The Role of the Vagus Nerve in the Microbiome and Digestive System in Relation to Epilepsy


Cite item

Full Text

Abstract

:The Enteric Nervous System (ENS) is described as a division of the Peripheral Nervous System (PNS), located within the gut wall and it is formed by two main plexuses: the myenteric plexus (Auerbach's) and the submucosal plexus (Meissner's). The contribution of the ENS to the pathophysiology of various neurological diseases such as Parkinson's or Alzheimer's disease has been described in the literature, while some other studies have found a connection between epilepsy and the gastrointestinal tract. The above could be explained by cholinergic neurons and neurotransmission systems in the myenteric and submucosal plexuses, regulating the vagal excitability effect. It is also understandable, as the discharges arising in the amygdala are transmitted to the intestine through projections the dorsal motor nucleus of the vagus, giving rise to efferent fibers that stimulate the gastrointestinal tract and consequently the symptoms at this level. Therefore, this review's main objective is to argue in favor of the existing relationship of the ENS with the Central Nervous System (CNS) as a facilitator of epileptogenic or ictogenic mechanisms. The gut microbiota also participates in this interaction; however, it depends on many individual factors of each human being. The link between the ENS and the CNS is a poorly studied epileptogenic site with a big impact on one of the most prevalent neurological conditions such as epilepsy.

About the authors

Carmen Rubio

Departamento de Neurofisiología, Instituto Nacional de Neurologìa y Neurocirugía

Email: info@benthamscience.net

Ernesto Ochoa

Departamento de Neurofisiología, Instituto Nacional de Neurologìa y Neurocirugía

Email: info@benthamscience.net

Fernando Gatica

Departamento de Neurofisiología, Instituto Nacional de Neurologìa y Neurocirugía

Email: info@benthamscience.net

Alonso Portilla

Departamento de Neurofisiología, Instituto Nacional de Neurologìa y Neurocirugía

Email: info@benthamscience.net

David Vázquez

Departamento de Neurofisiología, Instituto Nacional de Neurologìa y Neurocirugía

Email: info@benthamscience.net

Moisés Rubio-Osornio

Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía

Author for correspondence.
Email: info@benthamscience.net

References

  1. Rao, M.; Gershon, M.D. The bowel and beyond: The enteric nervous system in neurological disorders. Nat. Rev. Gastroenterol. Hepatol., 2016, 13(9), 517-528. doi: 10.1038/nrgastro.2016.107 PMID: 27435372
  2. Camilleri, M. Disorders of gastrointestinal motility in neurologic diseases. Mayo Clin. Proc., 1990, 65(6), 825-846. doi: 10.1016/S0025-6196(12)62574-9 PMID: 2164123
  3. Benarroch, E.E. Enteric nervous system: Functional organization and neurologic implications. Neurology, 2007, 69(20), 1953-1957. doi: 10.1212/01.wnl.0000281999.56102.b5 PMID: 17998487
  4. Horoupian, D.S.; Kim, Y. Encephalomyeloneuropathy with ganglionitis of the myenteric plexuses in the absence of cancer. Ann. Neurol., 1982, 11(6), 628-632. doi: 10.1002/ana.410110613 PMID: 7114813
  5. Ghosh, S. Mechanism of intestinal entry of infectious prion protein in the pathogenesis of variant Creutzfeldt–Jakob disease. Adv. Drug Deliv. Rev., 2004, 56(6), 915-920. doi: 10.1016/j.addr.2003.10.035 PMID: 15063598
  6. McElhanon, B.O.; McCracken, C.; Karpen, S.; Sharp, W.G. Gastrointestinal symptoms in autism spectrum disorder: A meta-analysis. Pediatrics, 2014, 133(5), 872-883. doi: 10.1542/peds.2013-3995 PMID: 24777214
  7. Chang, L.; Wei, Y.; Hashimoto, K. Brain–gut–microbiota axis in depression: A historical overview and future directions. Brain Res. Bull., 2022, 182, 44-56. doi: 10.1016/j.brainresbull.2022.02.004 PMID: 35151796
  8. Socała, K.; Doboszewska, U.; Szopa, A.; Serefko, A.; Włodarczyk, M.; Zielińska, A.; Poleszak, E.; Fichna, J.; Wlaź, P. The role of microbiota-gut-brain axis in neuropsychiatric and neurological disorders. Pharmacol. Res., 2021, 172, 105840. doi: 10.1016/j.phrs.2021.105840 PMID: 34450312
  9. Stokholm, M.G.; Danielsen, E.H.; Hamilton-Dutoit, S.J.; Borghammer, P. Pathological α-synuclein in gastrointestinal tissues from prodromal Parkinson disease patients. Ann. Neurol., 2016, 79(6), 940-949. doi: 10.1002/ana.24648 PMID: 27015771
  10. Puig, K.L.; Lutz, B.M.; Urquhart, S.A.; Rebel, A.A.; Zhou, X.; Manocha, G.D.; Sens, M.; Tuteja, A.K.; Foster, N.L.; Combs, C.K. Overexpression of mutant amyloid-β protein precursor and presenilin 1 modulates enteric nervous system. J. Alzheimers Dis., 2015, 44(4), 1263-1278. doi: 10.3233/JAD-142259 PMID: 25408221
  11. Naveed, M.; Zhou, Q.G.; Xu, C.; Taleb, A.; Meng, F.; Ahmed, B.; Zhang, Y.; Fukunaga, K.; Han, F. Gut-brain axis: A matter of concern in neuropsychiatric disorders ! Prog. Neuropsychopharmacol. Biol. Psychiatry, 2021, 104, 110051. doi: 10.1016/j.pnpbp.2020.110051 PMID: 32758517
  12. Kundu, S.; Nayak, S.; Rakshit, D.; Singh, T.; Shukla, R.; Khatri, D.K.; Mishra, A. The microbiome–gut–brain axis in epilepsy: Pharmacotherapeutic target from bench evidence for potential bedside applications. Eur. J. Neurol., 2023, 2023, 15767. doi: 10.1111/ene.15767 PMID: 36880679
  13. Pitkänen, A.; Lukasiuk, K.; Dudek, F.E.; Staley, K.J. Epileptogenesis. Cold Spring Harb. Perspect. Med., 2015, 5(10), a022822. doi: 10.1101/cshperspect.a022822 PMID: 26385090
  14. Papathanasiou, E.S.; Pantzaris, M.; Myrianthopoulou, P.; Kkolou, E.; Papacostas, S.S. Brainstem lesions may be important in the development of epilepsy in multiple sclerosis patients: An evoked potential study. Clin. Neurophysiol., 2010, 121(12), 2104-2110. doi: 10.1016/j.clinph.2010.05.017 PMID: 20542465
  15. Streng, M.L.; Krook-Magnuson, E. The cerebellum and epilepsy. Epilepsy Behav., 2021, 121(Pt B), 106909. doi: 10.1016/j.yebeh.2020.106909 PMID: 32035793
  16. Cloix, J.F.; Hévor, T. Epilepsy, regulation of brain energy metabolism and neurotransmission. Curr. Med. Chem., 2009, 16(7), 841-853. doi: 10.2174/092986709787549316 PMID: 19275597
  17. Avoli, M.; D’Antuono, M.; Louvel, J.; Köhling, R.; Biagini, G.; Pumain, R.; D’Arcangelo, G.; Tancredi, V. Network and pharmacological mechanisms leading to epileptiform synchronization in the limbic system in vitro. Prog. Neurobiol., 2002, 68(3), 167-207. doi: 10.1016/S0301-0082(02)00077-1 PMID: 12450487
  18. Sarlo, G.L.; Holton, K.F. Brain concentrations of glutamate and GABA in human epilepsy: A review. Seizure, 2021, 91, 213-227. doi: 10.1016/j.seizure.2021.06.028 PMID: 34233236
  19. Lascano, A.M.; Korff, C.M.; Picard, F. Seizures and epilepsies due to channelopathies and neurotransmitter receptor dysfunction: A parallel between genetic and immune aspects. Mol. Syndromol., 2016, 7(4), 197-209. doi: 10.1159/000447707 PMID: 27781030
  20. Devinsky, O.; Vezzani, A.; Najjar, S.; De Lanerolle, N.C.; Rogawski, M.A. Glia and epilepsy: Excitability and inflammation. Trends Neurosci., 2013, 36(3), 174-184. doi: 10.1016/j.tins.2012.11.008 PMID: 23298414
  21. Curia, G.; Lucchi, C.; Vinet, J.; Gualtieri, F.; Marinelli, C.; Torsello, A.; Costantino, L.; Biagini, G. Pathophysiogenesis of mesial temporal lobe epilepsy: Is prevention of damage antiepileptogenic? Curr. Med. Chem., 2014, 21(6), 663-688. doi: 10.2174/0929867320666131119152201 PMID: 24251566
  22. Azevedo, F.A.C.; Carvalho, L.R.B.; Grinberg, L.T.; Farfel, J.M.; Ferretti, R.E.L.; Leite, R.E.P.; Filho, W.J.; Lent, R.; Herculano-Houzel, S. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J. Comp. Neurol., 2009, 513(5), 532-541. doi: 10.1002/cne.21974 PMID: 19226510
  23. Clasadonte, J.; Haydon, P.G. Astrocytes and epilepsy. In: Jasper’s Basic Mechanisms of the Epilepsies, 4th ed.; Noebels, J.L.; Avoli, M.; Rogawski, M.A., Eds.; National Center for Biotechnology Information (US): Bethesda, MD, 2012. doi: 10.1093/med/9780199746545.003.0046
  24. Nikolic, L.; Shen, W.; Nobili, P.; Virenque, A.; Ulmann, L.; Audinat, E. Blocking TNFα-driven astrocyte purinergic signaling restores normal synaptic activity during epileptogenesis. Glia, 2018, 66(12), 2673-2683. doi: 10.1002/glia.23519 PMID: 30394583
  25. Wang, G.; Wang, J.; Xin, C.; Xiao, J.; Liang, J.; Wu, X. Inflammatory response in epilepsy is mediated by glial cell gap junction pathway (Review). Mol. Med. Rep., 2021, 24(1), 493. doi: 10.3892/mmr.2021.12132 PMID: 33955516
  26. Jabs, R.; Seifert, G.; Steinhäuser, C. Astrocytic function and its alteration in the epileptic brain. Epilepsia, 2008, 49(2), 3-12. doi: 10.1111/j.1528-1167.2008.01488.x PMID: 18226167
  27. Bauer, J.; Elger, C.E.; Hans, V.H.; Schramm, J.; Urbach, H.; Lassmann, H.; Bien, C.G. Astrocytes are a specific immunological target in Rasmussen’s encephalitis. Ann. Neurol., 2007, 62(1), 67-80. doi: 10.1002/ana.21148 PMID: 17503512
  28. Wetherington, J.; Serrano, G.; Dingledine, R. Astrocytes in the epileptic brain. Neuron, 2008, 58(2), 168-178. doi: 10.1016/j.neuron.2008.04.002 PMID: 18439402
  29. Rubio, C.; López-López, F.; Rojas-Hernández, D.; Moreno, W.; Rodríguez-Quintero, P.; Rubio-Osornio, M. Caloric restriction: Anti-inflammatory and antioxidant mechanisms against epileptic seizures. Epilepsy Res., 2022, 186, 107012. doi: 10.1016/j.eplepsyres.2022.107012 PMID: 36027691
  30. Boer, K.; Spliet, W.G.M.; van Rijen, P.C.; Redeker, S.; Troost, D.; Aronica, E. Evidence of activated microglia in focal cortical dysplasia. J. Neuroimmunol., 2006, 173(1-2), 188-195. doi: 10.1016/j.jneuroim.2006.01.002 PMID: 16483671
  31. Ravizza, T.; Boer, K.; Redeker, S.; Spliet, W.G.M.; van Rijen, P.C.; Troost, D.; Vezzani, A.; Aronica, E. The IL-1β system in epilepsy-associated malformations of cortical development. Neurobiol. Dis., 2006, 24(1), 128-143. doi: 10.1016/j.nbd.2006.06.003 PMID: 16860990
  32. Akyuz, E.; Polat, A.K.; Eroglu, E.; Kullu, I.; Angelopoulou, E.; Paudel, Y.N. Revisiting the role of neurotransmitters in epilepsy: An updated review. Life Sci., 2021, 265, 118826. doi: 10.1016/j.lfs.2020.118826 PMID: 33259863
  33. Rubio, C.; Rubio-Osornio, M.; Retana-Márquez, S.; Lopez, M.; Custodio, V.; Paz, C. In vivo experimental models of epilepsy. Cent. Nerv. Syst. Agents Med. Chem., 2010, 10(4), 298-309. doi: 10.2174/187152410793429746 PMID: 20868357
  34. Sibarov, D.A.; Antonov, S.M. Calcium-dependent desensitization of NMDA receptors. Biochemistry, 2018, 83(10), 1173-1183. doi: 10.1134/S0006297918100036 PMID: 30472955
  35. Conn, P.J.; Pin, J.P. Pharmacology and functions of metabotropic glutamate receptors. Annu. Rev. Pharmacol. Toxicol., 1997, 37(1), 205-237. doi: 10.1146/annurev.pharmtox.37.1.205 PMID: 9131252
  36. Tanaka, K.; Watase, K.; Manabe, T.; Yamada, K.; Watanabe, M.; Takahashi, K.; Iwama, H.; Nishikawa, T.; Ichihara, N.; Kikuchi, T.; Okuyama, S.; Kawashima, N.; Hori, S.; Takimoto, M.; Wada, K. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science, 1997, 276(5319), 1699-1702. doi: 10.1126/science.276.5319.1699 PMID: 9180080
  37. Mahmoud, S.; Gharagozloo, M.; Simard, C.; Gris, D. Astrocytes maintain glutamate homeostasis in the CNS by controlling the balance between glutamate uptake and release. Cells, 2019, 8(2), 184. doi: 10.3390/cells8020184 PMID: 30791579
  38. Schousboe, A.; Barker-Haliski, M.; Steve White, H. Modulation of excitability via glutamate and gaba transporters. Curated Ref. Collect Neurosci. Biobehav. Psychol., 2018, 397-401. doi: 10.1016/B978-0-12-809324-5.22709-0
  39. Lorigados, L.; Orozco, S.; Morales, L.; Estupiñán, B.; García, I.; Rocha, L. Excitotoxicidad y muerte neuronal en la epilepsia. Biotecnol. Apl., 2013, 30, 1-8.
  40. Shih, A.Y.; Erb, H.; Sun, X.; Toda, S.; Kalivas, P.W.; Murphy, T.H. Cystine/glutamate exchange modulates glutathione supply for neuroprotection from oxidative stress and cell proliferation. J. Neurosci., 2006, 26(41), 10514-10523. doi: 10.1523/JNEUROSCI.3178-06.2006 PMID: 17035536
  41. Liang, L.P.; Patel, M. Plasma cysteine/cystine redox couple disruption in animal models of temporal lobe epilepsy. Redox Biol., 2016, 9, 45-49. doi: 10.1016/j.redox.2016.05.004 PMID: 27285054
  42. Uttara, B.; Singh, A.; Zamboni, P.; Mahajan, R. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol., 2009, 7(1), 65-74. doi: 10.2174/157015909787602823 PMID: 19721819
  43. Pearson-Smith, J.; Patel, M. Metabolic dysfunction and oxidative stress in epilepsy. Int. J. Mol. Sci., 2017, 18(11), 2365. doi: 10.3390/ijms18112365 PMID: 29117123
  44. Vezzani, A.; French, J.; Bartfai, T.; Baram, T.Z. The role of inflammation in epilepsy. Nat. Rev. Neurol., 2011, 7(1), 31-40. doi: 10.1038/nrneurol.2010.178 PMID: 21135885
  45. Iori, V.; Frigerio, F.; Vezzani, A. Modulation of neuronal excitability by immune mediators in epilepsy. Curr. Opin. Pharmacol., 2016, 26, 118-123. doi: 10.1016/j.coph.2015.11.002 PMID: 26629681
  46. Galic, M.A.; Riazi, K.; Pittman, Q.J. Cytokines and brain excitability. Front. Neuroendocrinol., 2012, 33(1), 116-125. doi: 10.1016/j.yfrne.2011.12.002 PMID: 22214786
  47. Bradford, H.F. Glutamate, GABA and epilepsy. Prog. Neurobiol., 1995, 47(6), 477-511. doi: 10.1016/0301-0082(95)00030-5 PMID: 8787032
  48. Guerriero, R.M.; Giza, C.C.; Rotenberg, A. Glutamate and GABA imbalance following traumatic brain injury. Curr. Neurol. Neurosci. Rep., 2015, 15(5), 27. doi: 10.1007/s11910-015-0545-1 PMID: 25796572
  49. Devinsky, O.; Vezzani, A.; O’Brien, T.J.; Jette, N.; Scheffer, I.E.; de Curtis, M.; Perucca, P. Epilepsy. Nat. Rev. Dis. Primers, 2018, 4(1), 18024. doi: 10.1038/nrdp.2018.24 PMID: 29722352
  50. Furness, J.B.; Callaghan, B.P.; Rivera, L.R.; Cho, H.J. The enteric nervous system and gastrointestinal innervation: Integrated local and central control. Adv. Exp. Med. Biol., 2014, 817, 39-71. doi: 10.1007/978-1-4939-0897-4_3 PMID: 24997029
  51. Herculano-Houzel, S. The human brain in numbers: A linearly scaled-up primate brain. Front. Hum. Neurosci., 2009, 3, 31. doi: 10.3389/neuro.09.031.2009 PMID: 19915731
  52. Furness, J.B.; Rivera, L.R.; Cho, H.J.; Bravo, D.M.; Callaghan, B. The gut as a sensory organ. Nat. Rev. Gastroenterol. Hepatol., 2013, 10(12), 729-740. doi: 10.1038/nrgastro.2013.180 PMID: 24061204
  53. Furness, J.B. The enteric nervous system and neurogastroenterology. Nat. Rev. Gastroenterol. Hepatol., 2012, 9(5), 286-294. doi: 10.1038/nrgastro.2012.32 PMID: 22392290
  54. Yoo, B.B.; Mazmanian, S.K. The enteric network: Interactions between the immune and nervous systems of the Gut. Immunity, 2017, 46(6), 910-926. doi: 10.1016/j.immuni.2017.05.011 PMID: 28636959
  55. Spencer, N.J.; Hu, H. Enteric nervous system: sensory transduction, neural circuits and gastrointestinal motility. Nat. Rev. Gastroenterol. Hepatol., 2020, 17(6), 338-351. doi: 10.1038/s41575-020-0271-2 PMID: 32152479
  56. Ren, J.; Hu, H-Z.; Liu, S.; Xia, Y.; Wood, J.D. Glutamate receptors in the enteric nervous system: Ionotropic or metabotropic? Neurogastroenterol. Motil., 2000, 12(3), 257-264. doi: 10.1046/j.1365-2982.2000.00207.x PMID: 10867623
  57. Liu, M.T.; Rothstein, J.D.; Gershon, M.D.; Kirchgessner, A.L. Glutamatergic enteric neurons. J. Neurosci., 1997, 17(12), 4764-4784. doi: 10.1523/JNEUROSCI.17-12-04764.1997 PMID: 9169536
  58. Giaroni, C.; Zanetti, E.; Chiaravalli, A.M.; Albarello, L.; Dominioni, L.; Capella, C.; Lecchini, S.; Frigo, G. Evidence for a glutamatergic modulation of the cholinergic function in the human enteric nervous system via NMDA receptors. Eur. J. Pharmacol., 2003, 476(1-2), 63-69. doi: 10.1016/S0014-2999(03)02147-2 PMID: 12969750
  59. Wiley, J.W.; Lu, Y.X.; Owyang, C. Evidence for a glutamatergic neural pathway in the myenteric plexus. Am. J. Physiol., 1991, 261(4 Pt 1), G693-G700. PMID: 1681738
  60. Gwynne, R.; Bornstein, J. Synaptic transmission at functionally identified synapses in the enteric nervous system: Roles for both ionotropic and metabotropic receptors. Curr. Neuropharmacol., 2007, 5(1), 1-17. doi: 10.2174/157015907780077141 PMID: 18615154
  61. Kirchgessner, A.L.; Liu, M.T.; Alcantara, F. Excitotoxicity in the enteric nervous system. J. Neurosci., 1997, 17(22), 8804-8816. doi: 10.1523/JNEUROSCI.17-22-08804.1997 PMID: 9348349
  62. Beyak, M.J. Visceral afferents - Determinants and modulation of excitability. Auton. Neurosci., 2010, 153(1-2), 69-78. doi: 10.1016/j.autneu.2009.07.019 PMID: 19674942
  63. rühl Glial cells in the gut. Neurogastroenterol. Motil., 2005, 17(6), 777-790. doi: 10.1111/j.1365-2982.2005.00687.x PMID: 16336493
  64. Obrenovitch, T.P.; Urenjak, J. Altered glutamatergic transmission in neurological disorders: From high extracellular glutamate to excessive synaptic efficacy. Prog. Neurobiol., 1997, 51(1), 39-87. doi: 10.1016/S0301-0082(96)00049-4 PMID: 9044428
  65. Bornstein, J.C.; Costa, M.; Furness, J.B. Synaptic inputs to immunohistochemically identified neurones in the submucous plexus of the guinea-pig small intestine. J. Physiol., 1986, 381(1), 465-482. doi: 10.1113/jphysiol.1986.sp016339 PMID: 3305874
  66. Koussoulas, K.; Swaminathan, M.; Fung, C.; Bornstein, J.C.; Foong, J.P.P. Neurally released GABA acts via GABAC receptors to modulate Ca2+ transients evoked by trains of synaptic inputs, but not responses evoked by single stimuli, in myenteric neurons of mouse ileum. Front. Physiol., 2018, 9, 97. doi: 10.3389/fphys.2018.00097 PMID: 29487540
  67. Jessen, K.R.; Mirsky, R.; Hills, J.M. GABA as an autonomic neurotransmitter: Studies on intrinsic GABAergic neurons in the myenteric plexus of the gut. Trends Neurosci., 1987, 10(6), 255-262. doi: 10.1016/0166-2236(87)90169-X
  68. Krantis, A. GABA in the mammalian enteric nervous system. Physiology, 2000, 15(6), 284-290. doi: 10.1152/physiologyonline.2000.15.6.284 PMID: 11390928
  69. Mayer, E.A.; Knight, R.; Mazmanian, S.K.; Cryan, J.F.; Tillisch, K. Gut microbes and the brain: Paradigm shift in neuroscience. J. Neurosci., 2014, 34(46), 15490-15496. doi: 10.1523/JNEUROSCI.3299-14.2014 PMID: 25392516
  70. Mitrea, L.; Nemeş, S.A.; Szabo, K.; Teleky, B.E.; Vodnar, D.C. Guts imbalance imbalances the brain: A review of gut microbiota association with neurological and psychiatric disorders. Front. Med., 2022, 9, 813204. doi: 10.3389/fmed.2022.813204 PMID: 35433746
  71. Ding, M.; Lang, Y.; Shu, H.; Shao, J.; Cui, L. Microbiota-gut-brain axis and epilepsy: A review on mechanisms and potential therapeutics. Front. Immunol., 2021, 12, 742449. doi: 10.3389/fimmu.2021.742449 PMID: 34707612
  72. Peng, A.; Qiu, X.; Lai, W.; Li, W.; Zhang, L.; Zhu, X.; He, S.; Duan, J.; Chen, L. Altered composition of the gut microbiome in patients with drug-resistant epilepsy. Epilepsy Res., 2018, 147, 102-107. doi: 10.1016/j.eplepsyres.2018.09.013 PMID: 30291996
  73. Lum, G.R.; Olson, C.A.; Hsiao, E.Y. Emerging roles for the intestinal microbiome in epilepsy. Neurobiol. Dis., 2020, 135, 104576. doi: 10.1016/j.nbd.2019.104576 PMID: 31445165
  74. McCoy, K.D.; Ronchi, F.; Geuking, M.B. Host-microbiota interactions and adaptive immunity. Immunol. Rev., 2017, 279(1), 63-69. doi: 10.1111/imr.12575 PMID: 28856735
  75. Ceccarani, C.; Viganò, I.; Ottaviano, E.; Redaelli, M.G.; Severgnini, M.; Vignoli, A.; Borghi, E. Is gut microbiota a key player in epilepsy onset? A longitudinal study in drug-naive children. Front. Cell. Infect. Microbiol., 2021, 11, 749509. doi: 10.3389/fcimb.2021.749509 PMID: 34926315
  76. Li, L.; Acioglu, C.; Heary, R.F.; Elkabes, S. Role of astroglial toll-like receptors (TLRs) in central nervous system infections, injury and neurodegenerative diseases. Brain Behav. Immun., 2021, 91, 740-755. doi: 10.1016/j.bbi.2020.10.007 PMID: 33039660
  77. De Caro, C.; Leo, A.; Nesci, V.; Ghelardini, C.; di Cesare Mannelli, L.; Striano, P.; Avagliano, C.; Calignano, A.; Mainardi, P.; Constanti, A.; Citraro, R.; De Sarro, G.; Russo, E. Intestinal inflammation increases convulsant activity and reduces antiepileptic drug efficacy in a mouse model of epilepsy. Sci. Rep., 2019, 9(1), 13983. doi: 10.1038/s41598-019-50542-0 PMID: 31562378
  78. Matin, N.; Tabatabaie, O.; Falsaperla, R.; Lubrano, R.; Pavone, P.; Mahmood, F.; Gullotta, M.; Serra, A.; Mauro, P.D.; Cocuzza, S.; Vitaliti, G. Epilepsy and innate immune system: A possible immunogenic predisposition and related therapeutic implications. Hum. Vaccin. Immunother., 2015, 11(8), 2021-2029. doi: 10.1080/21645515.2015.1034921 PMID: 26260962
  79. Dicks, L.M.T. Gut bacteria and neurotransmitters. Microorganisms, 2022, 10(9), 1838. doi: 10.3390/microorganisms10091838 PMID: 36144440
  80. Strandwitz, P. Neurotransmitter modulation by the gut microbiota. Brain Res., 2018, 1693((Pt B)), 128-133. doi: 10.1016/j.brainres.2018.03.015
  81. Javdan, B.; Lopez, J.G.; Chankhamjon, P.; Lee, Y.C.J.; Hull, R.; Wu, Q.; Wang, X.; Chatterjee, S.; Donia, M.S. Personalized mapping of drug metabolism by the human gut microbiome. Cell, 2020, 181(7), 1661-1679.e22. doi: 10.1016/j.cell.2020.05.001 PMID: 32526207
  82. Sorboni, S.G.; Moghaddam, H.S.; Jafarzadeh-Esfehani, R.; Soleimanpour, S. A comprehensive review on the role of the gut microbiome in human neurological disorders. Clin. Microbiol. Rev., 2022, 35(1), e00338-20. doi: 10.1128/CMR.00338-20 PMID: 34985325
  83. Zhang, Y.; Zhou, S.; Zhou, Y.; Yu, L.; Zhang, L.; Wang, Y. Altered gut microbiome composition in children with refractory epilepsy after ketogenic diet. Epilepsy Res., 2018, 145, 163-168. doi: 10.1016/j.eplepsyres.2018.06.015 PMID: 30007242
  84. Olson, C.A.; Vuong, H.E.; Yano, J.M.; Liang, Q.Y.; Nusbaum, D.J.; Hsiao, E.Y. The gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell, 2018, 173(7), 1728-1741.e13. doi: 10.1016/j.cell.2018.04.027 PMID: 29804833
  85. Makievskaya, C.I.; Popkov, V.A.; Andrianova, N.V.; Liao, X.; Zorov, D.B.; Plotnikov, E.Y. Ketogenic diet and ketone bodies against ischemic injury: targets, mechanisms, and therapeutic potential. Int. J. Mol. Sci., 2023, 24(3), 2576. doi: 10.3390/ijms24032576 PMID: 36768899
  86. Rubio, C.; Luna, R.; Rosiles, A.; Rubio-Osornio, M. Caloric restriction and ketogenic diet therapy for epilepsy: A molecular approach involving Wnt pathway and KATP channels. Front. Neurol., 2020, 11, 584298. doi: 10.3389/fneur.2020.584298 PMID: 33250850
  87. Dahlin, M.; Prast-Nielsen, S. The gut microbiome and epilepsy. EBioMedicine, 2019, 44, 741-746. doi: 10.1016/j.ebiom.2019.05.024 PMID: 31160269
  88. Bagheri, S.; Heydari, A.; Alinaghipour, A.; Salami, M. Effect of probiotic supplementation on seizure activity and cognitive performance in PTZ-induced chemical kindling. Epilepsy Behav., 2019, 95, 43-50. doi: 10.1016/j.yebeh.2019.03.038 PMID: 31026781
  89. Jakobsson, H.E.; Jernberg, C.; Andersson, A.F.; Sjölund-Karlsson, M.; Jansson, J.K.; Engstrand, L. Short-term antibiotic treatment has differing long-term impacts on the human throat and gut microbiome. PLoS One, 2010, 5(3), e9836. doi: 10.1371/journal.pone.0009836 PMID: 20352091
  90. Vrieze, A.; Out, C.; Fuentes, S.; Jonker, L.; Reuling, I.; Kootte, R.S.; van Nood, E.; Holleman, F.; Knaapen, M.; Romijn, J.A.; Soeters, M.R.; Blaak, E.E.; Dallinga-Thie, G.M.; Reijnders, D.; Ackermans, M.T.; Serlie, M.J.; Knop, F.K.; Holst, J.J.; van der Ley, C.; Kema, I.P.; Zoetendal, E.G.; de Vos, W.M.; Hoekstra, J.B.L.; Stroes, E.S.; Groen, A.K.; Nieuwdorp, M. Impact of oral vancomycin on gut microbiota, bile acid metabolism, and insulin sensitivity. J. Hepatol., 2014, 60(4), 824-831. doi: 10.1016/j.jhep.2013.11.034 PMID: 24316517
  91. Imani, S.; Buscher, H.; Marriott, D.; Gentili, S.; Sandaradura, I. Too much of a good thing: A retrospective study of β-lactam concentration–toxicity relationships. J. Antimicrob. Chemother., 2017, 72(10), 2891-2897. doi: 10.1093/jac/dkx209 PMID: 29091190
  92. Kitamura, S.; Sugihara, K.; Kuwasako, M.; Tatsumi, K. The role of mammalian intestinal bacteria in the reductive metabolism of zonisamide. J. Pharm. Pharmacol., 2011, 49(3), 253-256. doi: 10.1111/j.2042-7158.1997.tb06790.x PMID: 9231340
  93. Stokes, J.M.; Davis, J.H.; Mangat, C.S.; Williamson, J.R.; Brown, E.D. Discovery of a small molecule that inhibits bacterial ribosome biogenesis. ELife, 2014, 3, e03574. doi: 10.7554/eLife.03574 PMID: 25233066
  94. Medel-Matus, J.S.; Shin, D.; Dorfman, E.; Sankar, R.; Mazarati, A. Facilitation of kindling epileptogenesis by chronic stress may be mediated by intestinal microbiome. Epilepsia Open, 2018, 3(2), 290-294. doi: 10.1002/epi4.12114 PMID: 29881810
  95. De Caro, C.; Iannone, L.F.; Citraro, R.; Striano, P.; De Sarro, G.; Constanti, A.; Cryan, J.F.; Russo, E. Can we ‘seize’ the gut microbiota to treat epilepsy? Neurosci. Biobehav. Rev., 2019, 107, 750-764. doi: 10.1016/j.neubiorev.2019.10.002 PMID: 31626816
  96. Brookes, S.J.H.; Spencer, N.J.; Costa, M.; Zagorodnyuk, V.P. Extrinsic primary afferent signalling in the gut. Nat. Rev. Gastroenterol. Hepatol., 2013, 10(5), 286-296. doi: 10.1038/nrgastro.2013.29 PMID: 23438947
  97. Mengoni, F.; Salari, V.; Kosenkova, I.; Tsenov, G.; Donadelli, M.; Malerba, G.; Bertini, G.; Del Gallo, F.; Fabene, P.F. Gut microbiota modulates seizure susceptibility. Epilepsia, 2021, 62(9), e153-e157. doi: 10.1111/epi.17009 PMID: 34324703
  98. Zubareva, O.E.; Dyomina, A.V.; Kovalenko, A.A.; Roginskaya, A.I.; Melik-Kasumov, T.B.; Korneeva, M.A.; Chuprina, A.V.; Zhabinskaya, A.A.; Kolyhan, S.A.; Zakharova, M.V.; Gryaznova, M.O.; Zaitsev, A.V. Beneficial effects of probiotic Bifidobacterium longum in a lithium–pilocarpine model of temporal lobe epilepsy in rats. Int. J. Mol. Sci., 2023, 24(9), 8451. doi: 10.3390/ijms24098451 PMID: 37176158
  99. Hawton, K.; Hilliard, T.; Langton-Hewer, S.C.; Burren, C.; Crowne, E.C.; Hamilton-Shield, J.P.; Giri, D. Rapid-onset obesity, hypothalamic dysfunction, hypoventilation, and autonomic dysregulation syndrome – neuro-endocrine tumours (ROHHAD-NET): Case series and learning points. J. Pediatr. Endocrinol. Metab., 2023, 0(0), 418-423. doi: 10.1515/jpem-2022-0376 PMID: 36696572
  100. Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.M.; Sandhu, K.V.; Bastiaanssen, T.F.S.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V.; Guzzetta, K.E.; Jaggar, M.; Long-Smith, C.M.; Lyte, J.M.; Martin, J.A.; Molinero-Perez, A.; Moloney, G.; Morelli, E.; Morillas, E.; O’Connor, R.; Cruz-Pereira, J.S.; Peterson, V.L.; Rea, K.; Ritz, N.L.; Sherwin, E.; Spichak, S.; Teichman, E.M.; van de Wouw, M.; Ventura-Silva, A.P.; Wallace-Fitzsimons, S.E.; Hyland, N.; Clarke, G.; Dinan, T.G. The microbiota-gut-brain axis. Physiol. Rev., 2019, 99(4), 1877-2013. doi: 10.1152/physrev.00018.2018 PMID: 31460832
  101. Maniscalco, J.W.; Rinaman, L. Vagal interoceptive modulation of motivated behavior. Physiology, 2018, 33(2), 151-167. doi: 10.1152/physiol.00036.2017 PMID: 29412062
  102. Keezer, M.R.; Sisodiya, S.M.; Sander, J.W. Comorbidities of epilepsy: Current concepts and future perspectives. Lancet Neurol., 2016, 15(1), 106-115. doi: 10.1016/S1474-4422(15)00225-2 PMID: 26549780
  103. Virta, L.J.; Kolho, K.L. The risk of contracting pediatric inflammatory bowel disease in children with celiac disease, epilepsy, juvenile arthritis and type 1 diabetes-a nationwide study. J. Crohn’s Colitis, 2013, 7(1), 53-57. doi: 10.1016/j.crohns.2012.02.021 PMID: 22445838
  104. Wills, A.; Hovell, C.J. Neurological complications of enteric disease. Gut, 1996, 39(4), 501-504. doi: 10.1136/gut.39.4.501 PMID: 8944555
  105. Yeh, C.C.; Wang, H.H.; Chou, Y.C.; Hu, C.J.; Chou, W.H.; Chen, T.L.; Liao, C.C. High risk of gastrointestinal hemorrhage in patients with epilepsy: A nationwide cohort study. Mayo Clin. Proc., 2013, 88(10), 1091-1098. doi: 10.1016/j.mayocp.2013.06.024 PMID: 24012412
  106. Camara-Lemarroy, C.R.; Escobedo-Zúñiga, N.; Ortiz-Zacarias, D.; Peña-Avendaño, J.; Villarreal-Garza, E.; Díaz-Torres, M.A. Prevalence and impact of irritable bowel syndrome in people with epilepsy. Epilepsy Behav., 2016, 63, 29-33. doi: 10.1016/j.yebeh.2016.05.041 PMID: 27552483
  107. Chen, C.H.; Lin, C.L.; Kao, C.H. Irritable bowel syndrome increases the risk of epilepsy. Medicine, 2015, 94(36), e1497. doi: 10.1097/MD.0000000000001497 PMID: 26356716
  108. Gil-López, F.; Boget, T.; Manzanares, I.; Donaire, A.; Conde-Blanco, E.; Baillés, E.; Pintor, L.; Setoaín, X.; Bargalló, N.; Navarro, J.; Casanova, J.; Valls, J.; Roldán, P.; Rumià, J.; Casanovas, G.; Domenech, G.; Torres, F.; Carreño, M. External trigeminal nerve stimulation for drug resistant epilepsy: A randomized controlled trial. Brain Stimul., 2020, 13(5), 1245-1253. doi: 10.1016/j.brs.2020.06.005 PMID: 32534250
  109. Mercante, B.; Nuvoli, S.; Sotgiu, M.A.; Manca, A.; Todesco, S.; Melis, F.; Spanu, A.; Deriu, F. SPECT imaging of cerebral blood flow changes induced by acute trigeminal nerve stimulation in drug-resistant epilepsy. A pilot study. Clin. Neurophysiol., 2021, 132(6), 1274-1282. doi: 10.1016/j.clinph.2021.01.033 PMID: 33867259
  110. Borovikova, L.V.; Ivanova, S.; Zhang, M.; Yang, H.; Botchkina, G.I.; Watkins, L.R.; Wang, H.; Abumrad, N.; Eaton, J.W.; Tracey, K.J. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature, 2000, 405(6785), 458-462. doi: 10.1038/35013070 PMID: 10839541
  111. Giordano, C.; Marchiò, M.; Timofeeva, E.; Biagini, G. Neuroactive peptides as putative mediators of antiepileptic ketogenic diets. Front. Neurol., 2014, 5, 63. doi: 10.3389/fneur.2014.00063 PMID: 24808888
  112. Kshirsagar, V.Y.; Nagarsenkar, S.; Wingkar, K.C.; Ahmed, M.; Colaco, S. Abdominal epilepsy in chronic recurrent abdominal pain. J. Pediatr. Neurosci., 2012, 7(3), 163-166. doi: 10.4103/1817-1745.106468 PMID: 23559997
  113. Pitra, S.; Smith, B.N. Musings on the wanderer: What’s new in our understanding of vago-vagal reflexes? VI. Central vagal circuits that control glucose metabolism. Am. J. Physiol. Gastrointest. Liver Physiol., 2021, 320(2), G175-G182. doi: 10.1152/ajpgi.00368.2020 PMID: 33205998
  114. Sasselli, V.; Pachnis, V.; Burns, A.J. The enteric nervous system. Dev. Biol., 2012, 366(1), 64-73. doi: 10.1016/j.ydbio.2012.01.012 PMID: 22290331
  115. Agostoni, E.; Chinnock, J.E.; Daly, M.D.B.; Murray, J.G. Functional and histological studies of the vagus nerve and its branches to the heart, lungs and abdominal viscera in the cat. J. Physiol., 1957, 135(1), 182-205. doi: 10.1113/jphysiol.1957.sp005703 PMID: 13398974
  116. Rush, A.J.; George, M.S.; Sackeim, H.A.; Marangell, L.B.; Husain, M.M.; Giller, C.; Nahas, Z.; Haines, S.; Simpson, R.K., Jr; Goodman, R. Vagus nerve stimulation (VNS) for treatment-resistant depressions: A multicenter study. See accompanying Editorial, in this issue. Biol. Psychiatry, 2000, 47(4), 276-286. doi: 10.1016/S0006-3223(99)00304-2 PMID: 10686262
  117. Young, V.R.; Ajami, A.M. Glutamate: An amino acid of particular distinction. J. Nutr., 2000, 130(4), 892S-900S. doi: 10.1093/jn/130.4.892S PMID: 10736349
  118. Kitamura, A.; Tsurugizawa, T.; Uematsu, A.; Torii, K.; Uneyama, H. New therapeutic strategy for amino acid medicine: Effects of dietary glutamate on gut and brain function. J. Pharmacol. Sci., 2012, 118(2), 138-144. doi: 10.1254/jphs.11R06FM PMID: 22293294
  119. Tsurugizawa, T.; Uematsu, A.; Nakamura, E.; Hasumura, M.; Hirota, M.; Kondoh, T.; Uneyama, H.; Torii, K. Mechanisms of neural response to gastrointestinal nutritive stimuli: The gut-brain axis. Gastroenterology, 2009, 137(1), 262-273. doi: 10.1053/j.gastro.2009.02.057 PMID: 19248781
  120. San Gabriel, A.; Uneyama, H. Amino acid sensing in the gastrointestinal tract. Amino Acids, 2013, 45(3), 451-461. doi: 10.1007/s00726-012-1371-2 PMID: 22865248
  121. Sawchenko, P.E. Central connections of the sensory and motor nuclei of the vagus nerve. J. Auton. Nerv. Syst., 1983, 9(1), 13-26. doi: 10.1016/0165-1838(83)90129-7 PMID: 6319474
  122. Dibué-Adjei, M.; Kamp, M.A.; Vonck, K. 30 years of vagus nerve stimulation trials in epilepsy: Do we need neuromodulation-specific trial designs? Epilepsy Res., 2019, 153, 71-75. doi: 10.1016/j.eplepsyres.2019.02.004 PMID: 30824370
  123. Penry, J.K.; Dean, J.C. Prevention of intractable partial seizures by intermittent vagal stimulation in humans: {reliminary results. Epilepsia, 1990, 31(s2), S40-S43. doi: 10.1111/j.1528-1157.1990.tb05848.x PMID: 2121469
  124. FineSmith, R.B.; Zampella, E.; Devinsky, O. Vagal nerve stimulator: A new approach to medically refractory epilepsy. N. J. Med., 1999, 96(6), 37-40. PMID: 10384766
  125. Beekwilder, J.P.; Beems, T. Overview of the clinical applications of vagus nerve stimulation. J. Clin. Neurophysiol., 2010, 27(2), 130-138. doi: 10.1097/WNP.0b013e3181d64d8a PMID: 20505378
  126. van der Kooy, D.; Koda, L.Y.; McGinty, J.F.; Gerfen, C.R.; Bloom, F.E. The organization of projections from the cortes, amygdala, and hypothalamus to the nucleus of the solitary tract in rat. J. Comp. Neurol., 1984, 224(1), 1-24. doi: 10.1002/cne.902240102 PMID: 6715573
  127. Krahl, S.E.; Clark, K.B.; Smith, D.C.; Browning, R.A. Locus coeruleus lesions suppress the seizure-attenuating effects of vagus nerve stimulation. Epilepsia, 1998, 39(7), 709-714. doi: 10.1111/j.1528-1157.1998.tb01155.x PMID: 9670898
  128. Raedt, R.; Clinckers, R.; Mollet, L.; Vonck, K.; El Tahry, R.; Wyckhuys, T.; De Herdt, V.; Carrette, E.; Wadman, W.; Michotte, Y.; Smolders, I.; Boon, P.; Meurs, A. Increased hippocampal noradrenaline is a biomarker for efficacy of vagus nerve stimulation in a limbic seizure model. J. Neurochem., 2011, 117(3), 461-469. doi: 10.1111/j.1471-4159.2011.07214.x PMID: 21323924
  129. McMillin, D.L.; Richards, D.G.; Mein, E.A.; Nelson, C.D. The abdominal brain and enteric nervous system. J. Altern. Complement. Med., 1999, 5(6), 575-586. doi: 10.1089/acm.1999.5.575 PMID: 10630351

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers