EPHA2 Receptor as a Possible Therapeutic Target in Viral Infections


Cite item

Full Text

Abstract

Background:The receptor tyrosine kinase EphA2 plays a role in many diseases, like cancer, cataracts, and osteoporosis. Interestingly, it has also been linked to viral infections.

Objective:Herein, current literature has been reviewed to clarify EphA2 functions in viral infections and explore its potential role as a target in antiviral drug discovery strategies.

Methods:Research and review articles along with preprints connecting EphA2 to different viruses have been searched through PubMed and the web. Structures of complexes between EphA2 domains and viral proteins have been retrieved from the PDB database.

Results:EphA2 assumes a key role in Kaposi’s sarcoma-associated herpesvirus (KSHV) and Epstein Barr virus (EBV) infections by directly binding, through its ligand binding domain, viral glycoproteins. For human cytomegalovirus (HCMV), the role of EphA2 in maintaining virus latency state, through cooperation with specific viral proteins, has also been speculated. In certain cells, with high EphA2 expression levels, following ligand stimulation, receptor activation might contribute to severe symptoms accompanying a few viral infections, including lung injuries often related to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2).

Conclusion:Since EphA2 works as a host receptor for certain viruses, it might be worth more deeply investigating known compounds targeting its extracellular ligand binding domain as antiviral therapeutics. Due to EphA2's function in inflammation, its possible correlation with SARS-CoV-2 cannot be excluded, but more experimental studies are needed in this case to undoubtedly attribute the role of this receptor in viral infections.

About the authors

Marian Vincenzi

Institute of Biostructures and Bioimaging, National Research Council of Italy (CNR-IBB)

Email: info@benthamscience.net

Flavia Mercurio

Institute of Biostructures and Bioimaging, National Research Council of Italy (CNR-IBB)

Email: info@benthamscience.net

Marilisa Leone

Institute of Biostructures and Bioimaging, National Research Council of Italy (CNR-IBB)

Author for correspondence.
Email: info@benthamscience.net

References

  1. Du, Z.; Lovly, C.M. Mechanisms of receptor tyrosine kinase activation in cancer. Mol. Cancer, 2018, 17(1), 58. doi: 10.1186/s12943-018-0782-4 PMID: 29455648
  2. Park, J.; Son, A.; Zhou, R. Roles of EphA2 in development and disease. Genes (Basel), 2013, 4(3), 334-357. doi: 10.3390/genes4030334 PMID: 24705208
  3. Hubbard, S.R.; Miller, W.T. Receptor tyrosine kinases: Mechanisms of activation and signaling. Curr. Opin. Cell Biol., 2007, 19(2), 117-123. doi: 10.1016/j.ceb.2007.02.010 PMID: 17306972
  4. Darling, T.K.; Lamb, T.J. Emerging roles for Eph receptors and ephrin ligands in immunity. Front. Immunol., 2019, 10, 1473. doi: 10.3389/fimmu.2019.01473 PMID: 31333644
  5. Pasquale, E.B. The Eph family of receptors. Curr. Opin. Cell Biol., 1997, 9(5), 608-615. doi: 10.1016/S0955-0674(97)80113-5 PMID: 9330863
  6. Mercurio, F.A.; Vincenzi, M.; Leone, M. Hunting for novel routes in anticancer drug discovery: Peptides against Sam-Sam interactions. Int. J. Mol. Sci., 2022, 23(18), 10397. doi: 10.3390/ijms231810397 PMID: 36142306
  7. Zhou, Y.; Sakurai, H. Emerging and diverse functions of the EphA2 noncanonical pathway in cancer progression. Biol. Pharm. Bull., 2017, 40(10), 1616-1624. doi: 10.1248/bpb.b17-00446 PMID: 28966234
  8. Wilson, K.; Shiuan, E.; Brantley-Sieders, D.M. Oncogenic functions and therapeutic targeting of EphA2 in cancer. Oncogene, 2021, 40(14), 2483-2495. doi: 10.1038/s41388-021-01714-8 PMID: 33686241
  9. Lisabeth, E.M.; Falivelli, G.; Pasquale, E.B. Eph receptor signaling and ephrins. Cold Spring Harb. Perspect. Biol., 2013, 5(9), a009159. doi: 10.1101/cshperspect.a009159 PMID: 24003208
  10. Mercurio, F.; Leone, M. The Sam domain of EphA2 receptor and its relevance to cancer: A novel challenge for drug discovery? Curr. Med. Chem., 2016, 23(42), 4718-4734. doi: 10.2174/0929867323666161101100722 PMID: 27804871
  11. Sahoo, A.R.; Buck, M. Structural and functional insights into the transmembrane domain association of Eph receptors. Int. J. Mol. Sci., 2021, 22(16), 8593. doi: 10.3390/ijms22168593 PMID: 34445298
  12. Seiradake, E.; Harlos, K.; Sutton, G.; Aricescu, A.R.; Jones, E.Y. An extracellular steric seeding mechanism for Eph-ephrin signaling platform assembly. Nat. Struct. Mol. Biol., 2010, 17(4), 398-402. doi: 10.1038/nsmb.1782 PMID: 20228801
  13. Lechtenberg, B.C.; Gehring, M.P.; Light, T.P.; Horne, C.R.; Matsumoto, M.W.; Hristova, K.; Pasquale, E.B. Regulation of the EphA2 receptor intracellular region by phosphomimetic negative charges in the kinase-SAM linker. Nat. Commun., 2021, 12(1), 7047. doi: 10.1038/s41467-021-27343-z PMID: 34857764
  14. Mirdita, M.; Schütze, K.; Moriwaki, Y.; Heo, L.; Ovchinnikov, S.; Steinegger, M. ColabFold: Making protein folding accessible to all. Nat. Methods, 2022, 19(6), 679-682. doi: 10.1038/s41592-022-01488-1 PMID: 35637307
  15. Bateman, A.; Martin, M-J.; Orchard, S.; Magrane, M.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; Bye-A-Jee, H.; Cukura, A.; Denny, P.; Dogan, T.; Ebenezer, T.G.; Fan, J.; Garmiri, P.; da Costa Gonzales, L.J.; Hatton-Ellis, E.; Hussein, A.; Ignatchenko, A.; Insana, G.; Ishtiaq, R.; Joshi, V.; Jyothi, D.; Kandasaamy, S.; Lock, A.; Luciani, A.; Lugaric, M.; Luo, J.; Lussi, Y.; MacDougall, A.; Madeira, F.; Mahmoudy, M.; Mishra, A.; Moulang, K.; Nightingale, A.; Pundir, S.; Qi, G.; Raj, S.; Raposo, P.; Rice, D.L.; Saidi, R.; Santos, R.; Speretta, E.; Stephenson, J.; Totoo, P.; Turner, E.; Tyagi, N.; Vasudev, P.; Warner, K.; Watkins, X.; Zaru, R.; Zellner, H.; Bridge, A.J.; Aimo, L.; Argoud-Puy, G.; Auchincloss, A.H.; Axelsen, K.B.; Bansal, P.; Baratin, D.; Batista Neto, T.M.; Blatter, M-C.; Bolleman, J.T.; Boutet, E.; Breuza, L.; Gil, B.C.; Casals-Casas, C.; Echioukh, K.C.; Coudert, E.; Cuche, B.; de Castro, E.; Estreicher, A.; Famiglietti, M.L.; Feuermann, M.; Gasteiger, E.; Gaudet, P.; Gehant, S.; Gerritsen, V.; Gos, A.; Gruaz, N.; Hulo, C.; Hyka-Nouspikel, N.; Jungo, F.; Kerhornou, A.; Le Mercier, P.; Lieberherr, D.; Masson, P.; Morgat, A.; Muthukrishnan, V.; Paesano, S.; Pedruzzi, I.; Pilbout, S.; Pourcel, L.; Poux, S.; Pozzato, M.; Pruess, M.; Redaschi, N.; Rivoire, C.; Sigrist, C.J.A.; Sonesson, K.; Sundaram, S.; Wu, C.H.; Arighi, C.N.; Arminski, L.; Chen, C.; Chen, Y.; Huang, H.; Laiho, K.; McGarvey, P.; Natale, D.A.; Ross, K.; Vinayaka, C.R.; Wang, Q.; Wang, Y.; Zhang, J. UniProt: The universal protein knowledgebase in 2023. Nucleic Acids Res., 2023, 51(D1), D523-D531. doi: 10.1093/nar/gkac1052 PMID: 36408920
  16. Hedger, G.; Sansom, M.S.P.; Koldsø, H. The juxtamembrane regions of human receptor tyrosine kinases exhibit conserved interaction sites with anionic lipids. Sci. Rep., 2015, 5(1), 9198. doi: 10.1038/srep09198 PMID: 25779975
  17. Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera? A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612. doi: 10.1002/jcc.20084 PMID: 15264254
  18. Xiao, T.; Xiao, Y.; Wang, W.; Tang, Y.Y.; Xiao, Z.; Su, M. Targeting EphA2 in cancer. J. Hematol. Oncol., 2020, 13(1), 114. doi: 10.1186/s13045-020-00944-9 PMID: 32811512
  19. Zhao, P.; Jiang, D.; Huang, Y.; Chen, C. EphA2: A promising therapeutic target in breast cancer. J. Genet. Genomics, 2021, 48(4), 261-267. doi: 10.1016/j.jgg.2021.02.011 PMID: 33962882
  20. Coulthard, M.G.; Morgan, M.; Woodruff, T.M.; Arumugam, T.V.; Taylor, S.M.; Carpenter, T.C.; Lackmann, M.; Boyd, A.W. Eph/Ephrin signaling in injury and inflammation. Am. J. Pathol., 2012, 181(5), 1493-1503. doi: 10.1016/j.ajpath.2012.06.043 PMID: 23021982
  21. Funk, S.D.; Orr, A.W. Ephs and ephrins resurface in inflammation, immunity, and atherosclerosis. Pharmacol. Res., 2013, 67(1), 42-52. doi: 10.1016/j.phrs.2012.10.008 PMID: 23098817
  22. Arthur, A.; Gronthos, S. Eph-ephrin signaling mediates cross-talk within the bone microenvironment. Front. Cell Dev. Biol., 2021, 9, 598612. doi: 10.3389/fcell.2021.598612 PMID: 33634116
  23. Jin, S.; Yan, Z.; Tieyi, Y.; Shuyi, L.; Liang, W.; Hui, Y. Eph–ephrin bidirectional signalling: A promising approach for osteoporosis treatment. J. Medical Hypotheses Ideas, 2013, 7(2), 40-42. doi: 10.1016/j.jmhi.2013.02.002
  24. Bennett, T.M.; M’Hamdi, O.; Hejtmancik, J.F.; Shiels, A. Germ-line and somatic EphA2 coding variants in lens aging and cataract. PLoS One, 2017, 12(12), e0189881. doi: 10.1371/journal.pone.0189881 PMID: 29267365
  25. Zhang, T.; Hua, R.; Xiao, W.; Burdon, K.P.; Bhattacharya, S.S.; Craig, J.E.; Shang, D.; Zhao, X.; Mackey, D.A.; Moore, A.T.; Luo, Y.; Zhang, J.; Zhang, X. Mutations of the EphA2 receptor tyrosine kinase gene cause autosomal dominant congenital cataract. Hum. Mutat., 2009, 30(5), E603-E611. doi: 10.1002/humu.20995 PMID: 19306328
  26. Shiels, A.; Bennett, T.M.; Knopf, H.L.; Maraini, G.; Li, A.; Jiao, X.; Hejtmancik, J.F. The EPHA2 gene is associated with cataracts linked to chromosome 1p. Mol. Vis., 2008, 14, 2042-2055. PMID: 19005574
  27. Su, C.; Wu, L.; Chai, Y.; Qi, J.; Tan, S.; Gao, G.F.; Song, H.; Yan, J. Molecular basis of EphA2 recognition by gHgL from gamma herpesviruses. Nat. Commun., 2020, 11(1), 5964. doi: 10.1038/s41467-020-19617-9 PMID: 33235207
  28. Chen, J.; Schaller, S.; Jardetzky, T.S.; Longnecker, R. Epstein-barr virus gH/gL and Kaposi’s sarcoma-associated herpesvirus gH/gL bind to different sites on EphA2 to trigger fusion. J. Virol., 2020, 94(21), e01454-20. doi: 10.1128/JVI.01454-20 PMID: 32847853
  29. Möhl, B.S.; Chen, J.; Longnecker, R. Gammaherpesvirus entry and fusion: A tale how two human pathogenic viruses enter their host cells. Adv. Virus Res., 2019, 104, 313-343. doi: 10.1016/bs.aivir.2019.05.006 PMID: 31439152
  30. Shin, J.M.; Han, M.S.; Park, J.H.; Lee, S.H.; Kim, T.H.; Lee, S.H. The EphA1 and EphA2 signaling modulates the epithelial permeability in human sinonasal epithelial cells and the rhinovirus infection induces epithelial barrier dysfunction via EphA2 receptor signaling. Int. J. Mol. Sci., 2023, 24(4), 3629. doi: 10.3390/ijms24043629 PMID: 36835041
  31. Lupberger, J.; Zeisel, M.B.; Xiao, F.; Thumann, C.; Fofana, I.; Zona, L.; Davis, C.; Mee, C.J.; Turek, M.; Gorke, S.; Royer, C.; Fischer, B.; Zahid, M.N.; Lavillette, D.; Fresquet, J.; Cosset, F.L.; Rothenberg, S.M.; Pietschmann, T.; Patel, A.H.; Pessaux, P.; Doffoël, M.; Raffelsberger, W.; Poch, O.; McKeating, J.A.; Brino, L.; Baumert, T.F. EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy. Nat. Med., 2011, 17(5), 589-595. doi: 10.1038/nm.2341 PMID: 21516087
  32. Light, T.P.; Brun, D.; Guardado-Calvo, P.; Pederzoli, R.; Haouz, A.; Neipel, F.; Rey, F.A.; Hristova, K.; Backovic, M. Human herpesvirus 8 molecular mimicry of ephrin ligands facilitates cell entry and triggers EphA2 signaling. PLoS Biol., 2021, 19(9), e3001392. doi: 10.1371/journal.pbio.3001392 PMID: 34499637
  33. Beauchamp, A.; Debinski, W. Ephs and ephrins in cancer: Ephrin-A1 signalling. Semin. Cell Dev. Biol., 2012, 23(1), 109-115. doi: 10.1016/j.semcdb.2011.10.019 PMID: 22040911
  34. Nasreen, N.; Khodayari, N.; Mohammed, K.A. Advances in malignant pleural mesothelioma therapy: Targeting EphA2 a novel approach. Am. J. Cancer Res., 2012, 2(2), 222-234. PMID: 22432060
  35. London, M.; Gallo, E. The EphA2 and cancer connection: Potential for immune-based interventions. Mol. Biol. Rep., 2020, 47(10), 8037-8048. doi: 10.1007/s11033-020-05767-y PMID: 32990903
  36. Psilopatis, I.; Pergaris, A.; Vrettou, K.; Tsourouflis, G.; Theocharis, S. The EPH/Ephrin system in gynecological cancers: Focusing on the roots of carcinogenesis for better patient management. Int. J. Mol. Sci., 2022, 23(6), 3249. doi: 10.3390/ijms23063249 PMID: 35328669
  37. Tandon, M.; Vemula, S.V.; Mittal, S.K. Emerging strategies for EphA2 receptor targeting for cancer therapeutics. Expert Opin. Ther. Targets, 2011, 15(1), 31-51. doi: 10.1517/14728222.2011.538682 PMID: 21142802
  38. Zhuang, G.; Hunter, S.; Hwang, Y.; Chen, J. Regulation of EphA2 receptor endocytosis by SHIP2 lipid phosphatase via phosphatidylinositol 3-Kinase-dependent Rac1 activation. J. Biol. Chem., 2007, 282(4), 2683-2694. doi: 10.1074/jbc.M608509200 PMID: 17135240
  39. Buckens, O.J.; El Hassouni, B.; Giovannetti, E.; Peters, G.J. The role of Eph receptors in cancer and how to target them: Novel approaches in cancer treatment. Expert Opin. Investig. Drugs, 2020, 29(6), 567-582. doi: 10.1080/13543784.2020.1762566 PMID: 32348169
  40. Giorgio, C.; Hassan Mohamed, I.; Flammini, L.; Barocelli, E.; Incerti, M.; Lodola, A.; Tognolini, M. Lithocholic acid is an Eph-ephrin ligand interfering with Eph-kinase activation. PLoS One, 2011, 6(3), e18128. doi: 10.1371/journal.pone.0018128 PMID: 21479221
  41. Giorgio, C.; Russo, S.; Incerti, M.; Bugatti, A.; Vacondio, F.; Barocelli, E.; Mor, M.; Pala, D.; Hassan-Mohamed, I.; Gioiello, A.; Rusnati, M.; Lodola, A.; Tognolini, M. Biochemical characterization of EphA2 antagonists with improved physico-chemical properties by cell-based assays and surface plasmon resonance analysis. Biochem. Pharmacol., 2016, 99, 18-30. doi: 10.1016/j.bcp.2015.10.006 PMID: 26462575
  42. Hassan-Mohamed, I.; Giorgio, C.; Incerti, M.; Russo, S.; Pala, D.; Pasquale, E.B.; Zanotti, I.; Vicini, P.; Barocelli, E.; Rivara, S.; Mor, M.; Lodola, A.; Tognolini, M. UniPR129 is a competitive small molecule Eph-ephrin antagonist blocking in vitro angiogenesis at low micromolar concentrations. Br. J. Pharmacol., 2014, 171(23), 5195-5208. doi: 10.1111/bph.12669 PMID: 24597515
  43. Jackson, D.; Gooya, J.; Mao, S.; Kinneer, K.; Xu, L.; Camara, M.; Fazenbaker, C.; Fleming, R.; Swamynathan, S.; Meyer, D.; Senter, P.D.; Gao, C.; Wu, H.; Kinch, M.; Coats, S.; Kiener, P.A.; Tice, D.A. A human antibody-drug conjugate targeting EphA2 inhibits tumor growth in vivo. Cancer Res., 2008, 68(22), 9367-9374. doi: 10.1158/0008-5472.CAN-08-1933 PMID: 19010911
  44. Riedl, S.; Pasquale, E. Targeting the Eph system with peptides and peptide conjugates. Curr. Drug Targets, 2015, 16(10), 1031-1047. doi: 10.2174/1389450116666150727115934 PMID: 26212263
  45. Noberini, R.; Lamberto, I.; Pasquale, E.B. Targeting Eph receptors with peptides and small molecules: Progress and challenges. Semin. Cell Dev. Biol., 2012, 23(1), 51-57. doi: 10.1016/j.semcdb.2011.10.023 PMID: 22044885
  46. Koolpe, M.; Dail, M.; Pasquale, E.B. An ephrin mimetic peptide that selectively targets the EphA2 receptor. J. Biol. Chem., 2002, 277(49), 46974-46979. doi: 10.1074/jbc.M208495200 PMID: 12351647
  47. Mitra, S.; Duggineni, S.; Koolpe, M.; Zhu, X.; Huang, Z.; Pasquale, E.B. Structure-activity relationship analysis of peptides targeting the EphA2 receptor. Biochemistry, 2010, 49(31), 6687-6695. doi: 10.1021/bi1006223 PMID: 20677833
  48. Wu, B.; Wang, S.; De, S.K.; Barile, E.; Quinn, B.A.; Zharkikh, I.; Purves, A.; Stebbins, J.L.; Oshima, R.G.; Fisher, P.B.; Pellecchia, M. Design and characterization of novel EphA2 agonists for targeted delivery of chemotherapy to cancer cells. Chem. Biol., 2015, 22(7), 876-887. doi: 10.1016/j.chembiol.2015.06.011 PMID: 26165155
  49. Salem, A.F.; Wang, S.; Billet, S.; Chen, J.F.; Udompholkul, P.; Gambini, L.; Baggio, C.; Tseng, H.R.; Posadas, E.M.; Bhowmick, N.A.; Pellecchia, M. Reduction of circulating cancer cells and metastases in breast-cancer models by a potent EphA2-agonistic peptide–drug conjugate. J. Med. Chem., 2018, 61(5), 2052-2061. doi: 10.1021/acs.jmedchem.7b01837 PMID: 29470068
  50. Udompholkul, P.; Baggio, C.; Gambini, L.; Sun, Y.; Zhao, M.; Hoffman, R.M.; Pellecchia, M. Effective tumor targeting by EphA2-agonist-biotin-streptavidin conjugates. Molecules, 2021, 26(12), 3687. doi: 10.3390/molecules26123687 PMID: 34204178
  51. Gambini, L.; Salem, A.F.; Udompholkul, P.; Tan, X.F.; Baggio, C.; Shah, N.; Aronson, A.; Song, J.; Pellecchia, M. Structure-based design of novel EphA2 agonistic agents with nanomolar affinity in vitro and in cell. ACS Chem. Biol., 2018, 13(9), 2633-2644. doi: 10.1021/acschembio.8b00556 PMID: 30110533
  52. Wykosky, J.; Gibo, D.M.; Debinski, W. A novel, potent, and specific ephrinA1-based cytotoxin against EphA2 receptor–expressing tumor cells. Mol. Cancer Ther., 2007, 6(12), 3208-3218. doi: 10.1158/1535-7163.MCT-07-0200 PMID: 18089715
  53. Kim, J.M.; Lin, C.; Stavre, Z.; Greenblatt, M.B.; Shim, J.H. Osteoblast-osteoclast communication and bone homeostasis. Cells, 2020, 9(9), 2073. doi: 10.3390/cells9092073 PMID: 32927921
  54. Matsuo, K.; Otaki, N. Bone cell interactions through Eph/ephrin. Cell Adhes. Migr., 2012, 6(2), 148-156. doi: 10.4161/cam.20888 PMID: 22660185
  55. Vaught, D.B.; Merkel, A.R.; Lynch, C.C.; Edwards, J.; Tantawy, M.N.; Hilliard, T.; Wang, S.; Peterson, T.; Johnson, R.W.; Sterling, J.A.; Brantley-Sieders, D. EphA2 is a clinically relevant target for breast cancer bone metastatic disease. JBMR Plus, 2021, 5(4), e10465. doi: 10.1002/jbm4.10465 PMID: 33869989
  56. Murugan, S.; Cheng, C. Roles of Eph-ephrin signaling in the eye lens cataractogenesis, biomechanics, and homeostasis. Front. Cell Dev. Biol., 2022, 10, 852236. doi: 10.3389/fcell.2022.852236 PMID: 35295853
  57. Zhou, Y.; Bennett, T.M.; Ruzycki, P.A.; Shiels, A. Mutation of the EPHA2 tyrosine-kinase domain dysregulates cell pattern formation and cytoskeletal gene expression in the lens. Cells, 2021, 10(10), 2606. doi: 10.3390/cells10102606 PMID: 34685586
  58. Cooper, M.A.; Son, A.I.; Komlos, D.; Sun, Y.; Kleiman, N.J.; Zhou, R. Loss of ephrin-A5 function disrupts lens fiber cell packing and leads to cataract. Proc. Natl. Acad. Sci. U.S.A., 2008, 105(43), 16620-16625. doi: 10.1073/pnas.0808987105 PMID: 18948590
  59. Liu, W.; Huang, D.; Guo, R.; Ji, J. Pathological changes of the anterior lens capsule. J. Ophthalmol., 2021, 2021, 9951032. doi: 10.1155/2021/9951032 PMID: 34055399
  60. Cheng, C.; Gong, X. Diverse roles of Eph/ephrin signaling in the mouse lens. PLoS One, 2011, 6(11), e28147. doi: 10.1371/journal.pone.0028147 PMID: 22140528
  61. Tan, W.; Hou, S.; Jiang, Z.; Hu, Z.; Yang, P.; Ye, J. Association of EPHA2 polymorphisms and age-related cortical cataract in a Han Chinese population. Mol. Vis., 2011, 17, 1553-1558. PMID: 21686326
  62. Sundaresan, P.; Ravindran, R.D.; Vashist, P.; Shanker, A.; Nitsch, D.; Talwar, B.; Maraini, G.; Camparini, M.; Nonyane, B.A.S.; Smeeth, L.; Chakravarthy, U.; Hejtmancik, J.F.; Fletcher, A.E. EPHA2 polymorphisms and age-related cataract in India. PLoS One, 2012, 7(3), e33001. doi: 10.1371/journal.pone.0033001 PMID: 22412971
  63. Reis, L.M.; Tyler, R.C.; Semina, E.V. Identification of a novel C-terminal extension mutation in EPHA2 in a family affected with congenital cataract. Mol. Vis., 2014, 20, 836-842. PMID: 24940039
  64. Park, J.E.; Son, A.I.; Hua, R.; Wang, L.; Zhang, X.; Zhou, R. Human cataract mutations in EPHA2 SAM domain alter receptor stability and function. PLoS One, 2012, 7(5), e36564. doi: 10.1371/journal.pone.0036564 PMID: 22570727
  65. Vincenzi, M.; Mercurio, F.A.; Leone, M. Sam domains in multiple diseases. Curr. Med. Chem., 2020, 27(3), 450-476. doi: 10.2174/0929867325666181009114445 PMID: 30306850
  66. Mercurio, F.A.; Costantini, S.; Di Natale, C.; Pirone, L.; Guariniello, S.; Scognamiglio, P.L.; Marasco, D.; Pedone, E.M.; Leone, M. Structural investigation of a C-terminal EphA2 receptor mutant: Does mutation affect the structure and interaction properties of the Sam domain? Biochim. Biophys. Acta. Proteins Proteomics, 2017, 1865(9), 1095-1104. doi: 10.1016/j.bbapap.2017.06.003 PMID: 28602916
  67. Cercone, M.A.; Schroeder, W.; Schomberg, S.; Carpenter, T.C. EphA2 receptor mediates increased vascular permeability in lung injury due to viral infection and hypoxia. Am. J. Physiol. Lung Cell. Mol. Physiol., 2009, 297(5), L856-L863. doi: 10.1152/ajplung.00118.2009 PMID: 19684201
  68. Zhang, A.; Xing, J.; Xia, T.; Zhang, H.; Fang, M.; Li, S.; Du, Y.; Li, X.C.; Zhang, Z.; Zeng, M.S. EphA2 phosphorylates NLRP 3 and inhibits inflammasomes in airway epithelial cells. EMBO Rep., 2020, 21(7), e49666. doi: 10.15252/embr.201949666 PMID: 32352641
  69. Lee, S.H.; Kang, S.H.; Han, M.S.; Kwak, J.W.; Kim, H.G.; Lee, T.H.; Lee, D.B.; Kim, T.H. The expression of ephrinA1/ephA2 receptor increases in chronic rhinosinusitis and ephrina1/epha2 signaling affects rhinovirus-induced innate immunity in human sinonasal epithelial cells. Front. Immunol., 2021, 12, 793517. doi: 10.3389/fimmu.2021.793517 PMID: 34975898
  70. de Boer, E.C.W.; van Gils, J.M.; van Gils, M.J. Ephrin-Eph signaling usage by a variety of viruses. Pharmacol. Res., 2020, 159, 105038. doi: 10.1016/j.phrs.2020.105038 PMID: 32565311
  71. Bossart, K.N.; Bingham, J.; Middleton, D. Targeted strategies for henipavirus therapeutics. Open Virol. J., 2007, 1(1), 14-25. doi: 10.2174/1874357900701010014 PMID: 19440455
  72. Wang, J.; Zheng, X.; Peng, Q.; Zhang, X.; Qin, Z. Eph receptors: The bridge linking host and virus. Cell. Mol. Life Sci., 2020, 77(12), 2355-2365. doi: 10.1007/s00018-019-03409-6 PMID: 31893311
  73. Jilg, N.; Chung, R.T. Adding to the toolbox: Receptor tyrosine kinases as potential targets in the treatment of hepatitis C. J. Hepatol., 2012, 56(1), 282-284. doi: 10.1016/j.jhep.2011.06.020 PMID: 21784050
  74. Harris, H.J.; Farquhar, M.J.; Mee, C.J.; Davis, C.; Reynolds, G.M.; Jennings, A.; Hu, K.; Yuan, F.; Deng, H.; Hubscher, S.G.; Han, J.H.; Balfe, P.; McKeating, J.A. CD81 and claudin 1 coreceptor association: Role in hepatitis C virus entry. J. Virol., 2008, 82(10), 5007-5020. doi: 10.1128/JVI.02286-07 PMID: 18337570
  75. Atkins, C.; Evans, C.W.; Nordin, B.; Patricelli, M.P.; Reynolds, R.; Wennerberg, K.; Noah, J.W. Global human-kinase screening identifies therapeutic host targets against influenza. SLAS Discov., 2014, 19(6), 936-946. doi: 10.1177/1087057113518068 PMID: 24464431
  76. Rani, A.; Jakhmola, S.; Karnati, S.; Parmar, H.S.; Chandra Jha, H. Potential entry receptors for human γ-herpesvirus into epithelial cells: A plausible therapeutic target for viral infections. Tumour Virus Res., 2021, 12, 200227. doi: 10.1016/j.tvr.2021.200227 PMID: 34800753
  77. Blumenthal, M.J.; Schutz, C.; Meintjes, G.; Mohamed, Z.; Mendelson, M.; Ambler, J.M.; Whitby, D.; Mackelprang, R.D.; Carse, S.; Katz, A.A.; Schäfer, G. EPHA2 sequence variants are associated with susceptibility to Kaposi’s sarcoma-associated herpesvirus infection and Kaposi’s sarcoma prevalence in HIV-infected patients. Cancer Epidemiol., 2018, 56, 133-139. doi: 10.1016/j.canep.2018.08.005 PMID: 30176543
  78. Ganem, D. KSHV and the pathogenesis of Kaposi sarcoma: Listening to human biology and medicine. J. Clin. Invest., 2010, 120(4), 939-949. doi: 10.1172/JCI40567 PMID: 20364091
  79. Chakraborty, S.; Veettil, M.V.; Bottero, V.; Chandran, B. Kaposi’s sarcoma-associated herpesvirus interacts with EphrinA2 receptor to amplify signaling essential for productive infection. Proc. Natl. Acad. Sci. USA., 2012, 109(19), E1163-E1172. doi: 10.1073/pnas.1119592109 PMID: 22509030
  80. Boshoff, C. Ephrin receptor: A door to KSHV infection. Nat. Med., 2012, 18(6), 861-863. doi: 10.1038/nm.2803 PMID: 22673996
  81. Kumar, B.; Roy, A.; Veettil, M.V.; Chandran, B. Insight into the roles of E3 ubiquitin ligase c-Cbl, ESCRT machinery, and host cell signaling in Kaposi’s sarcoma-associated herpesvirus entry and trafficking. J. Virol., 2018, 92(4), e01376-17. doi: 10.1128/JVI.01376-17 PMID: 29167336
  82. Veettil, M.; Bandyopadhyay, C.; Dutta, D.; Chandran, B. Interaction of KSHV with host cell surface receptors and cell entry. Viruses, 2014, 6(10), 4024-4046. doi: 10.3390/v6104024 PMID: 25341665
  83. Kumar, B.; Chandran, B. KSHV entry and trafficking in target cells—hijacking of cell signal pathways, actin and membrane dynamics. Viruses, 2016, 8(11), 305. doi: 10.3390/v8110305 PMID: 27854239
  84. Bandyopadhyay, C.; Valiya-Veettil, M.; Dutta, D.; Chakraborty, S.; Chandran, B. CIB1 synergizes with EphrinA2 to regulate Kaposi’s sarcoma-associated herpesvirus macropinocytic entry in human microvascular dermal endothelial cells. PLoS Pathog., 2014, 10(2), e1003941. doi: 10.1371/journal.ppat.1003941 PMID: 24550731
  85. Wang, X.; Zou, Z.; Deng, Z.; Liang, D.; Zhou, X.; Sun, R.; Lan, K. Male hormones activate EphA2 to facilitate Kaposi’s sarcoma-associated herpesvirus infection: Implications for gender disparity in Kaposi’s sarcoma. PLoS Pathog., 2017, 13(9), e1006580. doi: 10.1371/journal.ppat.1006580 PMID: 28957431
  86. TerBush, A.A.; Hafkamp, F.; Lee, H.J.; Coscoy, L. A kaposi’s sarcoma-associated herpesvirus infection mechanism is independent of integrins α3β1, αVβ3, and αVβ5. J. Virol., 2018, 92(17), e00803-18. doi: 10.1128/JVI.00803-18 PMID: 29899108
  87. Hahn, A.S.; Kaufmann, J.K.; Wies, E.; Naschberger, E.; Panteleev-Ivlev, J.; Schmidt, K.; Holzer, A.; Schmidt, M.; Chen, J.; König, S.; Ensser, A.; Myoung, J.; Brockmeyer, N.H.; Stürzl, M.; Fleckenstein, B.; Neipel, F. The ephrin receptor tyrosine kinase A2 is a cellular receptor for Kaposi’s sarcoma–associated herpesvirus. Nat. Med., 2012, 18(6), 961-966. doi: 10.1038/nm.2805 PMID: 22635007
  88. Hahn, A.S.; Desrosiers, R.C. Binding of the Kaposi’s sarcoma-associated herpesvirus to the ephrin binding surface of the EphA2 receptor and its inhibition by a small molecule. J. Virol., 2014, 88(16), 8724-8734. doi: 10.1128/JVI.01392-14 PMID: 24899181
  89. Fricke, T.; Großkopf, A.K.; Ensser, A.; Backovic, M.; Hahn, A.S. Antibodies targeting KSHV gH/gL reveal distinct neutralization mechanisms. Viruses, 2022, 14(3), 541. doi: 10.3390/v14030541 PMID: 35336948
  90. Chen, W.; Sin, S.H.; Wen, K.W.; Damania, B.; Dittmer, D.P. Hsp90 inhibitors are efficacious against Kaposi Sarcoma by enhancing the degradation of the essential viral gene LANA, of the viral co-receptor EphA2 as well as other client proteins. PLoS Pathog., 2012, 8(11), e1003048. doi: 10.1371/journal.ppat.1003048 PMID: 23209418
  91. Smatti, M.K.; Al-Sadeq, D.W.; Ali, N.H.; Pintus, G.; Abou-Saleh, H.; Nasrallah, G.K. Epstein–barr virus epidemiology, serology, and genetic variability of LMP-1 oncogene among healthy population: An update. Front. Oncol., 2018, 8, 211. doi: 10.3389/fonc.2018.00211 PMID: 29951372
  92. Cao, Y.; Xie, L.; Shi, F.; Tang, M.; Li, Y.; Hu, J.; Zhao, L.; Zhao, L.; Yu, X.; Luo, X.; Liao, W.; Bode, A.M. Targeting the signaling in Epstein–Barr virus-associated diseases: Mechanism, regulation, and clinical study. Signal Transduct. Target. Ther., 2021, 6(1), 15. doi: 10.1038/s41392-020-00376-4 PMID: 33436584
  93. Frappier, L. Epstein-Barr virus: Current questions and challenges. Tumour Virus Res., 2021, 12, 200218. doi: 10.1016/j.tvr.2021.200218 PMID: 34052467
  94. Soldan, S.S.; Lieberman, P.M. Epstein–Barr virus and multiple sclerosis. Nat. Rev. Microbiol., 2023, 21(1), 51-64. doi: 10.1038/s41579-022-00770-5 PMID: 35931816
  95. Bu, G.L.; Xie, C.; Kang, Y.F.; Zeng, M.S.; Sun, C. How EBV infects: The tropism and underlying molecular mechanism for viral infection. Viruses, 2022, 14(11), 2372. doi: 10.3390/v14112372 PMID: 36366470
  96. Zhu, Q.Y.; Shan, S.; Yu, J.; Peng, S.Y.; Sun, C.; Zuo, Y.; Zhong, L.Y.; Yan, S.M.; Zhang, X.; Yang, Z.; Peng, Y.J.; Shi, X.; Cao, S.M.; Wang, X.; Zeng, M.S.; Zhang, L. A potent and protective human neutralizing antibody targeting a novel vulnerable site of Epstein-Barr virus. Nat. Commun., 2021, 12(1), 6624. doi: 10.1038/s41467-021-26912-6 PMID: 34785638
  97. Hutt-Fletcher, L.M. Epstein-Barr virus entry. J. Virol., 2007, 81(15), 7825-7832. doi: 10.1128/JVI.00445-07 PMID: 17459936
  98. Campadelli-Fiume, G.; Collins-McMillen, D.; Gianni, T.; Yurochko, A.D. Integrins as herpesvirus receptors and mediators of the host signalosome. Annu. Rev. Virol., 2016, 3(1), 215-236. doi: 10.1146/annurev-virology-110615-035618 PMID: 27501260
  99. Chen, Y.; Cao, A.; Li, Q.; Quan, J. Identification of DNA aptamers that specifically targets EBV+ nasopharyngeal carcinoma via binding with EphA2/CD98hc complex. Biochem. Biophys. Res. Commun., 2022, 608, 135-141. doi: 10.1016/j.bbrc.2022.03.157 PMID: 35397426
  100. Kanno-Okada, H.; Takahashi, K.; Katano, H.; Shimizu, A.; Takakuwa, E.; Miyamoto, S.; Abiko, S.; Yamamoto, K.; Shimoda, T.; Mitsuhashi, T.; Hasegawa, H.; Matsuno, Y. A case of Epstein–Barr virus-associated lymphoepithelioma-like carcinoma of the colon. Pathol. Int., 2021, 71(6), 420-426. doi: 10.1111/pin.13095 PMID: 33792098
  101. Fekadu, S.; Kanehiro, Y.; Kartika, A.V.; Hamada, K.; Sakurai, N.; Mizote, T.; Akada, J.; Yamaoka, Y.; Iizasa, H.; Yoshiyama, H. Gastric epithelial attachment of Helicobacter pylori induces EphA2 and NMHC-IIA receptors for Epstein-Barr virus. Cancer Sci., 2021, 112(11), 4799-4811. doi: 10.1111/cas.15121 PMID: 34449934
  102. Wallaschek, N.; Reuter, S.; Silkenat, S.; Wolf, K.; Niklas, C.; Kayisoglu, Ö.; Aguilar, C.; Wiegering, A.; Germer, C.T.; Kircher, S.; Rosenwald, A.; Shannon-Lowe, C.; Bartfeld, S. Ephrin receptor A2, the epithelial receptor for Epstein-Barr virus entry, is not available for efficient infection in human gastric organoids. PLoS Pathog., 2021, 17(2), e1009210. doi: 10.1371/journal.ppat.1009210 PMID: 33596248
  103. Manns, M.P.; Maasoumy, B. Breakthroughs in hepatitis C research: From discovery to cure. Nat. Rev. Gastroenterol. Hepatol., 2022, 19(8), 533-550. doi: 10.1038/s41575-022-00608-8 PMID: 35595834
  104. Rabaan, A.A.; Al-Ahmed, S.H.; Bazzi, A.M.; Alfouzan, W.A.; Alsuliman, S.A.; Aldrazi, F.A.; Haque, S. Overview of hepatitis C infection, molecular biology, and new treatment. J. Infectiology Public Health, 2020, 13(5), 773-783. doi: 10.1016/j.jiph.2019.11.015 PMID: 31870632
  105. Colpitts, C.C.; Lupberger, J.; Doerig, C.; Baumert, T.F. Host cell kinases and the hepatitis C virus life cycle. Biochim. Biophys. Acta. Proteins Proteomics, 2015, 1854(10), 1657-1662. doi: 10.1016/j.bbapap.2015.04.011 PMID: 25896387
  106. Crouchet, E.; Wrensch, F.; Schuster, C.; Zeisel, M.B.; Baumert, T.F. Host-targeting therapies for hepatitis C virus infection: Current developments and future applications. Therap. Adv. Gastroenterol., 2018, 11, 1756284818759483. doi: 10.1177/1756284818759483 PMID: 29619090
  107. Scheel, T.K.H.; Rice, C.M. Understanding the hepatitis C virus life cycle paves the way for highly effective therapies. Nat. Med., 2013, 19(7), 837-849. doi: 10.1038/nm.3248 PMID: 23836234
  108. Colpitts, C.C.; El-Saghire, H.; Pochet, N.; Schuster, C.; Baumert, T.F. High-throughput approaches to unravel hepatitis C virus-host interactions. Virus Res., 2016, 218, 18-24. doi: 10.1016/j.virusres.2015.09.013 PMID: 26410623
  109. Jeulin, H.; Velay, A.; Murray, J.; Schvoerer, E. Clinical impact of hepatitis B and C virus envelope glycoproteins. World J. Gastroenterol., 2013, 19(5), 654-664. doi: 10.3748/wjg.v19.i5.654 PMID: 23429668
  110. Gerold, G.; Rice, C.M. Locking out hepatitis C. Nat. Med., 2011, 17(5), 542-544. doi: 10.1038/nm0511-542 PMID: 21546968
  111. Tsai, E. Review of current and potential treatments for chronic hepatitis B virus infection. Gastroenterol. Hepatol. (N. Y.), 2021, 17(8), 367-376. PMID: 34602899
  112. Vincenzi, M.; Leone, M. The fight against human viruses: How NMR can help? Curr. Med. Chem., 2021, 28(22), 4380-4453. doi: 10.2174/0929867328666201228123748 PMID: 33371830
  113. Tian, J.; Liu, W.; Zhang, Z.; Tang, L.; Li, D.; Tian, Z.; Lin, S.; Li, Y. Influence of miR-520e-mediated MAPK signalling pathway on HBV replication and regulation of hepatocellular carcinoma cells via targeting EphA2. J. Viral Hepat., 2019, 26(4), 496-505. doi: 10.1111/jvh.13048 PMID: 30521133
  114. Wang, Y.; Zhang, Z.; Zhu, Z.; Wang, P.; Zhang, J.; Liu, H.; Li, J. The significance of EphA2-regulated Wnt/β-catenin signal pathway in promoting the metastasis of HBV-related hepatocellular carcinoma. Mol. Biol. Rep., 2023, 50(1), 565-575. doi: 10.1007/s11033-022-08045-1 PMID: 36350420
  115. Shang, Z.; Kouznetsova, V.; Tsigelny, I. Human Papillomavirus (HPV) viral proteins substitute for the impact of somatic mutations by affecting cancer-related genes: Meta-analysis and perspectives. J. Infect., 2020, 3(1), 29-47. doi: 10.29245/2689-9981/2020/1.1157
  116. Seiwert, T.Y.; Zuo, Z.; Keck, M.K.; Khattri, A.; Pedamallu, C.S.; Stricker, T.; Brown, C.; Pugh, T.J.; Stojanov, P.; Cho, J.; Lawrence, M.S.; Getz, G.; Brägelmann, J.; DeBoer, R.; Weichselbaum, R.R.; Langerman, A.; Portugal, L.; Blair, E.; Stenson, K.; Lingen, M.W.; Cohen, E.E.W.; Vokes, E.E.; White, K.P.; Hammerman, P.S. Integrative and comparative genomic analysis of HPV-positive and HPV-negative head and neck squamous cell carcinomas. Clin. Cancer Res., 2015, 21(3), 632-641. doi: 10.1158/1078-0432.CCR-13-3310 PMID: 25056374
  117. Goudsmit, C.; da Veiga Leprevost, F.; Basrur, V.; Peters, L.; Nesvizhskii, A.; Walline, H. Differences in extracellular vesicle protein cargo are dependent on head and neck squamous cell carcinoma cell of origin and human papillomavirus status. Cancers (Basel), 2021, 13(15), 3714. doi: 10.3390/cancers13153714 PMID: 34359613
  118. Li, X.; Li, D.; Ma, R. ALW-II-41-27, an EphA2 inhibitor, inhibits proliferation, migration and invasion of cervical cancer cells via inhibition of the RhoA/ROCK pathway. Oncol. Lett., 2022, 23(4), 129. doi: 10.3892/ol.2022.13249 PMID: 35251349
  119. Wang, Y.Q.; Zhao, X.Y. Human cytomegalovirus primary infection and reactivation: Insights from virion-carried molecules. Front. Microbiol., 2020, 11, 1511. doi: 10.3389/fmicb.2020.01511 PMID: 32765441
  120. Griffiths, P.; Reeves, M. Pathogenesis of human cytomegalovirus in the immunocompromised host. Nat. Rev. Microbiol., 2021, 19(12), 759-773. doi: 10.1038/s41579-021-00582-z PMID: 34168328
  121. Wass, A.B.; Krishna, B.A.; Herring, L.E.; Gilbert, T.S.K.; Nukui, M.; Groves, I.J.; Dooley, A.L.; Kulp, K.H.; Matthews, S.M.; Rotroff, D.M.; Graves, L.M.; O’Connor, C.M. Cytomegalovirus US28 regulates cellular EphA2 to maintain viral latency. Sci. Adv., 2022, 8(43), eadd1168. doi: 10.1126/sciadv.add1168 PMID: 36288299
  122. Dong, X.D.; Li, Y.; Li, Y.; Sun, C.; Liu, S.X.; Duan, H.; Cui, R.; Zhong, Q.; Mou, Y.G.; Wen, L.; Yang, B.; Zeng, M.S.; Luo, M.H.; Zhang, H. EphA2 is a functional entry receptor for HCMV infection of glioblastoma cells. PLoS Pathog., 2023, 19(5), e1011304. doi: 10.1371/journal.ppat.1011304 PMID: 37146061
  123. Hahn, A.S.; Desrosiers, R.C. Rhesus monkey rhadinovirus uses eph family receptors for entry into B cells and endothelial cells but not fibroblasts. PLoS Pathog., 2013, 9(5), e1003360. doi: 10.1371/journal.ppat.1003360 PMID: 23696734
  124. Bizot, E.; Bousquet, A.; Charpié, M.; Coquelin, F.; Lefevre, S.; Le Lorier, J.; Patin, M.; Sée, P.; Sarfati, E.; Walle, S.; Visseaux, B.; Basmaci, R. Rhinovirus: A narrative review on its genetic characteristics, pediatric clinical presentations, and pathogenesis. Front Pediatr., 2021, 9, 643219. doi: 10.3389/fped.2021.643219 PMID: 33829004
  125. Esneau, C.; Duff, A.C.; Bartlett, N.W. Understanding rhinovirus circulation and impact on illness. Viruses, 2022, 14(1), 141. doi: 10.3390/v14010141 PMID: 35062345
  126. Vincenzi, M.; Mercurio, F.A.; Leone, M. Looking for SARS-CoV-2 therapeutics through computational approaches. Curr. Med. Chem., 2022, 30(28), 3158-3214. PMID: 36200217
  127. Zhang, W.; Zhao, Y.; Zhang, F.; Wang, Q.; Li, T.; Liu, Z.; Wang, J.; Qin, Y.; Zhang, X.; Yan, X.; Zeng, X.; Zhang, S. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China. Clin. Immunol., 2020, 214, 108393. doi: 10.1016/j.clim.2020.108393 PMID: 32222466
  128. Weisberg, E.; Parent, A.; Yang, P.L.; Sattler, M.; Liu, Q.; Liu, Q.; Wang, J.; Meng, C.; Buhrlage, S.J.; Gray, N.; Griffin, J.D. Repurposing of kinase inhibitors for treatment of COVID-19. Pharm. Res., 2020, 37(9), 167. doi: 10.1007/s11095-020-02851-7 PMID: 32778962
  129. Galimberti, S.; Petrini, M.; Baratè, C.; Ricci, F.; Balducci, S.; Grassi, S.; Guerrini, F.; Ciabatti, E.; Mechelli, S.; Di Paolo, A.; Baldini, C.; Baglietto, L.; Macera, L.; Spezia, P.G.; Maggi, F. Tyrosine kinase inhibitors play an antiviral action in patients affected by chronic myeloid leukemia: A possible model supporting their use in the fight against SARS-CoV-2. Front. Oncol., 2020, 10, 1428. doi: 10.3389/fonc.2020.01428 PMID: 33014780
  130. Carpenter, T.C.; Schroeder, W.; Stenmark, K.R.; Schmidt, E.P. Eph-A2 promotes permeability and inflammatory responses to bleomycin-induced lung injury. Am. J. Respir. Cell Mol. Biol., 2012, 46(1), 40-47. doi: 10.1165/rcmb.2011-0044OC PMID: 21799118
  131. Qiao, Q.; Liu, X.; Yang, T.; Cui, K.; Kong, L.; Yang, C.; Zhang, Z. Nanomedicine for acute respiratory distress syndrome: The latest application, targeting strategy, and rational design. Acta Pharm. Sin. B, 2021, 11(10), 3060-3091. doi: 10.1016/j.apsb.2021.04.023 PMID: 33977080
  132. Patil, M.A.; Upadhyay, A.K.; Hernandez-Lagunas, L.; Good, R.; Carpenter, T.C.; Sucharov, C.C.; Nozik-Grayck, E.; Kompella, U.B. Targeted delivery of YSA-functionalized and non-functionalized polymeric nanoparticles to injured pulmonary vasculature. Artif. Cells Nanomed. Biotechnol., 2018, 46(3), S1059-S1066. doi: 10.1080/21691401.2018.1528984 PMID: 30450979
  133. Ahsan, N.; Rao, R.S.P.; Wilson, R.S.; Punyamurtula, U.; Salvato, F.; Petersen, M.; Ahmed, M.K.; Abid, M.R.; Verburgt, J.C.; Kihara, D.; Yang, Z.; Fornelli, L.; Foster, S.B.; Ramratnam, B. Mass spectrometry-based proteomic platforms for better understanding of SARS-CoV-2 induced pathogenesis and potential diagnostic approaches. Proteomics, 2021, 21(10), 2000279. doi: 10.1002/pmic.202000279 PMID: 33860983
  134. Appelberg, S.; Gupta, S.; Svensson Akusjärvi, S.; Ambikan, A.T.; Mikaeloff, F.; Saccon, E.; Végvári, Á.; Benfeitas, R.; Sperk, M.; Ståhlberg, M.; Krishnan, S.; Singh, K.; Penninger, J.M.; Mirazimi, A.; Neogi, U. Dysregulation in Akt/mTOR/HIF-1 signaling identified by proteo-transcriptomics of SARS-CoV-2 infected cells. Emerg. Microbes Infect., 2020, 9(1), 1748-1760. doi: 10.1080/22221751.2020.1799723 PMID: 32691695
  135. Bojkova, D.; Klann, K.; Koch, B.; Widera, M.; Krause, D.; Ciesek, S.; Cinatl, J.; Münch, C. Proteomics of SARS-CoV-2-infected host cells reveals therapy targets. Nature, 2020, 583(7816), 469-472. doi: 10.1038/s41586-020-2332-7 PMID: 32408336
  136. Zecha, J.; Lee, C.Y.; Bayer, F.P.; Meng, C.; Grass, V.; Zerweck, J.; Schnatbaum, K.; Michler, T.; Pichlmair, A.; Ludwig, C.; Kuster, B. Data, reagents, assays and merits of proteomics for SARS-CoV-2 research and testing. Mol. Cell. Proteomics, 2020, 19(9), 1503-1522. doi: 10.1074/mcp.RA120.002164 PMID: 32591346
  137. Stukalov, A.; Girault, V.; Grass, V.; Karayel, O.; Bergant, V.; Urban, C.; Haas, D.A.; Huang, Y.; Oubraham, L.; Wang, A.; Hamad, M.S.; Piras, A.; Hansen, F.M.; Tanzer, M.C.; Paron, I.; Zinzula, L.; Engleitner, T.; Reinecke, M.; Lavacca, T.M.; Ehmann, R.; Wölfel, R.; Jores, J.; Kuster, B.; Protzer, U.; Rad, R.; Ziebuhr, J.; Thiel, V.; Scaturro, P.; Mann, M.; Pichlmair, A. Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV. Nature, 2021, 594(7862), 246-252. doi: 10.1038/s41586-021-03493-4 PMID: 33845483
  138. Hekman, R.M.; Hume, A.J.; Goel, R.K.; Abo, K.M.; Huang, J.; Blum, B.C.; Werder, R.B.; Suder, E.L.; Paul, I.; Phanse, S.; Youssef, A.; Alysandratos, K.D.; Padhorny, D.; Ojha, S.; Mora-Martin, A.; Kretov, D.; Ash, P.E.A.; Verma, M.; Zhao, J.; Patten, J.J.; Villacorta-Martin, C.; Bolzan, D.; Perea-Resa, C.; Bullitt, E.; Hinds, A.; Tilston-Lunel, A.; Varelas, X.; Farhangmehr, S.; Braunschweig, U.; Kwan, J.H.; McComb, M.; Basu, A.; Saeed, M.; Perissi, V.; Burks, E.J.; Layne, M.D.; Connor, J.H.; Davey, R.; Cheng, J.X.; Wolozin, B.L.; Blencowe, B.J.; Wuchty, S.; Lyons, S.M.; Kozakov, D.; Cifuentes, D.; Blower, M.; Kotton, D.N.; Wilson, A.A.; Mühlberger, E.; Emili, A. Actionable cytopathogenic host responses of human alveolar type 2 cells to SARS-CoV-2. Mol. Cell, 2021, 81(1), 212. doi: 10.1016/j.molcel.2020.12.028 PMID: 33417854
  139. Klann, K.; Bojkova, D.; Tascher, G.; Ciesek, S.; Münch, C.; Cinatl, J. Growth factor receptor signaling inhibition prevents SARS-CoV-2 replication. Mol. Cell, 2020, 80(1), 164-174.e4. doi: 10.1016/j.molcel.2020.08.006 PMID: 32877642
  140. Laurent, E.M.N.; Sofianatos, Y.; Komarova, A.; Gimeno, J.P.; Tehrani, P.S.; Kim, D.K.; Abdouni, H.; Duhamel, M.; Cassonnet, P.; Knapp, J.J.; Kuang, D.; Chawla, A.; Sheykhkarimli, D.; Rayhan, A.; Li, R.; Pogoutse, O.; Hill, D.E.; Calderwood, M.A.; Falter-Braun, P.; Aloy, P.; Stelzl, U.; Vidal, M.; Gingras, A.C.; Pavlopoulos, G.A.; Van Der Werf, S.; Fournier, I.; Roth, F.P.; Salzet, M.; Demeret, C.; Jacob, Y.; Coyaud, E. Global BioID-based SARS-CoV-2 proteins proximal interactome unveils novel ties between viral polypeptides and host factors involved in multiple COVID19-associated mechanisms. bioRxiv, 2020. doi: 10.1101/2020.08.28.272955
  141. Samavarchi-Tehrani, P.; Abdouni, H.; Knight, J.D.R.; Astori, A.; Samson, R.; Lin, Z-Y.; Kim, D-K.; Knapp, J.J.; St-Germain, J.; Go, C.D.; Larsen, B.; Wong, C.J.; Cassonnet, P.; Demeret, C.; Jacob, Y.; Roth, F.P.; Raught, B.; Gingras, A-C.A. SARS-CoV-2 - host proximity interactome. bioRxiv, 2020.
  142. St-Germain, J.R.; Astori, A.; Samavarchi-Tehrani, P.; Abdouni, H.; Macwan, V.; Kim, D-K.; Knapp, J.J.; Roth, F.P.; Gingras, A.C.; Raught, B.A. SARS-CoV-2 BioID-based virus-host membrane protein interactome and virus peptide compendium: new proteomics resources for COVID-19 research. bioRxiv, 2020. doi: 10.1101/2020.08.28.269175
  143. Datta, S.; Tavares, A.H.; Reyes-Robles, T.; Ryu, K.A.; Khan, N.; Bechtel, T.J.; Bertoch, J.M.; White, C.H.; Hazuda, D.J.; Vora, K.A.; Hett, E.C.; Fadeyi, O.O.; Oslund, R.C.; Saeed, M.; Emili, A. High resolution photocatalytic mapping of SARS-CoV-2 Spike protein-host cell membrane interactions. bioRxiv, 2022. doi: 10.1101/2022.09.02.506438
  144. Liu, X.; Huuskonen, S.; Laitinen, T.; Redchuk, T.; Bogacheva, M.; Salokas, K.; Pöhner, I.; Öhman, T.; Tonduru, A.K.; Hassinen, A.; Gawriyski, L.; Keskitalo, S.; Vartiainen, M.K.; Pietiäinen, V.; Poso, A.; Varjosalo, M. SARS-CoV-2–host proteome interactions for antiviral drug discovery. Mol. Syst. Biol., 2021, 17(11), e10396. doi: 10.15252/msb.202110396 PMID: 34709727
  145. EPHA2. Available from: https://thebiogrid.org/108288/summary/homo-sapiens/epha2.html
  146. Oughtred, R.; Rust, J.; Chang, C.; Breitkreutz, B.J.; Stark, C.; Willems, A.; Boucher, L.; Leung, G.; Kolas, N.; Zhang, F.; Dolma, S.; Coulombe-Huntington, J.; Chatr-aryamontri, A.; Dolinski, K.; Tyers, M. The BIOGRID database: A comprehensive biomedical resource of curated protein, genetic, and chemical interactions. Protein Sci., 2021, 30(1), 187-200. doi: 10.1002/pro.3978 PMID: 33070389
  147. Garg, A.; Kumar, G.; Sinha, S. New insights into nCOVID-19 binding domain and its cellular receptors. bioRxiv, 2020. doi: 10.1101/2020.09.06.285023
  148. Zalpoor, H.; Akbari, A.; Samei, A.; Forghaniesfidvajani, R.; Kamali, M.; Afzalnia, A.; Manshouri, S.; Heidari, F.; Pornour, M.; Khoshmirsafa, M.; Aazami, H.; Seif, F. The roles of Eph receptors, neuropilin-1, P2X7, and CD147 in COVID-19-associated neurodegenerative diseases: inflammasome and JaK inhibitors as potential promising therapies. Cell. Mol. Biol. Lett., 2022, 27(1), 10. doi: 10.1186/s11658-022-00311-1 PMID: 35109786
  149. McGill, J.R.; Lagassé, H.A.D.; Hernandez, N.; Hopkins, L.; Jankowski, W.; McCormick, Q.; Simhadri, V.; Golding, B.; Sauna, Z.E. A structural homology approach to identify potential cross-reactive antibody responses following SARS-CoV-2 infection. Sci. Rep., 2022, 12(1), 11388. doi: 10.1038/s41598-022-15225-3 PMID: 35794133
  150. Zalpoor, H.; Akbari, A.; Nabi-Afjadi, M. Ephrin (Eph) receptor and downstream signaling pathways: A promising potential targeted therapy for COVID-19 and associated cancers and diseases. Hum. Cell, 2022, 35(3), 952-954. doi: 10.1007/s13577-022-00697-2 PMID: 35377105
  151. BioRender Templates. Available from: https://app.biorender.com/biorender-templates

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers