doi: 10.3855/jidc.6335 PMID: 26517480
  87. Ojha, S.C.; Phanchana, M.; Harnvoravongchai, P.; Chankhamhaengdecha, S.; Singhakaew, S.; Ounjai, P.; Janvilisri, T. Teicoplanin suppresses vegetative clostridioides difficile and spore outgrowth. Antibiotics, 2021, 10(8), 984. doi: 10.3390/antibiotics10080984
  88. Giroir, B.P.; Scannon, P.J.; Levin, M. Bactericidal/permeability-increasing protein-Lessons learned from the phase III, randomized, clinical trial of rBPI21 for adjunctive treatment of children with severe meningococcemia. Crit. Care Med., 2001, 29(S7), S130-S135. doi: 10.1097/00003246-200107001-00039 PMID: 11445748
  89. Schultz, H.; Hume, J.; Zhang, D.S.; Gioannini, T.L.; Weiss, J.P. A novel role for the bactericidal/permeability increasing protein in interactions of gram-negative bacterial outer membrane blebs with dendritic cells. J. Immunol., 2007, 179(4), 2477-2484. doi: 10.4049/jimmunol.179.4.2477 PMID: 17675509
  90. Costa, F.; Teixeira, C.; Gomes, P.; Martins, M.C.L. Clinical application of AMPs. Adv. Exp. Med. Biol., 2019, 1117, 281-298. doi: 10.1007/978-981-13-3588-4_15 PMID: 30980363
  91. von der Möhlen, M.A.M.; Kimmings, A.N.; Wedel, N.I.; Mevissen, M.L.C.M.; Jansen, J.; Friedmann, N.; Lorenz, T.J.; Nelson, B.J.; White, M.L.; Bauer, R.; Hack, C.E.; Eerenberg, A.J.M.; van Deventer, S.J.H. Inhibition of endotoxin-induced cytokine release and neutrophil activation in humans by use of recombinant bactericidal/permeability-increasing protein. J. Infect. Dis., 1995, 172(1), 144-151. doi: 10.1093/infdis/172.1.144 PMID: 7797904
  92. Lau, J.L.; Dunn, M.K. Therapeutic peptides: Historical perspectives, current development trends, and future directions. Bioorg. Med. Chem., 2018, 26(10), 2700-2707. doi: 10.1016/j.bmc.2017.06.052 PMID: 28720325
  93. Henninot, A.; Collins, J.C.; Nuss, J.M. The current state of peptide drug discovery: Back to the future? J. Med. Chem., 2018, 61(4), 1382-1414. doi: 10.1021/acs.jmedchem.7b00318 PMID: 28737935
  94. Ioannou, P.; Baliou, S.; Kofteridis, D.P. Antimicrobial peptides in infectious diseases and beyond-a narrative review. Life, 2023, 13(8), 1651. doi: 10.3390/life13081651 PMID: 37629508
  95. Fan, L.; Sun, J.; Zhou, M.; Zhou, J.; Lao, X.; Zheng, H.; Xu, H. DRAMP: A comprehensive data repository of antimicrobial peptides. Sci. Rep., 2016, 6(1), 24482. doi: 10.1038/srep24482 PMID: 27075512
  96. Malanovic, N.; Lohner, K. Antimicrobial peptides targeting gram-positive bacteria. Pharmaceuticals., 2016, 9(3), 59. doi: 10.3390/ph9030059 PMID: 27657092
  97. Fox, J.L. Antimicrobial peptides stage a comeback. Nat. Biotechnol., 2013, 31(5), 379-382. doi: 10.1038/nbt.2572 PMID: 23657384
  98. Hojo, K.; Hara, A.; Kitai, H.; Onishi, M.; Ichikawa, H.; Fukumori, Y.; Kawasaki, K. Development of a method for environmentally friendly chemical peptide synthesis in water using water-dispersible amino acid nanoparticles. Chem. Cent. J., 2011, 5(1), 49. doi: 10.1186/1752-153X-5-49 PMID: 21867548
  99. van der Does, A.M.; Hensbergen, P.J.; Bogaards, S.J.; Cansoy, M.; Deelder, A.M.; van Leeuwen, H.C.; Drijfhout, J.W.; van Dissel, J.T.; Nibbering, P.H. The human lactoferrin-derived peptide hLF1-11 exerts immunomodulatory effects by specific inhibition of myeloperoxidase activity. J Immunol., 2012, 188(10), 5012-5019.
  100. Stallmann, H.P.; Faber, C.; Bronckers, A.L.J.J.; de Blieck-Hogervorst, J.M.A.; Brouwer, C.P.J.M.; Amerongen, A.V.N.; Wuisman, P.I.J.M. Histatin and lactoferrin derived peptides: Antimicrobial properties and effects on mammalian cells. Peptides, 2005, 26(12), 2355-2359. doi: 10.1016/j.peptides.2005.05.014 PMID: 15979203
  101. Puri, S.; Edgerton, M. How does it kill?: Understanding the candidacidal mechanism of salivary histatin 5. Eukaryot. Cell, 2014, 13(8), 958-964. doi: 10.1128/EC.00095-14 PMID: 24951439
  102. Eckert, R. Road to clinical efficacy: Challenges and novel strategies for antimicrobial peptide development. Future Microbiol., 2011, 6(6), 635-651. doi: 10.2217/fmb.11.27 PMID: 21707311
  103. Kaplan, C.W.; Sim, J.H.; Shah, K.R.; Kolesnikova-Kaplan, A.; Shi, W.; Eckert, R. Selective membrane disruption: Mode of action of C16G2, a specifically targeted antimicrobial peptide. Antimicrob. Agents Chemother., 2011, 55(7), 3446-3452. doi: 10.1128/AAC.00342-11 PMID: 21518845
  104. Kudrimoti, M.; Curtis, A.; Azawi, S.; Worden, F.; Katz, S.; Adkins, D.; Bonomi, M.; Elder, J.; Sonis, S.T.; Straube, R.; Donini, O. Dusquetide: A novel innate defense regulator demonstrating a significant and consistent reduction in the duration of oral mucositis in preclinical data and a randomized, placebo-controlled phase 2a clinical study. J. Biotechnol., 2016, 239, 115-125. doi: 10.1016/j.jbiotec.2016.10.010 PMID: 27746305
  105. Greber, K.E.; Dawgul, M.; Kamysz, W.; Sawicki, W. Cationic net charge and counter ion type as antimicrobial activity determinant factors of short lipopeptides. Front. Microbiol., 2017, 8, 123. doi: 10.3389/fmicb.2017.00123 PMID: 28203232
  106. Dijksteel, GS; Ulrich, MMW; Middelkoop, E; Boekema, BKHL Review: Lessons learned from clinical trials using antimicrobial peptides (AMPs). Front Microbiol., 2021, 12, 616979.
  107. Schneider, T.; Gries, K.; Josten, M.; Wiedemann, I.; Pelzer, S.; Labischinski, H.; Sahl, H.G. The lipopeptide antibiotic Friulimicin B inhibits cell wall biosynthesis through complex formation with bactoprenol phosphate. Antimicrob. Agents Chemother., 2009, 53(4), 1610-1618. doi: 10.1128/AAC.01040-08 PMID: 19164139
  108. Crowther, G.S.; Baines, S.D.; Todhunter, S.L.; Freeman, J.; Chilton, C.H.; Wilcox, M.H. Evaluation of NVB302 versus vancomycin activity in an in vitro human gut model of Clostridium difficile infection. J. Antimicrob. Chemother., 2013, 68(1), 168-176. doi: 10.1093/jac/dks359 PMID: 22966180
  109. Lee, G.; Bae, H. Anti-inflammatory applications of melittin, a major component of bee venom: Detailed mechanism of action and adverse effects. Molecules, 2016, 21(5), 616. doi: 10.3390/molecules21050616 PMID: 27187328
  110. Isaksson, J.; Brandsdal, B.O.; Engqvist, M.; Flaten, G.E.; Svendsen, J.S.M.; Stensen, W. A synthetic antimicrobial peptidomimetic (LTX 109): Stereochemical impact on membrane disruption. J. Med. Chem., 2011, 54(16), 5786-5795. doi: 10.1021/jm200450h PMID: 21732630
  111. Sivertsen, A.; Isaksson, J.; Leiros, H.K.S.; Svenson, J.; Svendsen, J.S.; Brandsdal, B.O. Synthetic cationic antimicrobial peptides bind with their hydrophobic parts to drug site II of human serum albumin. BMC Struct. Biol., 2014, 14(1), 4. doi: 10.1186/1472-6807-14-4 PMID: 24456893
  112. Malanovic, N.; Leber, R.; Schmuck, M.; Kriechbaum, M.; Cordfunke, R.A.; Drijfhout, J.W.; de Breij, A.; Nibbering, P.H.; Kolb, D.; Lohner, K. Phospholipid-driven differences determine the action of the synthetic antimicrobial peptide OP-145 on Gram-positive bacterial and mammalian membrane model systems. Biochim. Biophys. Acta Biomembr., 2015, 1848(10), 2437-2447. doi: 10.1016/j.bbamem.2015.07.010 PMID: 26210299
  113. Welling, M.; Brouwer, C.; Roscini, L.; Cardinali, G.; Corte, L.; Casagrande, P.D. Structure-activity relationship study of synthetic variants derived from the highly potent human antimicrobial peptide hLF(1- 11). Cohesive J. Microbiol. Infect. Dis., 2018, 1(3)
  114. Brown, K.L.; Poon, G.F.T.; Birkenhead, D.; Pena, O.M.; Falsafi, R.; Dahlgren, C.; Karlsson, A.; Bylund, J.; Hancock, R.E.W.; Johnson, P. Host defense peptide LL-37 selectively reduces proinflammatory macrophage responses. J. Immunol., 2011, 186(9), 5497-5505. doi: 10.4049/jimmunol.1002508 PMID: 21441450
  115. Srinivas, N.; Jetter, P.; Ueberbacher, B.J.; Werneburg, M.; Zerbe, K.; Steinmann, J.; Van der Meijden, B.; Bernardini, F.; Lederer, A.; Dias, R.L.A.; Misson, P.E.; Henze, H.; Zumbrunn, J.; Gombert, F.O.; Obrecht, D.; Hunziker, P.; Schauer, S.; Ziegler, U.; Käch, A.; Eberl, L.; Riedel, K.; DeMarco, S.J.; Robinson, J.A. Peptidomimetic antibiotics target outer-membrane biogenesis in Pseudomonas aeruginosa. Science, 2010, 327(5968), 1010-1013. doi: 10.1126/science.1182749 PMID: 20167788
  116. Guo, L.; McLean, J.S.; Yang, Y.; Eckert, R.; Kaplan, C.W.; Kyme, P.; Sheikh, O.; Varnum, B.; Lux, R.; Shi, W.; He, X. Precision-guided antimicrobial peptide as a targeted modulator of human microbial ecology. Proc. Natl. Acad. Sci., 2015, 112(24), 7569-7574. doi: 10.1073/pnas.1506207112 PMID: 26034276
  117. Mercer, D.K.; Robertson, J.C.; Miller, L.; Stewart, C.S.; O’Neil, D.A. NP213 (Novexatin®): A unique therapy candidate for onychomycosis with a differentiated safety and efficacy profile. Med. Mycol., 2020, 58(8), 1064-1072. doi: 10.1093/mmy/myaa015 PMID: 32232410
  118. Leeds, J.A.; Sachdeva, M.; Mullin, S.; Dzink-Fox, J.; LaMarche, M.J. Mechanism of action of and mechanism of reduced susceptibility to the novel anti-Clostridium difficile compound LFF571. Antimicrob. Agents Chemother., 2012, 56(8), 4463-4465. doi: 10.1128/AAC.06354-11 PMID: 22644023
  119. Travis, S.; Yap, L.M.; Hawkey, C.; Warren, B.; Lazarov, M.; Fong, T.; Tesi, R.J. RDP58 is a novel and potentially effective oral therapy for ulcerative colitis. Inflamm. Bowel Dis., 2005, 11(8), 713-719. doi: 10.1097/01.MIB.0000172807.26748.16 PMID: 16043985
  120. Håkansson, J.; Ringstad, L.; Umerska, A.; Johansson, J.; Andersson, T.; Boge, L.; Rozenbaum, R.T.; Sharma, P.K.; Tollbäck, P.; Björn, C.; Saulnier, P.; Mahlapuu, M. Characterization of the in vitro, ex vivo, and in vivo efficacy of the antimicrobial peptide DPK-060 used for topical treatment. Front. Cell. Infect. Microbiol., 2019, 9, 174. doi: 10.3389/fcimb.2019.00174 PMID: 31192163
  121. Peyrusson, F.; Butler, D.; Tulkens, P.M.; Van Bambeke, F. Cellular pharmacokinetics and intracellular activity of the novel peptide deformylase inhibitor GSK1322322 against Staphylococcus aureus laboratory and clinical strains with various resistance phenotypes: Tudies with human THP-1 monocytes and J774 murine macrophages. Antimicrob. Agents Chemother., 2015, 59(9), 5747-5760. doi: 10.1128/AAC.00827-15 PMID: 26169402
  122. Edsfeldt, S.; Holm, B.; Mahlapuu, M.; Reno, C.; Hart, D.A.; Wiig, M. PXL01 in sodium hyaluronate results in increased PRG4 expression: A potential mechanism for anti-adhesion. Ups. J. Med. Sci., 2017, 122(1), 28-34. doi: 10.1080/03009734.2016.1230157 PMID: 27658527
  123. Doi, K.; Hu, X.; Yuen, P.S.T.; Leelahavanichkul, A.; Yasuda, H.; Kim, S.M.; Schnermann, J.; Jonassen, T.E.N.; Frøkiær, J.; Nielsen, S.; Star, R.A. AP214, an analogue of α-melanocyte-stimulating hormone, ameliorates sepsis-induced acute kidney injury and mortality. Kidney Int., 2008, 73(11), 1266-1274. doi: 10.1038/ki.2008.97 PMID: 18354376
  124. Mensa, B.; Howell, G.L.; Scott, R.; DeGrado, W.F. Comparative mechanistic studies of brilacidin, daptomycin, and the antimicrobial peptide LL16. Antimicrob. Agents Chemother., 2014, 58(9), 5136-5145. doi: 10.1128/AAC.02955-14 PMID: 24936592
  125. Ooi, N.; Miller, K.; Hobbs, J.; Rhys-Williams, W.; Love, W.; Chopra, I. XF-73, a novel antistaphylococcal membrane-active agent with rapid bactericidal activity. J. Antimicrob. Chemother., 2009, 64(4), 735-740. doi: 10.1093/jac/dkp299 PMID: 19689976
  126. Jang, W.S.; Li, X.S.; Sun, J.N.; Edgerton, M. The P-113 fragment of histatin 5 requires a specific peptide sequence for intracellular translocation in Candida albicans, which is independent of cell wall binding. Antimicrob. Agents Chemother., 2008, 52(2), 497-504. doi: 10.1128/AAC.01199-07 PMID: 17999963
  127. van Groenendael, R.; Kox, M.; van Eijk, L.T.; Pickkers, P. Immunomodulatory and kidney-protective effects of the human chorionic gonadotropin derivate EA-230. Nephron J., 2018, 140(2), 148-151. doi: 10.1159/000490772 PMID: 29982253
  128. Yasir, M.; Dutta, D.; Hossain, K.R.; Chen, R.; Ho, K.K.K.; Kuppusamy, R.; Clarke, R.J.; Kumar, N.; Willcox, M.D.P. Mechanism of action of surface immobilized antimicrobial peptides against Pseudomonas aeruginosa. Front. Microbiol., 2020, 10, 3053. doi: 10.3389/fmicb.2019.03053 PMID: 32038530
  129. Yasir, M.; Dutta, D.; Willcox, M.D.P. Mode of action of the antimicrobial peptide Mel4 is independent of Staphylococcus aureus cell membrane permeability. PLoS One, 2019, 14(7), e0215703. doi: 10.1371/journal.pone.0215703 PMID: 31356627
  130. David, J.M.; Rajasekaran, A.K. Gramicidin A: a new mission for an old antibiotic. J. Kidney Cancer VHL, 2015, 2(1), 15-24. doi: 10.15586/jkcvhl.2015.21 PMID: 28326255
  131. Yu, Z.; Qin, W.; Lin, J.; Fang, S.; Qiu, J. Antibacterial mechanisms of polymyxin and bacterial resistance. BioMed Res. Int., 2015, 2015, 1-11. doi: 10.1155/2015/679109 PMID: 25664322
  132. Taylor, S.D.; Palmer, M. The action mechanism of daptomycin. Bioorg. Med. Chem., 2016, 24(24), 6253-6268. doi: 10.1016/j.bmc.2016.05.052 PMID: 27288182
  133. Muchintala, D.; Suresh, V.; Raju, D.; Sashidhar, R.B. Synthesis and characterization of cecropin peptide-based silver nanocomposites: Its antibacterial activity and mode of action. Mater. Sci. Eng. C, 2020, 110, 110712. doi: 10.1016/j.msec.2020.110712 PMID: 32204024
  134. Alam, M.Z.; Wu, X.; Mascio, C.; Chesnel, L.; Hurdle, J.G. Mode of action and bactericidal properties of surotomycin against growing and nongrowing Clostridium difficile. Antimicrob. Agents Chemother., 2015, 59(9), 5165-5170. doi: 10.1128/AAC.01087-15 PMID: 26055381
  135. Gottler, L.M.; Ramamoorthy, A. Structure, membrane orientation, mechanism, and function of pexiganan — A highly potent antimicrobial peptide designed from magainin. Biochim. Biophys. Acta Biomembr., 2009, 1788(8), 1680-1686. doi: 10.1016/j.bbamem.2008.10.009 PMID: 19010301
  136. Easton, D.M.; Nijnik, A.; Mayer, M.L.; Hancock, R.E.W. Potential of immunomodulatory host defense peptides as novel anti-infectives. Trends Biotechnol., 2009, 27(10), 582-590. doi: 10.1016/j.tibtech.2009.07.004 PMID: 19683819
  137. Rubinchik, E.; Dugourd, D.; Algara, T.; Pasetka, C.; Friedland, H.D. Antimicrobial and antifungal activities of a novel cationic antimicrobial peptide, omiganan, in experimental skin colonisation models. Int. J. Antimicrob. Agents, 2009, 34(5), 457-461. doi: 10.1016/j.ijantimicag.2009.05.003 PMID: 19524411
  138. Vorland, L.H. Lactoferrin: A multifunctional glycoprotein. Acta Pathol. Microbiol. Scand. Suppl., 1999, 107(7-12), 971-981. doi: 10.1111/j.1699-0463.1999.tb01499.x PMID: 10598868
  139. Bruni, N.; Capucchio, M.; Biasibetti, E.; Pessione, E.; Cirrincione, S.; Giraudo, L.; Corona, A.; Dosio, F. Antimicrobial activity of lactoferrin-related peptides and applications in human and veterinary medicine. Molecules, 2016, 21(6), 752. doi: 10.3390/molecules21060752 PMID: 27294909
  140. Yamauchi, K.; Tomita, M.; Giehl, T.J.; Ellison, R.T., III Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment. Infect. Immun., 1993, 61(2), 719-728. doi: 10.1128/iai.61.2.719-728.1993 PMID: 8423097
  141. Vorland, L.H.; Ulvatne, H.; Andersen, J.; Haukland, H.; Rekdal, O.; Svendsen, J.S.; Gutteberg, T.J. Lactoferricin of bovine origin is more active than lactoferricins of human, murine and caprine origin. Scand. J. Infect. Dis., 1998, 30(5), 513-517. doi: 10.1080/00365549850161557 PMID: 10066056
  142. Silva, T.; Magalhães, B.; Maia, S.; Gomes, P.; Nazmi, K.; Bolscher, J.G.M.; Rodrigues, P.N.; Bastos, M.; Gomes, M.S. Killing of Mycobacterium avium by lactoferricin peptides: improved activity of arginine- and D-amino-acid-containing molecules. Antimicrob. Agents Chemother., 2014, 58(6), 3461-3467. doi: 10.1128/AAC.02728-13 PMID: 24709266
  143. Ulvatne, H.; Haukland, H.H.; Olsvik, O.; Vorland, L.H. Lactoferricin B causes depolarization of the cytoplasmic membrane of Escherichia coli ATCC 25922 and fusion of negatively charged liposomes. FEBS Lett., 2001, 492(1-2), 62-65.
  144. van der Strate, B.W.A.; Beljaars, L.; Molema, G.; Harmsen, M.C.; Meijer, D.K.F. Antiviral activities of lactoferrin. Antiviral Res., 2001, 52(3), 225-239. doi: 10.1016/S0166-3542(01)00195-4 PMID: 11675140
  145. Superti, F.; Ammendolia, M.G.; Valenti, P.; Seganti, L. Antirotaviral activity of milk proteins: Lactoferrin prevents rotavirus infection in the enterocyte-like cell line HT-29. Med. Microbiol. Immunol., 1997, 186(2-3), 83-91. doi: 10.1007/s004300050049 PMID: 9403835
  146. Ikeda, M.; Nozaki, A.; Sugiyama, K.; Tanaka, T.; Naganuma, A.; Tanaka, K.; Sekihara, H.; Shimotohno, K.; Saito, M.; Kato, N. Characterization of antiviral activity of lactoferrin against hepatitis C virus infection in human cultured cells. Virus Res., 2000, 66(1), 51-63. doi: 10.1016/S0168-1702(99)00121-5 PMID: 10653917
  147. Arzanlou, M.; Chai, W.C.; Venter, H. Intrinsic, adaptive and acquired antimicrobial resistance in Gram-negative bacteria. Essays Biochem., 2017, 61(1), 49-59.
  148. Vesga, O.; Groeschel, M.C.; Otten, M.F.; Brar, D.W.; Vann, J.M.; Proctor, R.A. Staphylococcus aureus small colony variants are induced by the endothelial cell intracellular milieu. J. Infect. Dis., 1996, 173(3), 739-742. doi: 10.1093/infdis/173.3.739 PMID: 8627043
  149. Guina, T.; Yi, E.C.; Wang, H.; Hackett, M.; Miller, S.I. A PhoP-regulated outer membrane protease of Salmonella enterica serovar typhimurium promotes resistance to alpha-helical antimicrobial peptides. J. Bacteriol., 2000, 182(14), 4077-4086. doi: 10.1128/JB.182.14.4077-4086.2000 PMID: 10869088
  150. Groisman, E.A.; Duprey, A.; Choi, J. How the PhoP/PhoQ system controls virulence and Mg 2+ Homeostasis: Lessons in signal transduction, pathogenesis, physiology, and evolution. Microbiol. Mol. Biol. Rev., 2021, 85(3), e00176-20. doi: 10.1128/MMBR.00176-20 PMID: 34191587
  151. Guo, L.; Lim, K.B.; Gunn, J.S.; Bainbridge, B.; Darveau, R.P.; Hackett, M.; Miller, S.I. Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP-phoQ. Science, 1997, 276(5310), 250-253. doi: 10.1126/science.276.5310.250 PMID: 9092473
  152. Sader, H.S.; Dale, G.E.; Rhomberg, P.R.; Flamm, R.K. Antimicrobial activity of murepavadin tested against clinical isolates of Pseudomonas aeruginosa from the United States, Europe, and China. Antimicrob Agents Chemother., 2018, 62(7), e00311-e00318.
  153. Shao, C.; Zhu, Y.; Lai, Z.; Tan, P.; Shan, A. Antimicrobial peptides with protease stability: Progress and perspective. Future Med. Chem., 2019, 11(16), 2047-2050. doi: 10.4155/fmc-2019-0167 PMID: 31538527
  154. Dathe, M.; Wieprecht, T. Structural features of helical antimicrobial peptides: Their potential to modulate activity on model membranes and biological cells. Biochim. Biophys. Acta Biomembr., 1999, 1462(1-2), 71-87. doi: 10.1016/S0005-2736(99)00201-1 PMID: 10590303
  155. Martin-Loeches, I.; Dale, G.E.; Torres, A. Murepavadin: A new antibiotic class in the pipeline. Expert Rev. Anti Infect. Ther., 2018, 16(4), 259-268. doi: 10.1080/14787210.2018.1441024 PMID: 29451043
  156. Wang, K.; Yan, J.; Chen, R.; Dang, W.; Zhang, B.; Zhang, W.; Song, J.; Wang, R. Membrane-active action mode of polybia-CP, a novel antimicrobial peptide isolated from the venom of Polybia paulista. Antimicrob. Agents Chemother., 2012, 56(6), 3318-3323. doi: 10.1128/AAC.05995-11 PMID: 22450985
  157. Jia, F; Wang, J; Peng, J; Zhao, P; Kong, Z; Wang, K; Yan, W; Wang, R D-amino acid substitution enhances the stability of antimicrobial peptide polybia-CP. Acta Biochim Biophys Sin, 2017, 49(10), 916-925.
  158. Zheng, R.; Yao, B.; Yu, H.; Wang, H.; Bian, J.; Feng, F. Novel family of antimicrobial peptides from the skin of Rana shuchinae. Peptides, 2010, 31(9), 1674-1677. doi: 10.1016/j.peptides.2010.05.014 PMID: 20553780
  159. Mant, C.T.; Jiang, Z.; Gera, L.; Davis, T.; Hodges, R.S. Design of novel amphipathic α-helical antimicrobial peptides with no toxicity as therapeutics against the antibiotic-resistant gram-negative bacterial pathogen, Acinetobacter Baumannii. J Med Chem Drug Des., 2019, 2(2), 114. PMID: 34377965
  160. Sun, S.; Zhao, G.; Huang, Y.; Cai, M.; Yan, Q.; Wang, H.; Chen, Y. Enantiomeric effect of d-amino acid substitution on the mechanism of action of α-helical membrane-active peptides. Int. J. Mol. Sci., 2017, 19(1), 67. doi: 10.3390/ijms19010067
  161. The amide linkage: Structural significance in chemistry, biochemistry, and materials science; Greenberg, A.; Breneman, C.M.; Liebman, J.F., Eds.; John Wiley & Sons, 2002.
  162. Raibaut, L.; El Mahdi, O.; Melnyk, O. Solid phase protein chemical synthesis. Top. Curr. Chem., 2014, 363, 103-154. doi: 10.1007/128_2014_609 PMID: 25791484
  163. Martin, V.; Egelund, P.H.G.; Johansson, H.; Thordal Le Quement, S.; Wojcik, F.; Sejer Pedersen, D. Greening the synthesis of peptide therapeutics: An industrial perspective. RSC Advances, 2020, 10(69), 42457-42492. doi: 10.1039/D0RA07204D PMID: 35516773
  164. Müller, H.; Salzig, D.; Czermak, P. Considerations for the process development of insect-derived antimicrobial peptide production. Biotechnol. Prog., 2015, 31(1), 1-11. doi: 10.1002/btpr.2002 PMID: 25311397
  165. da Cunha, N.B.; Cobacho, N.B.; Viana, J.F.C.; Lima, L.A.; Sampaio, K.B.O.; Dohms, S.S.M.; Ferreira, A.C.R.; de la Fuente-Núñez, C.; Costa, F.F.; Franco, O.L.; Dias, S.C. The next generation of antimicrobial peptides (AMPs) as molecular therapeutic tools for the treatment of diseases with social and economic impacts. Drug Discov. Today, 2017, 22(2), 234-248. doi: 10.1016/j.drudis.2016.10.017 PMID: 27890668
  166. Zhang, B.; Shanmugaraj, B.; Daniell, H. Expression and functional evaluation of biopharmaceuticals made in plant chloroplasts. Curr. Opin. Chem. Biol., 2017, 38, 17-23. doi: 10.1016/j.cbpa.2017.02.007 PMID: 28229907
  167. Lee, S.B.; Li, B.; Jin, S.; Daniell, H. Expression and characterization of antimicrobial peptides Retrocyclin-101 and Protegrin-1 in chloroplasts to control viral and bacterial infections. Plant Biotechnol. J., 2011, 9(1), 100-115. doi: 10.1111/j.1467-7652.2010.00538.x PMID: 20553419
  168. Daniell, H.; Lin, C.S.; Yu, M.; Chang, W.J. Chloroplast genomes: Diversity, evolution, and applications in genetic engineering. Genome Biol., 2016, 17(1), 134. doi: 10.1186/s13059-016-1004-2 PMID: 27339192
  169. Ekladious, I.; Colson, Y.L.; Grinstaff, M.W. Polymer–drug conjugate therapeutics: Advances, insights and prospects. Nat. Rev. Drug Discov., 2019, 18(4), 273-294. doi: 10.1038/s41573-018-0005-0 PMID: 30542076
  170. Mahlapuu, M.; Håkansson, J.; Ringstad, L.; Björn, C. Antimicrobial peptides: an emerging category of therapeutic agents. Front. Cell. Infect. Microbiol., 2016, 6, 194. doi: 10.3389/fcimb.2016.00194 PMID: 28083516
  171. Nordström, R.; Malmsten, M. Delivery systems for antimicrobial peptides. Adv. Colloid Interface Sci., 2017, 242, 17-34. doi: 10.1016/j.cis.2017.01.005 PMID: 28159168
  172. Malmsten, M. Soft drug delivery systems. Soft Matter, 2006, 2(9), 760-769. doi: 10.1039/b608348j PMID: 32680216
  173. Li, P.; Nielsen, H.M.; Müllertz, A. Oral delivery of peptides and proteins using lipid-based drug delivery systems. Expert Opin. Drug Deliv., 2012, 9(10), 1289-1304. doi: 10.1517/17425247.2012.717068 PMID: 22897647
  174. Çağdaş, M.; Sezer, A.D.; Bucak, S. Liposomes as potential drug carrier systems for drug delivery. In: Application of Nanotechnology in Drug Delivery; Intechopen, 2014. doi: 10.5772/58459
  175. Wessman, P.; Morin, M.; Reijmar, K.; Edwards, K. Effect of α-helical peptides on liposome structure: A comparative study of melittin and alamethicin. J. Colloid Interface Sci., 2010, 346(1), 127-135. doi: 10.1016/j.jcis.2010.02.032 PMID: 20226468
  176. Ron-Doitch, S.; Sawodny, B.; Kühbacher, A.; David, M.M.N.; Samanta, A.; Phopase, J.; Burger-Kentischer, A.; Griffith, M.; Golomb, G.; Rupp, S. Reduced cytotoxicity and enhanced bioactivity of cationic antimicrobial peptides liposomes in cell cultures and 3D epidermis model against HSV. J. Control. Release, 2016, 229(229), 163-171. doi: 10.1016/j.jconrel.2016.03.025 PMID: 27012977
  177. Taylor, T.M.; Gaysinsky, S.; Davidson, P.M.; Bruce, B.D.; Weiss, J. Characterization of antimicrobial-bearing liposomes by ζ-Potential, vesicle size, and encapsulation efficiency. Food Biophys., 2007, 2(1), 1-9. doi: 10.1007/s11483-007-9023-x
  178. Sadiq, S.; Imran, M.; Habib, H.; Shabbir, S.; Ihsan, A.; Zafar, Y.; Hafeez, F.Y. Potential of monolaurin based food-grade nano-micelles loaded with nisin Z for synergistic antimicrobial action against Staphylococcus aureus. Lebensm. Wiss. Technol., 2016, 71, 227-233. doi: 10.1016/j.lwt.2016.03.045
  179. Reinhardt, A.; Neundorf, I. Design and application of antimicrobial peptide conjugates. Int. J. Mol. Sci., 2016, 17(5), 701. doi: 10.3390/ijms17050701
  180. d’Angelo, I.; Casciaro, B.; Miro, A.; Quaglia, F.; Mangoni, M.L.; Ungaro, F. Overcoming barriers in Pseudomonas aeruginosa lung infections: Engineered nanoparticles for local delivery of a cationic antimicrobial peptide. Colloids Surf. B Biointerfaces, 2015, 135, 717-725. doi: 10.1016/j.colsurfb.2015.08.027 PMID: 26340361
  181. Yüksel, E.; Karakeçili, A.; Demirtaş, T.T.; Gümüşderelioğlu, M. Preparation of bioactive and antimicrobial PLGA membranes by magainin II/EGF functionalization. Int. J. Biol. Macromol., 2016, 86, 162-168. doi: 10.1016/j.ijbiomac.2016.01.061 PMID: 26802245
  182. Mariathasan, S.; Tan, M.W. Antibody–antibiotic conjugates: A novel therapeutic platform against bacterial infections. Trends Mol. Med., 2017, 23(2), 135-149. doi: 10.1016/j.molmed.2016.12.008 PMID: 28126271
  183. Lehar, S.M.; Pillow, T.; Xu, M.; Staben, L.; Kajihara, K.K.; Vandlen, R.; DePalatis, L.; Raab, H.; Hazenbos, W.L.; Morisaki, J.H.; Kim, J.; Park, S.; Darwish, M.; Lee, B.C.; Hernandez, H.; Loyet, K.M.; Lupardus, P.; Fong, R.; Yan, D.; Chalouni, C.; Luis, E.; Khalfin, Y.; Plise, E.; Cheong, J.; Lyssikatos, J.P.; Strandh, M.; Koefoed, K.; Andersen, P.S.; Flygare, J.A.; Wah Tan, M.; Brown, E.J.; Mariathasan, S. Novel antibody-antibiotic conjugate eliminates intracellular S. aureus. Nature., 2015, 527(7578), 323-328.
  184. Lee, H.; Lim, S.I.; Shin, S.H.; Lim, Y.; Koh, J.W.; Yang, S. Conjugation of cell-penetrating peptides to antimicrobial peptides enhances antibacterial activity. ACS Omega, 2019, 4(13), 15694-15701. doi: 10.1021/acsomega.9b02278 PMID: 31572872
  185. Umstätter, F; Domhan, C; Hertlein, T; Ohlsen, K; Mühlberg, E; Kleist, C; Zimmermann, S; Beijer, B; Klika, KD; Haberkorn, U; Mier, W; Uhl, P Vancomycin resistance is overcome by conjugation of polycationic peptides. Angew Chem Int Ed Engl., 2020, 59(23), 8823-8827.
  186. Siriwardena, T.N.; Capecchi, A.; Gan, B.H.; Jin, X.; He, R.; Wei, D.; Ma, L.; Köhler, T.; van Delden, C.; Javor, S.; Reymond, J.L. Optimizing antimicrobial peptide dendrimers in chemical space. Angew. Chem. Int. Ed., 2018, 57(28), 8483-8487. doi: 10.1002/anie.201802837 PMID: 29767453
  187. McCarthy, T.D.; Karellas, P.; Henderson, S.A.; Giannis, M.; O’Keefe, D.F.; Heery, G.; Paull, J.R.A.; Matthews, B.R.; Holan, G. Dendrimers as drugs: Discovery and preclinical and clinical development of dendrimer-based microbicides for HIV and STI prevention. Mol. Pharm., 2005, 2(4), 312-318. doi: 10.1021/mp050023q PMID: 16053334
  188. Gide, M.; Nimmagadda, A.; Su, M.; Wang, M.; Teng, P.; Li, C.; Gao, R.; Xu, H.; Li, Q.; Cai, J. Nano-sized lipidated dendrimers as potent and broad-spectrum antibacterial agents. Macromol. Rapid Commun., 2018, 39(24), 1800622. doi: 10.1002/marc.201800622 PMID: 30408252
  189. García-Gallego, S.; Franci, G.; Falanga, A.; Gómez, R.; Folliero, V.; Galdiero, S.; de la Mata, F.; Galdiero, M. Function oriented molecular design: Dendrimers as novel antimicrobials. Molecules, 2017, 22(10), 1581. doi: 10.3390/molecules22101581 PMID: 28934169
  190. Scorciapino, M.; Serra, I.; Manzo, G.; Rinaldi, A. Antimicrobial dendrimeric peptides: Structure, activity and new therapeutic applications. Int. J. Mol. Sci., 2017, 18(3), 542. doi: 10.3390/ijms18030542 PMID: 28273806
  191. Pompilio, A.; Geminiani, C.; Mantini, P.; Siriwardena, T.N.; Di Bonaventura, I.; Reymond, J.L.; Di Bonaventura, G. Peptide dendrimers as "lead compounds" for the treatment of chronic lung infections by Pseudomonas aeruginosa in cystic fibrosis patients: in vitro and in vivo studies. Infect. Drug Resist., 2018, 11, 1767-1782. doi: 10.2147/IDR.S168868 PMID: 30349334
  192. Liu, Z.; Young, A.W.; Hu, P.; Rice, A.J.; Zhou, C.; Zhang, Y.; Kallenbach, N.R. Tuning the membrane selectivity of antimicrobial peptides by using multivalent design. ChemBioChem, 2007, 8(17), 2063-2065. doi: 10.1002/cbic.200700502 PMID: 17924379
  193. Pires, J.; Siriwardena, T.N.; Stach, M.; Tinguely, R.; Kasraian, S.; Luzzaro, F.; Leib, S.L.; Darbre, T.; Reymond, J.L.; Endimiani, A. In vitro activity of the novel antimicrobial peptide dendrimer G3KL against multidrug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa. Antimicrob. Agents Chemother., 2015, 59(12), 7915-7918. doi: 10.1128/AAC.01853-15 PMID: 26459893
  194. Batoni, G.; Maisetta, G.; Lisa Brancatisano, F.; Esin, S.; Campa, M. Use of antimicrobial peptides against microbial biofilms: Advantages and limits. Curr. Med. Chem., 2011, 18(2), 256-279. doi: 10.2174/092986711794088399 PMID: 21110801
  195. Syryamina, V.N.; Samoilova, R.I.; Tsvetkov, Y.D.; Ischenko, A.V.; De Zotti, M.; Gobbo, M.; Toniolo, C.; Formaggio, F.; Dzuba, S.A. Peptides on the Surface: Spin-label EPR and PELDOR study of adsorption of the antimicrobial peptides trichogin GA IV and ampullosporin a on the silica nanoparticles. Appl. Magn. Reson., 2016, 47(3), 309-320. doi: 10.1007/s00723-015-0745-5
  196. Godoy-Gallardo, M.; Mas-Moruno, C.; Yu, K.; Manero, J.M.; Gil, F.J.; Kizhakkedathu, J.N.; Rodriguez, D. Antibacterial properties of hLf1-11 peptide onto titanium surfaces: A comparison study between silanization and surface initiated polymerization. Biomacromolecules, 2015, 16(2), 483-496. doi: 10.1021/bm501528x PMID: 25545728
  197. Chen, W.Y.; Chang, H.Y.; Lu, J.K.; Huang, Y.C.; Harroun, S.G.; Tseng, Y.T.; Li, Y.J.; Huang, C.C.; Chang, H.T. Self-assembly of antimicrobial peptides on gold nanodots: Against multidrug-resistant bacteria and wound-healing application. Adv. Funct. Mater., 2015, 25(46), 7189-7199. doi: 10.1002/adfm.201503248
  198. Chaudhari, A.A.; Ashmore, D.; Nath, S.; Kate, K.; Dennis, V.; Singh, S.R.; Owen, D.R.; Palazzo, C.; Arnold, R.D.; Miller, M.E.; Pillai, S.R. A novel covalent approach to bio-conjugate silver coated single walled carbon nanotubes with antimicrobial peptide. J. Nanobiotechnology, 2016, 14(1), 58. doi: 10.1186/s12951-016-0211-z PMID: 27412259
  199. Galdiero, E.; Siciliano, A.; Maselli, V.; Gesuele, R.; Guida, M.; Fulgione, D.; Galdiero, S.; Lombardi, L.; Falanga, A. An integrated study on antimicrobial activity and ecotoxicity of quantum dots and quantum dots coated with the antimicrobial peptide indolicidin. Int. J. Nanomedicine, 2016, 11, 4199-4211. doi: 10.2147/IJN.S107752 PMID: 27616887
  200. Kanchanapally, R; Viraka Nellore, BP; Sinha, SS; Pedraza, F; Jones, SJ; Pramanik, A; Chavva, SR; Tchounwou, C; Shi, Y; Vangara, A; Sardar, D; Ray, PC Antimicrobial peptide-conjugated graphene oxide membrane for efficient removal and effective killing of multiple drug resistant bacteria. RSC Adv., 2015, 5(24), 18881-18887. doi: 10.1039/C5RA01321F
  201. Dostalova, S.; Moulick, A.; Milosavljevic, V.; Guran, R.; Kominkova, M.; Cihalova, K.; Heger, Z.; Blazkova, L.; Kopel, P.; Hynek, D.; Vaculovicova, M.; Adam, V.; Kizek, R. Antiviral activity of fullerene C60 nanocrystals modified with derivatives of anionic antimicrobial peptide maximin H5. Monatsh. Chem., 2016, 147(5), 905-918. doi: 10.1007/s00706-016-1675-0
  202. Vivero-Escoto, J.L.; Slowing, I.I.; Trewyn, B.G.; Lin, V.S.Y. Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small, 2010, 6(18), 1952-1967. doi: 10.1002/smll.200901789 PMID: 20690133
  203. Urbán, P.; Jose Valle-Delgado, J.; Moles, E.; Marques, J.; Díez, C.; Fernàndez-Busquets, X. Nanotools for the delivery of antimicrobial peptides. Curr. Drug Targets, 2012, 13(9), 1158-1172. doi: 10.2174/138945012802002302 PMID: 22664075
  204. Imanparast, F.; Faramarzi, M.A.; Vatannejad, A.; Paknejad, M.; Deiham, B.; Kobarfard, F.; Amani, A.; Doosti, M. mZD7349 peptide-conjugated PLGA nanoparticles directed against VCAM-1 for targeted delivery of simvastatin to restore dysfunctional HUVECs. Microvasc. Res., 2017, 112, 14-19. doi: 10.1016/j.mvr.2017.02.002 PMID: 28161429
  205. Martin-Serrano, Á.; Gómez, R.; Ortega, P.; de la Mata, F.J. Nanosystems as vehicles for the delivery of antimicrobial peptides (AMPs). Pharmaceutics, 2019, 11(9), 448. doi: 10.3390/pharmaceutics11090448 PMID: 31480680
  206. Makowski, M.; Silva, Í.C.; Pais do Amaral, C.; Gonçalves, S.; Santos, N.C. Advances in lipid and metal nanoparticles for antimicrobial peptide delivery. Pharmaceutics, 2019, 11(11), 588. doi: 10.3390/pharmaceutics11110588 PMID: 31717337
  207. Abbina, S; Vappala, S; Kumar, P; Siren, EMJ; La, CC; Abbasi, U; Brooks, DE; Kizhakkedathu, JN Hyperbranched polyglycerols: Recent advances in synthesis, biocompatibility and biomedical applications. J Mater Chem B., 2017, 5(47), 9249-9277.
  208. Zurawski, D.V.; McLendon, M.K. Monoclonal antibodies as an antibacterial approach against bacterial pathogens. Antibiotics, 2020, 9(4), 155. doi: 10.3390/antibiotics9040155 PMID: 32244733
  209. Ahmad, Z.; Shah, A.; Siddiq, M.; Kraatz, H.B. Polymeric micelles as drug delivery vehicles. RSC Advances, 2014, 4(33), 17028-17038. doi: 10.1039/C3RA47370H
  210. Jhaveri, A.M.; Torchilin, V.P. Multifunctional polymeric micelles for delivery of drugs and siRNA. Front. Pharmacol., 2014, 5, 77. doi: 10.3389/fphar.2014.00077 PMID: 24795633
  211. Kwon, G.S.; Kataoka, K. Block copolymer micelles as long-circulating drug vehicles. Adv. Drug Deliv. Rev., 1995, 16(2-3), 295-309. doi: 10.1016/0169-409X(95)00031-2

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers