Regulatory Non-coding RNAs Involved in Oxidative Stress and Neuroinflammation: An Intriguing Crosstalk in Parkinson’s Disease


Cite item

Full Text

Abstract

:Parkinson’s disease (PD) is a common neurodegenerative disorder characterized by the accumulation of α-synuclein and the degeneration of dopaminergic neurons in the substantia nigra. Although the molecular bases for PD development are not fully recognized, extensive evidence has suggested that the development of PD is strongly associated with neuroinflammation. It is noteworthy that while neuroinflammation might not be a primary factor in all patients with PD, it seems to be a driving force for disease progression, and therefore, exploring the role of pathways involved in neuroinflammation is of great importance. Besides, the importance of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and competing endogenous RNAs (ceRNAs), has been widely studied with a focus on the pathogenesis of PD. However, there is no comprehensive review regarding the role of neuroinflammation- related ncRNAs as prospective biomarkers and therapeutic targets involved in the pathogenesis of PD, even though the number of studies connecting ncRNAs to neuroinflammatory pathways and oxidative stress has markedly increased in the last few years. Hence, the present narrative review intended to describe the crosstalk between regulatory ncRNAs and neuroinflammatory targets with respect to PD to find and propose novel combining biomarkers or therapeutic targets in clinical settings.

About the authors

Naser Khish

Department of Biology, Payam Noor University International

Email: info@benthamscience.net

Pooran Ghiasizadeh

Student Research Committee, Arak University of Medical Science

Email: info@benthamscience.net

Abolhasan Rasti

Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences

Email: info@benthamscience.net

Omid Moghimi

Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences

Email: info@benthamscience.net

Arash Zadeh

Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences

Email: info@benthamscience.net

Alireza Bahiraee

Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

Reyhane Ebrahimi

Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Surmeier, D.J.; Obeso, J.A.; Halliday, G.M. Selective neuronal vulnerability in Parkinson disease. Nat. Rev. Neurosci., 2017, 18(2), 101-113. doi: 10.1038/nrn.2016.178 PMID: 28104909
  2. Jankovic, J.; Tan, E.K. Parkinson’s disease: Etiopathogenesis and treatment. J. Neurol. Neurosurg. Psychiatry, 2020, 91(8), 795-808. doi: 10.1136/jnnp-2019-322338 PMID: 32576618
  3. Pajares, M.; I Rojo, A.; Manda, G.; Boscá, L.; Cuadrado, A. Inflammation in Parkinson’s disease: Mechanisms and therapeutic implications. Cells, 2020, 9(7), 1687. doi: 10.3390/cells9071687 PMID: 32674367
  4. Blauwendraat, C.; Nalls, M.A.; Singleton, A.B. The genetic architecture of Parkinson’s disease. Lancet Neurol., 2020, 19(2), 170-178. doi: 10.1016/S1474-4422(19)30287-X PMID: 31521533
  5. Klein, C.; Westenberger, A. Genetics of Parkinson’s disease. Cold Spring Harb. Perspect. Med., 2012, 2(1), a008888. doi: 10.1101/cshperspect.a008888 PMID: 22315721
  6. Wirdefeldt, K.; Adami, H.O.; Cole, P.; Trichopoulos, D.; Mandel, J. Epidemiology and etiology of Parkinson’s disease: A review of the evidence. Eur. J. Epidemiol., 2011, 26(S1), 1-58. doi: 10.1007/s10654-011-9581-6 PMID: 21626386
  7. McGeer, P.L.; Itagaki, S.; Boyes, B.E.; McGeer, E.G. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology, 1988, 38(8), 1285-1291. doi: 10.1212/WNL.38.8.1285 PMID: 3399080
  8. Frank-Cannon, T.C.; Tran, T.; Ruhn, K.A.; Martinez, T.N.; Hong, J.; Marvin, M.; Hartley, M.; Treviño, I.; O’Brien, D.E.; Casey, B.; Goldberg, M.S.; Tansey, M.G. Parkin deficiency increases vulnerability to inflammation-related nigral degeneration. J. Neurosci., 2008, 28(43), 10825-10834. doi: 10.1523/JNEUROSCI.3001-08.2008 PMID: 18945890
  9. Qin, L.; Wu, X.; Block, M.L.; Liu, Y.; Breese, G.R.; Hong, J.S.; Knapp, D.J.; Crews, F.T. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia, 2007, 55(5), 453-462. doi: 10.1002/glia.20467 PMID: 17203472
  10. Ramsey, C.P.; Tansey, M.G. A survey from 2012 of evidence for the role of neuroinflammation in neurotoxin animal models of Parkinson’s disease and potential molecular targets. Exp. Neurol., 2014, 256, 126-132. doi: 10.1016/j.expneurol.2013.05.014 PMID: 23726958
  11. Stolzenberg, E.; Berry, D.; Yang, D.; Lee, E.Y.; Kroemer, A.; Kaufman, S.; Wong, G.C.L.; Oppenheim, J.J.; Sen, S.; Fishbein, T.; Bax, A.; Harris, B.; Barbut, D.; Zasloff, M.A. A role for neuronal alpha-synuclein in gastrointestinal immunity. J. Innate Immun., 2017, 9(5), 456-463. doi: 10.1159/000477990 PMID: 28651250
  12. Gao, H.M.; Kotzbauer, P.T.; Uryu, K.; Leight, S.; Trojanowski, J.Q.; Lee, V.M.Y. Neuroinflammation and oxidation/nitration of α-synuclein linked to dopaminergic neurodegeneration. J. Neurosci., 2008, 28(30), 7687-7698. doi: 10.1523/JNEUROSCI.0143-07.2008 PMID: 18650345
  13. He, Q.; Yu, W.; Wu, J.; Chen, C.; Lou, Z.; Zhang, Q.; Zhao, J.; Wang, J.; Xiao, B. Intranasal LPS-mediated Parkinson’s model challenges the pathogenesis of nasal cavity and environmental toxins. PLoS. One., 2013, 8(11), e78418. doi: 10.1371/journal.pone.0078418 PMID: 24250796
  14. Witoelar, A.; Jansen, I.E.; Wang, Y.; Desikan, R.S.; Gibbs, J.R.; Blauwendraat, C.; Thompson, W.K.; Hernandez, D.G.; Djurovic, S.; Schork, A.J.; Bettella, F.; Ellinghaus, D.; Franke, A.; Lie, B.A.; McEvoy, L.K.; Karlsen, T.H.; Lesage, S.; Morris, H.R.; Brice, A.; Wood, N.W.; Heutink, P.; Hardy, J.; Singleton, A.B.; Dale, A.M.; Gasser, T.; Andreassen, O.A.; Sharma, M. Genome-wide pleiotropy between Parkinson disease and autoimmune diseases. JAMA Neurol., 2017, 74(7), 780-792. doi: 10.1001/jamaneurol.2017.0469 PMID: 28586827
  15. Stojkovska, I.; Wagner, B.M.; Morrison, B.E. Parkinson’s disease and enhanced inflammatory response. Exp. Biol. Med., 2015, 240(11), 1387-1395. doi: 10.1177/1535370215576313 PMID: 25769314
  16. Chen, Z.; Trapp, B.D. Microglia and neuroprotection. J. Neurochem., 2016, 136(S1), 10-17. doi: 10.1111/jnc.13062 PMID: 25693054
  17. Liu, T.W.; Chen, C.M.; Chang, K.H. Biomarker of neuroinflammation in Parkinson’s disease. Int. J. Mol. Sci., 2022, 23(8), 4148. doi: 10.3390/ijms23084148 PMID: 35456966
  18. Watson, C.N.; Belli, A.; Di Pietro, V. Small non-coding RNAs: New class of biomarkers and potential therapeutic targets in neurodegenerative disease. Front. Genet., 2019, 10, 364. doi: 10.3389/fgene.2019.00364 PMID: 31080456
  19. Ebrahimi, R.; Golestani, A. The emerging role of noncoding RNAs in neuroinflammation: Implications in pathogenesis and therapeutic approaches. J. Cell. Physiol., 2022, 237(2), 1206-1224. doi: 10.1002/jcp.30624 PMID: 34724212
  20. Moayedi, K.; Orandi, S.; Ebrahimi, R.; Tanhapour, M.; Moradi, M.; Abbastabar, M.; Golestani, A. A novel approach to type 3 diabetes mechanism: The interplay between noncoding RNAs and insulin signaling pathway in Alzheimer’s disease. J. Cell. Physiol., 2022, 237(7), 2838-2861. doi: 10.1002/jcp.30779 PMID: 35580144
  21. Bahiraee, A.; Ebrahimi, R. A noble pathological role for alpha-synuclein in triggering neurodegeneration of Parkinson’s disease. Mov. Disord., 2018, 33(3), 404. doi: 10.1002/mds.27306 PMID: 29418023
  22. Stoker, T.B.; Greenland, J.C. Parkinson’s Disease: Pathogenesis and Clinical Aspects; Codon Publications: Brisbane (AU), 2018.
  23. Kuo, M.C.; Liu, S.C.H.; Hsu, Y.F.; Wu, R.M. The role of noncoding RNAs in Parkinson’s disease: Biomarkers and associations with pathogenic pathways. J. Biomed. Sci., 2021, 28(1), 78. doi: 10.1186/s12929-021-00775-x PMID: 34794432
  24. Tehrani, S.S.; Ebrahimi, R.; Al-E-Ahmad, A.; Panahi, G.; Meshkani, R.; Younesi, S.; Saadat, P.; Parsian, H. Competing endogenous RNAs (CeRNAs): Novel network in neurological disorders. Curr. Med. Chem., 2021, 28(29), 5983-6010. doi: 10.2174/1875533XMTEy1NTAiz PMID: 33334276
  25. Drepper, C.; Sendtner, M. A new postal code for dendritic mRNA transport in neurons. EMBO Rep., 2011, 12(7), 614-616. doi: 10.1038/embor.2011.119 PMID: 21681203
  26. Li, S.; Bi, G.; Han, S.; Huang, R. MicroRNAs play a role in Parkinson’s Disease by regulating microglia function: From pathogenetic involvement to therapeutic potential. Front. Mol. Neurosci., 2022, 14, 744942. doi: 10.3389/fnmol.2021.744942 PMID: 35126050
  27. Konovalova, J.; Gerasymchuk, D.; Parkkinen, I.; Chmielarz, P.; Domanskyi, A. Interplay between MicroRNAs and oxidative stress in neurodegenerative diseases. Int. J. Mol. Sci., 2019, 20(23), 6055. doi: 10.3390/ijms20236055 PMID: 31801298
  28. Aghabozorgi, A.S.; Ahangari, N.; Eftekhaari, T.E.; Torbati, P.N.; Bahiraee, A.; Ebrahimi, R.; Pasdar, A. Circulating exosomal miRNAs in cardiovascular disease pathogenesis: New emerging hopes. J. Cell. Physiol., 2019, 234(12), 21796-21809. doi: 10.1002/jcp.28942 PMID: 31273798
  29. Abbastabar, M.; Sarfi, M.; Golestani, A.; Khalili, E. lncRNA involvement in hepatocellular carcinoma metastasis and prognosis. EXCLI J., 2018, 17, 900-913. PMID: 30564069
  30. Ebrahimi, R.; Toolabi, K.; Jannat Ali Pour, N.; Mohassel Azadi, S.; Bahiraee, A.; Zamani-Garmsiri, F.; Emamgholipour, S. Adipose tissue gene expression of long non-coding RNAs; MALAT1, TUG1 in obesity: is it associated with metabolic profile and lipid homeostasis-related genes expression? Diabetol. Metab. Syndr., 2020, 12(1), 36. doi: 10.1186/s13098-020-00544-0 PMID: 32368256
  31. Salta, E.; De Strooper, B. Non-coding RNAs with essential roles in neurodegenerative disorders. Lancet Neurol., 2012, 11(2), 189-200. doi: 10.1016/S1474-4422(11)70286-1 PMID: 22265214
  32. Lyu, Y.; Bai, L.; Qin, C. Long noncoding RNAs in neurodevelopment and Parkinson’s disease. Animal Model. Exp. Med., 2019, 2(4), 239-251. doi: 10.1002/ame2.12093 PMID: 31942556
  33. Jiang, H.; Zhang, Y.; Yue, J.; Shi, Y.; Xiao, B.; Xiao, W.; Luo, Z. Non-coding RNAs: The neuroinflammatory regulators in neurodegenerative diseases. Front. Neurol., 2022, 13, 929290. doi: 10.3389/fneur.2022.929290 PMID: 36034298
  34. Manna, I; Quattrone, A; De Benedittis, S; Iaccino, E; Quattrone, A. Roles of non-coding RNAs as novel diagnostic biomarkers in Parkinson's disease. J. Parkinsons Dis., 2021, 11(4), 1475-1489. doi: 10.3233/JPD-212726
  35. Nuzziello, N.; Liguori, M. The MicroRNA centrism in the orchestration of neuroinflammation in neurodegenerative diseases. Cells, 2019, 8(10), 1193. doi: 10.3390/cells8101193 PMID: 31581723
  36. Dias, V.; Junn, E.; Mouradian, M.M. The role of oxidative stress in Parkinson’s disease. J. Parkinsons Dis., 2013, 3(4), 461-491. doi: 10.3233/JPD-130230 PMID: 24252804
  37. Golestani, A.; Rastegar, R.; Shariftabrizi, A.; Khaghani, S.; Payabvash, S.M.; Salmasi, A.H.; Dehpour, A.R.; Pasalar, P. Paradoxical dose- and time-dependent regulation of superoxide dismutase and antioxidant capacity by vitamin E in rat. Clin. Chim. Acta, 2006, 365(1-2), 153-159. doi: 10.1016/j.cca.2005.08.008 PMID: 16183047
  38. Zhang, S.; Wang, R.; Wang, G. Impact of dopamine oxidation on dopaminergic neurodegeneration. ACS Chem. Neurosci., 2019, 10(2), 945-953. doi: 10.1021/acschemneuro.8b00454 PMID: 30592597
  39. Lohr, K.M.; Miller, G.W. VMAT2 and Parkinson’s disease: Harnessing the dopamine vesicle. Expert Rev. Neurother., 2014, 14(10), 1115-1117. doi: 10.1586/14737175.2014.960399 PMID: 25220836
  40. Hwang, D.Y.; Hong, S.; Jeong, J.W.; Choi, S.; Kim, H.; Kim, J.; Kim, K.S. Vesicular monoamine transporter 2 and dopamine transporter are molecular targets of Pitx3 in the ventral midbrain dopamine neurons. J. Neurochem., 2009, 111(5), 1202-1212. doi: 10.1111/j.1471-4159.2009.06404.x PMID: 19780901
  41. Li, Y.; Li, C.; Chen, Z.; He, J.; Tao, Z.; Yin, Z.Q. A MicroRNA, mir133b, suppresses melanopsin expression mediated by failure dopaminergic amacrine cells in RCS rats. Cell. Signal., 2012, 24(3), 685-698. doi: 10.1016/j.cellsig.2011.10.017 PMID: 22101014
  42. Caudle, W.M.; Richardson, J.R.; Wang, M.Z.; Taylor, T.N.; Guillot, T.S.; McCormack, A.L.; Colebrooke, R.E.; Di Monte, D.A.; Emson, P.C.; Miller, G.W. Reduced vesicular storage of dopamine causes progressive nigrostriatal neurodegeneration. J. Neurosci., 2007, 27(30), 8138-8148. doi: 10.1523/JNEUROSCI.0319-07.2007 PMID: 17652604
  43. Kim, J.; Inoue, K.; Ishii, J.; Vanti, W.B.; Voronov, S.V.; Murchison, E.; Hannon, G.; Abeliovich, A. A MicroRNA feedback circuit in midbrain dopamine neurons. Science, 2007, 317(5842), 1220-1224. doi: 10.1126/science.1140481 PMID: 17761882
  44. Jia, X.; Wang, F.; Han, Y.; Geng, X.; Li, M.; Shi, Y.; Lu, L.; Chen, Y. miR-137 and miR-491 negatively regulate dopamine transporter expression and function in neural cells. Neurosci. Bull., 2016, 32(6), 512-522. doi: 10.1007/s12264-016-0061-6 PMID: 27628529
  45. Choi, J.; Sullards, M.C.; Olzmann, J.A.; Rees, H.D.; Weintraub, S.T.; Bostwick, D.E.; Gearing, M.; Levey, A.I.; Chin, L.S.; Li, L. Oxidative damage of DJ-1 is linked to sporadic Parkinson and Alzheimer diseases. J. Biol. Chem., 2006, 281(16), 10816-10824. doi: 10.1074/jbc.M509079200 PMID: 16517609
  46. Hayashi, T.; Ishimori, C.; Takahashi-Niki, K.; Taira, T.; Kim, Y.; Maita, H.; Maita, C.; Ariga, H.; Iguchi-Ariga, S.M.M. DJ-1 binds to mitochondrial complex I and maintains its activity. Biochem. Biophys. Res. Commun., 2009, 390(3), 667-672. doi: 10.1016/j.bbrc.2009.10.025 PMID: 19822128
  47. Ariga, H.; Takahashi-Niki, K.; Kato, I.; Maita, H.; Niki, T.; Iguchi-Ariga, S.M. Neuroprotective function of DJ-1 in Parkinson’s disease. Oxid. Med. Cell Longev., 2013, 2013, 683920.
  48. Xiong, R.; Wang, Z.; Zhao, Z.; Li, H.; Chen, W.; Zhang, B.; Wang, L.; Wu, L.; Li, W.; Ding, J.; Chen, S. MicroRNA-494 reduces DJ-1 expression and exacerbates neurodegeneration. Neurobiol. Aging, 2014, 35(3), 705-714. doi: 10.1016/j.neurobiolaging.2013.09.027 PMID: 24269020
  49. Oh, S.E.; Park, H.J.; He, L.; Skibiel, C.; Junn, E.; Mouradian, M.M. The Parkinson’s disease gene product DJ-1 modulates miR-221 to promote neuronal survival against oxidative stress. Redox Biol., 2018, 19, 62-73. doi: 10.1016/j.redox.2018.07.021 PMID: 30107296
  50. Chen, Y.; Gao, C.; Sun, Q.; Pan, H.; Huang, P.; Ding, J.; Chen, S. MicroRNA-4639 is a regulator of DJ-1 expression and a potential early diagnostic marker for Parkinson’s disease. Front. Aging Neurosci., 2017, 9, 232. doi: 10.3389/fnagi.2017.00232 PMID: 28785216
  51. Miñones-Moyano, E.; Porta, S.; Escaramís, G.; Rabionet, R.; Iraola, S.; Kagerbauer, B.; Espinosa-Parrilla, Y.; Ferrer, I.; Estivill, X.; Martí, E. MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum. Mol. Genet., 2011, 20(15), 3067-3078. doi: 10.1093/hmg/ddr210 PMID: 21558425
  52. Barodia, S.K.; Creed, R.B.; Goldberg, M.S. Parkin and PINK1 functions in oxidative stress and neurodegeneration. Brain Res. Bull., 2017, 133, 51-59. doi: 10.1016/j.brainresbull.2016.12.004 PMID: 28017782
  53. Wang, H.L.; Chou, A.H.; Wu, A.S.; Chen, S.Y.; Weng, Y.H.; Kao, Y.C.; Yeh, T.H.; Chu, P.J.; Lu, C.S. PARK6 PINK1 mutants are defective in maintaining mitochondrial membrane potential and inhibiting ROS formation of substantia nigra dopaminergic neurons. Biochim. Biophys. Acta Mol. Basis Dis., 2011, 1812(6), 674-684. doi: 10.1016/j.bbadis.2011.03.007 PMID: 21421046
  54. Wood-Kaczmar, A.; Gandhi, S.; Yao, Z.; Abramov, A.S.Y.; Miljan, E.A.; Keen, G.; Stanyer, L.; Hargreaves, I.; Klupsch, K.; Deas, E.; Downward, J.; Mansfield, L.; Jat, P.; Taylor, J.; Heales, S.; Duchen, M.R.; Latchman, D.; Tabrizi, S.J.; Wood, N.W. PINK1 is necessary for long term survival and mitochondrial function in human dopaminergic neurons. PLoS. One., 2008, 3(6), e2455. doi: 10.1371/journal.pone.0002455 PMID: 18560593
  55. Kim, J.; Fiesel, F.C.; Belmonte, K.C.; Hudec, R.; Wang, W.X.; Kim, C.; Nelson, P.T.; Springer, W.; Kim, J. miR-27a and miR-27b regulate autophagic clearance of damaged mitochondria by targeting PTEN-induced putative kinase 1 (PINK1). Mol. Neurodegener., 2016, 11(1), 55. doi: 10.1186/s13024-016-0121-4 PMID: 27456084
  56. Hajiani, M.; Golestani, A.; Shariftabrizi, A.; Rastegar, R.; Payabvash, S.; Hassanzadeh Salmasi, A.; Reza Dehpour, A.; Pasalar, P. Dose-dependent modulation of systemic lipid peroxidation and activity of anti-oxidant enzymes by vitamin E in the rat. Redox Rep., 2008, 13(2), 60-66. doi: 10.1179/135100008X259114 PMID: 18339248
  57. Kabaria, S.; Choi, D.C.; Chaudhuri, A.D.; Jain, M.R.; Li, H.; Junn, E. MicroRNA-7 activates Nrf2 pathway by targeting Keap1 expression. Free Radic. Biol. Med., 2015, 89, 548-556. doi: 10.1016/j.freeradbiomed.2015.09.010 PMID: 26453926
  58. Narasimhan, M.; Patel, D.; Vedpathak, D.; Rathinam, M.; Henderson, G.; Mahimainathan, L. Identification of novel microRNAs in post-transcriptional control of Nrf2 expression and redox homeostasis in neuronal, SH-SY5Y cells. PLoS. One., 2012, 7(12), e51111. doi: 10.1371/journal.pone.0051111 PMID: 23236440
  59. Cressatti, M.; Song, W.; Turk, A.Z.; Garabed, L.R.; Benchaya, J.A.; Galindez, C.; Liberman, A.; Schipper, H.M. Glial HMOX1 expression promotes central and peripheral α-synuclein dysregulation and pathogenicity in parkinsonian mice. Glia., 2019, 67(9), 1730-1744. PMID: 31180611
  60. Wang, J.; Le, T.; Wei, R.; Jiao, Y. Knockdown of JMJD1C, a target gene of hsa-miR-590-3p, inhibits mitochondrial dysfunction and oxidative stress in MPP+-treated MES23.5 and SH-SY5Y cells. Cell. Mol. Biol., 2016, 62(3), 39-45. PMID: 27064872
  61. Farrer, M.J. Genetics of Parkinson disease: Paradigm shifts and future prospects. Nat. Rev. Genet., 2006, 7(4), 306-318. doi: 10.1038/nrg1831 PMID: 16543934
  62. Thome, A.D.; Harms, A.S.; Volpicelli-Daley, L.A.; Standaert, D.G. microRNA-155 regulates alpha-synuclein-induced inflammatory responses in models of Parkinson disease. J. Neurosci., 2016, 36(8), 2383-2390. doi: 10.1523/JNEUROSCI.3900-15.2016 PMID: 26911687
  63. Recasens, A.; Perier, C.; Sue, C.M. Role of microRNAs in the regulation of α-synuclein expression: A systematic review. Front. Mol. Neurosci., 2016, 9, 128. doi: 10.3389/fnmol.2016.00128 PMID: 27917109
  64. Su, Q.; Chen, N.; Tang, J.; Wang, J.; Chou, W.C.; Zheng, F.; Shao, W.; Yu, G.; Cai, P.; Guo, Z.; He, M.; Li, H.; Wu, S. Paraquat-induced oxidative stress regulates N6-methyladenosine (m6A) modification of long noncoding RNAs in Neuro-2a cells. Ecotoxicol. Environ. Saf., 2022, 237, 113503. doi: 10.1016/j.ecoenv.2022.113503 PMID: 35453019
  65. Simchovitz, A.; Hanan, M.; Yayon, N.; Lee, S.; Bennett, E.R.; Greenberg, D.S.; Kadener, S.; Soreq, H. A lncRNA survey finds increases in neuroprotective LINC-PINT in Parkinson’s disease Substantia nigra. Aging. Cell., 2020, 19(3), e13115. doi: 10.1111/acel.13115 PMID: 32080970
  66. Simchovitz, A.; Hanan, M.; Niederhoffer, N.; Madrer, N.; Yayon, N.; Bennett, E.R.; Greenberg, D.S.; Kadener, S.; Soreq, H. NEAT1 is overexpressed in Parkinson’s disease substantia nigra and confers drug-inducible neuroprotection from oxidative stress. FASEB J., 2019, 33(10), 11223-11234. doi: 10.1096/fj.201900830R PMID: 31311324
  67. Zhou, S.; Zhang, D.; Guo, J.; Chen, Z.; Chen, Y.; Zhang, J. Deficiency of NEAT1 prevented MPP+-induced inflammatory response, oxidative stress and apoptosis in dopaminergic SK-N-SH neuroblastoma cells via miR-1277-5p/ARHGAP26 axis. Brain Res., 2021, 1750, 147156. doi: 10.1016/j.brainres.2020.147156 PMID: 33069733
  68. Meng, C.; Gao, J.; Ma, Q.; Sun, Q.; Qiao, T. LINC00943 knockdown attenuates MPP+-induced neuronal damage via miR-15b-5p/RAB3IP axis in SK-N-SH cells. Neurol. Res., 2021, 43(3), 181-190. doi: 10.1080/01616412.2020.1834290 PMID: 33208053
  69. Lang, Y.; Zhang, H.; Yu, H.; Li, Y.; Liu, X.; Li, M. Long non-coding RNA myocardial infarction-associated transcript promotes 1-Methyl-4-phenylpyridinium ion-induced neuronal inflammation and oxidative stress in Parkinson’s disease through regulating microRNA-221-3p/transforming growth factor/nuclear factor E2-related factor 2 axis. Bioengineered, 2022, 13(1), 930-940. doi: 10.1080/21655979.2021.2015527 PMID: 34967706
  70. Zhou, S.; Zhang, D.; Guo, J.; Chen, Z.; Chen, Y.; Zhang, J. Long non-coding RNA NORAD functions as a MICRORNA-204-5P sponge to repress the progression of Parkinson’s disease in vitro by increasing the solute carrier family 5 member 3 expression. IUBMB. Life., 2020, 72(9), 2045-2055. doi: 10.1002/iub.2344 PMID: 32687247
  71. Ding, X.M.; Zhao, L.J.; Qiao, H.Y.; Wu, S.L.; Wang, X.H. Long non-coding RNA-p21 regulates MPP+-induced neuronal injury by targeting miR-625 and derepressing TRPM2 in SH-SY5Y cells. Chem. Biol. Interact., 2019, 307, 73-81. doi: 10.1016/j.cbi.2019.04.017 PMID: 31004593
  72. Li, Y.; Fang, J.; Zhou, Z.; Zhou, Q.; Sun, S.; Jin, Z.; Xi, Z.; Wei, J. Downregulation of lncRNA BACE1-AS improves dopamine-dependent oxidative stress in rats with Parkinson’s disease by upregulating microRNA-34b-5p and downregulating BACE1. Cell Cycle, 2020, 19(10), 1158-1171. doi: 10.1080/15384101.2020.1749447 PMID: 32308102
  73. Yan, L.; Li, L.; Lei, J. Long noncoding RNA small nucleolar RNA host gene 12/microRNA-138-5p/nuclear factor I/B regulates neuronal apoptosis, inflammatory response, and oxidative stress in Parkinson’s disease. Bioengineered., 2021, 12(2), 12867-12879. doi: 10.1080/21655979.2021.2005928 PMID: 34783303
  74. Guo, Y.; Liu, Y.; Wang, H.; Liu, P. Long noncoding RNA SRY-box transcription factor 2 overlapping transcript participates in Parkinson’s disease by regulating the microRNA-942-5p/nuclear apoptosis-inducing factor 1 axis. Bioengineered., 2021, 12(1), 8570-8582. doi: 10.1080/21655979.2021.1987126 PMID: 34607512
  75. Jin, M.; Yang, F.; Yang, I.; Yin, Y.; Luo, J.J.; Wang, H.; Yang, X.F. Uric acid, hyperuricemia and vascular diseases. Front. Biosci., 2012, 17(1), 656-669. doi: 10.2741/3950 PMID: 22201767
  76. Xu, C.; Bailly-Maitre, B.; Reed, J.C. Endoplasmic reticulum stress: Cell life and death decisions. J. Clin. Invest., 2005, 115(10), 2656-2664. doi: 10.1172/JCI26373 PMID: 16200199
  77. Zhang, S.X.; Sanders, E.; Fliesler, S.J.; Wang, J.J. Endoplasmic reticulum stress and the unfolded protein responses in retinal degeneration. Exp. Eye Res., 2014, 125, 30-40. doi: 10.1016/j.exer.2014.04.015 PMID: 24792589
  78. Zhang, K.; Kaufman, R.J. From endoplasmic-reticulum stress to the inflammatory response. Nature, 2008, 454(7203), 455-462. doi: 10.1038/nature07203 PMID: 18650916
  79. Xiang, C.; Wang, Y.; Zhang, H.; Han, F. The role of endoplasmic reticulum stress in neurodegenerative disease. Apoptosis, 2017, 22(1), 1-26. doi: 10.1007/s10495-016-1296-4 PMID: 27815720
  80. Jiang, M.; Yun, Q.; Shi, F.; Niu, G.; Gao, Y.; Xie, S.; Yu, S. Downregulation of miR-384-5p attenuates rotenone-induced neurotoxicity in dopaminergic SH-SY5Y cells through inhibiting endoplasmic reticulum stress. Am. J. Physiol. Cell Physiol., 2016, 310(9), C755-C763. doi: 10.1152/ajpcell.00226.2015 PMID: 26864693
  81. Ge, B.; Li, S.; Li, F. Astragaloside-IV regulates endoplasmic reticulum stress-mediated neuronal apoptosis in a murine model of Parkinson’s disease via the lincRNA-p21/CHOP pathway. Exp. Mol. Pathol., 2020, 115, 104478. doi: 10.1016/j.yexmp.2020.104478 PMID: 32511947
  82. Erta, M.; Quintana, A.; Hidalgo, J. Interleukin-6, a major cytokine in the central nervous system. Int. J. Biol. Sci., 2012, 8(9), 1254-1266. doi: 10.7150/ijbs.4679 PMID: 23136554
  83. Bahiraee, A.; Ebrahimi, R.; Halabian, R.; Aghabozorgi, A.S.; Amani, J. The role of inflammation and its related microRNAs in breast cancer: A narrative review. J. Cell. Physiol., 2019, 234(11), 19480-19493. doi: 10.1002/jcp.28742 PMID: 31025369
  84. Mameli, G.; Arru, G.; Caggiu, E.; Niegowska, M.; Leoni, S.; Madeddu, G.; Babudieri, S.; Sechi, G.P.; Sechi, L.A. Natalizumab therapy modulates miR-155, miR-26a and proinflammatory cytokine expression in MS patients. PLoS One, 2016, 11(6), e0157153. doi: 10.1371/journal.pone.0157153 PMID: 27310932
  85. Li, B.; Wang, X.; Choi, I.Y.; Wang, Y.C.; Liu, S.; Pham, A.T.; Moon, H.; Smith, D.J.; Rao, D.S.; Boldin, M.P.; Yang, L. miR-146a modulates autoreactive Th17 cell differentiation and regulates organ-specific autoimmunity. J. Clin. Invest., 2017, 127(10), 3702-3716. doi: 10.1172/JCI94012 PMID: 28872459
  86. Wu, D.; Cerutti, C.; Lopez-Ramirez, M.A.; Pryce, G.; King-Robson, J.; Simpson, J.E.; van der Pol, S.M.A.; Hirst, M.C.; de Vries, H.E.; Sharrack, B.; Baker, D.; Male, D.K.; Michael, G.J.; Romero, I.A. Brain endothelial miR-146a negatively modulates T-cell adhesion through repressing multiple targets to inhibit NF-κB activation. J. Cereb. Blood Flow Metab., 2015, 35(3), 412-423. doi: 10.1038/jcbfm.2014.207 PMID: 25515214
  87. Lian, H.; Wang, B.; Lu, Q.; Chen, B.; Yang, H. LINC00943 knockdown exerts neuroprotective effects in Parkinson’s disease through regulates CXCL12 expression by sponging miR-7-5p. Genes Genomics, 2021, 43(7), 797-805. doi: 10.1007/s13258-021-01084-1 PMID: 33886117
  88. Deng, M.; Du, G.; Zhao, J.; Du, X. miR-146a negatively regulates the induction of proinflammatory cytokines in response to Japanese encephalitis virus infection in microglial cells. Arch. Virol., 2017, 162(6), 1495-1505. doi: 10.1007/s00705-017-3226-3 PMID: 28190197
  89. Hofmann, K.W.; Schuh, A.F.S.; Saute, J.; Townsend, R.; Fricke, D.; Leke, R.; Souza, D.O.; Portela, L.V.; Chaves, M.L.F.; Rieder, C.R.M. Interleukin-6 serum levels in patients with Parkinson’s disease. Neurochem. Res., 2009, 34(8), 1401-1404. doi: 10.1007/s11064-009-9921-z PMID: 19214748
  90. Sébire, G.; Emilie, D.; Wallon, C.; Héry, C.; Devergne, O.; Delfraissy, J.F.; Galanaud, P.; Tardieu, M. In vitro production of IL-6, IL-1 beta, and tumor necrosis factor-alpha by human embryonic microglial and neural cells. J. Immunol., 1993, 150(4), 1517-1523. doi: 10.4049/jimmunol.150.4.1517 PMID: 8432992
  91. Song, Y.; Liu, Y.; Chen, X. MiR-212 attenuates MPP+-induced neuronal damage by targeting KLF4 in SH-SY5Y cells. Yonsei Med. J., 2018, 59(3), 416-424. doi: 10.3349/ymj.2018.59.3.416 PMID: 29611404
  92. He, Q; Wang, Q; Yuan, C; Wang, Y. Downregulation of miR-7116-5p in microglia by MPP(+) sensitizes TNF-α production to induce dopaminergic neuron damage. Glia., 2017, 65(8), 1251-1263.
  93. Ren, Y.; Li, H.; Xie, W.; Wei, N.; Liu, M. MicroRNA-195 triggers neuroinflammation in Parkinson’s disease in a Rho-associated kinase 1-dependent manner. Mol. Med. Rep., 2019, 19(6), 5153-5161. doi: 10.3892/mmr.2019.10176 PMID: 31059087
  94. Cheng, J; Duan, Y; Zhang, F; Shi, J; Li, H; Wang, F The role of lncRNA TUG1 in the parkinson disease and its effect on microglial inflammatory response. Neuromolecular Med., 2021, 23(2), 327-334. doi: 10.1007/s12017-020-08626-y
  95. Ma, X.; Wang, Y.; Yin, H.; Hua, L.; Zhang, X.; Xiao, J.; Yuan, Q.; Wang, S.; Liu, Y.; Zhang, S.; Wang, Y. Down-regulated long non-coding RNA RMST ameliorates dopaminergic neuron damage in Parkinson’s disease rats via regulation of TLR/NF-κB signaling pathway. Brain Res. Bull., 2021, 174, 22-30. doi: 10.1016/j.brainresbull.2021.04.026 PMID: 33933526
  96. Xu, W.; Zhang, L.; Geng, Y.; Liu, Y.; Zhang, N. Long noncoding RNA GAS5 promotes microglial inflammatory response in Parkinson’s disease by regulating NLRP3 pathway through sponging miR-223-3p. Int. Immunopharmacol., 2020, 85, 106614. doi: 10.1016/j.intimp.2020.106614 PMID: 32470877
  97. Wang, H.; Wang, X.; Zhang, Y.; Zhao, J. LncRNA SNHG1 promotes neuronal injury in Parkinson’s disease cell model by miR-181a-5p/CXCL12 axis. J. Mol. Histol., 2021, 52(2), 153-163. doi: 10.1007/s10735-020-09931-3 PMID: 33389428
  98. Han, Y.; Kang, C.; Kang, M.; Quan, W.; Gao, H.; Zhong, Z. RETRACTED: Long non-coding RNA Mirt2 prevents TNF-α-triggered inflammation via the repression of microRNA-101. Int. Immunopharmacol., 2019, 76, 105878. doi: 10.1016/j.intimp.2019.105878 PMID: 31513985
  99. Zhao, Y; Xie, Y; Yao, WY; Wang, YY; Song, N Long non-coding RNA Mirt2 prevents TNF-α-triggered inflammation via the repression of microRNA-101. Int. Immunopharmacol., 2022, 76, 105878.
  100. Wu, Q.; Ye, X.; Xiong, Y.; Zhu, H.; Miao, J.; Zhang, W.; Wan, J. The protective role of microRNA-200c in Alzheimer’s disease pathologies is induced by beta amyloid-triggered endoplasmic reticulum stress. Front. Mol. Neurosci., 2016, 9, 140. doi: 10.3389/fnmol.2016.00140 PMID: 28008308
  101. Li, H.; Yu, L.; Li, M.; Chen, X.; Tian, Q.; Jiang, Y.; Li, N. MicroRNA-150 serves as a diagnostic biomarker and is involved in the inflammatory pathogenesis of Parkinson’s disease. Mol. Genet. Genomic Med., 2020, 8(4), e1189. doi: 10.1002/mgg3.1189 PMID: 32077254
  102. Emamgholipour, S.; Ebrahimi, R.; Bahiraee, A.; Niazpour, F.; Meshkani, R. Acetylation and insulin resistance: A focus on metabolic and mitogenic cascades of insulin signaling. Crit. Rev. Clin. Lab. Sci., 2020, 57(3), 196-214. doi: 10.1080/10408363.2019.1699498 PMID: 31894999
  103. Ebrahimi, R.; Bahiraee, A.; Niazpour, F.; Emamgholipour, S.; Meshkani, R. The role of microRNAs in the regulation of insulin signaling pathway with respect to metabolic and mitogenic cascades: A review. J. Cell. Biochem., 2019, 120(12), 19290-19309. doi: 10.1002/jcb.29299 PMID: 31364207
  104. Sánchez-Alegría, K.; Flores-León, M.; Avila-Muñoz, E.; Rodríguez-Corona, N.; Arias, C. PI3K signaling in neurons: A central node for the control of multiple functions. Int. J. Mol. Sci., 2018, 19(12), 3725. doi: 10.3390/ijms19123725 PMID: 30477115
  105. Long, H.Z.; Cheng, Y.; Zhou, Z.W.; Luo, H.Y.; Wen, D.D.; Gao, L.C. PI3K/AKT signal pathway: A target of natural products in the prevention and treatment of Alzheimer’s disease and Parkinson’s disease. Front. Pharmacol., 2021, 12, 648636. doi: 10.3389/fphar.2021.648636 PMID: 33935751
  106. Zhou, T.; Lin, D.; Chen, Y.; Peng, S.; Jing, X.; Lei, M.; Tao, E.; Liang, Y. α-synuclein accumulation in SH-SY5Y cell impairs autophagy in microglia by exosomes overloading miR-19a-3p. Epigenomics, 2019, 11(15), 1661-1677. doi: 10.2217/epi-2019-0222 PMID: 31646884
  107. O’Connell, R.M.; Chaudhuri, A.A.; Rao, D.S.; Baltimore, D. Inositol phosphatase SHIP1 is a primary target of miR-155. Proc. Natl. Acad. Sci., 2009, 106(17), 7113-7118. doi: 10.1073/pnas.0902636106 PMID: 19359473
  108. Caggiu, E.; Paulus, K.; Mameli, G.; Arru, G.; Sechi, G.P.; Sechi, L.A. Differential expression of miRNA 155 and miRNA 146a in Parkinson’s disease patients. eNeurologicalSci, 2018, 13, 1-4. doi: 10.1016/j.ensci.2018.09.002 PMID: 30255159
  109. Cai, L.; Tu, L.; Li, T.; Yang, X.; Ren, Y.; Gu, R.; Zhang, Q.; Yao, H.; Qu, X.; Wang, Q.; Tian, J. Downregulation of lncRNA UCA1 ameliorates the damage of dopaminergic neurons, reduces oxidative stress and inflammation in Parkinson’s disease through the inhibition of the PI3K/Akt signaling pathway. Int. Immunopharmacol., 2019, 75, 105734. doi: 10.1016/j.intimp.2019.105734 PMID: 31301558
  110. Ma, J.; Sun, W.; Chen, S.; Wang, Z.; Zheng, J.; Shi, X.; Li, M.; Li, D.; Gu, Q. The long noncoding RNA GAS5 potentiates neuronal injury in Parkinson’s disease by binding to microRNA-150 to regulate Fosl1 expression. Exp. Neurol., 2022, 347, 113904. doi: 10.1016/j.expneurol.2021.113904 PMID: 34755654
  111. Zhai, K.; Liu, B.; Gao, L. Long-noncoding RNA TUG1 promotes Parkinson’s disease via modulating MiR-152-3p/PTEN pathway. Hum. Gene Ther., 2020, 31(23-24), 1274-1287. doi: 10.1089/hum.2020.106 PMID: 32808542
  112. Zhao, J.; Geng, L.; Chen, Y.; Wu, C. SNHG1 promotes MPP+-induced cytotoxicity by regulating PTEN/AKT/mTOR signaling pathway in SH-SY5Y cells via sponging miR-153-3p. Biol. Res., 2020, 53(1), 1. doi: 10.1186/s40659-019-0267-y PMID: 31907031
  113. Fan, J; Wu, D; Guo, Y; Yang, Z. OS1-IT1 silencing alleviates MPP(+)-induced neuronal cell injury through regulating the miR-124-3p/PTEN/AKT/mTOR pathway. J. Clin. Neurosci., 2022, 99, 137-146.
  114. Shih, R.H.; Wang, C.Y.; Yang, C.M. NF-kappaB signaling pathways in neurological inflammation: A mini review. Front. Mol. Neurosci., 2015, 8, 77. doi: 10.3389/fnmol.2015.00077 PMID: 26733801
  115. Yu, L.; Li, L.; Medeiros, L.J.; Young, K.H. NF-κB signaling pathway and its potential as a target for therapy in lymphoid neoplasms. Blood Rev., 2017, 31(2), 77-92. doi: 10.1016/j.blre.2016.10.001 PMID: 27773462
  116. Bellucci, A.; Bubacco, L.; Longhena, F.; Parrella, E.; Faustini, G.; Porrini, V.; Bono, F.; Missale, C.; Pizzi, M. Nuclear Factor-κB dysregulation and α-synuclein pathology: Critical interplay in the pathogenesis of Parkinson’s disease. Front. Aging Neurosci., 2020, 12, 68. doi: 10.3389/fnagi.2020.00068 PMID: 32265684
  117. Huang, D.B.; Vu, D.; Ghosh, G. NF-kappaB RelB forms an intertwined homodimer. Structure., 2005, 13(9), 1365-1373. doi: 10.1016/j.str.2005.06.018 PMID: 16154093
  118. Ghosh, A.; Roy, A.; Liu, X.; Kordower, J.H.; Mufson, E.J.; Hartley, D.M.; Ghosh, S.; Mosley, R.L.; Gendelman, H.E.; Pahan, K. Selective inhibition of NF-κB activation prevents dopaminergic neuronal loss in a mouse model of Parkinson’s disease. Proc. Natl. Acad. Sci., 2007, 104(47), 18754-18759. doi: 10.1073/pnas.0704908104 PMID: 18000063
  119. Chaudhuri, AD; Kabaria, S; Choi, DC; Mouradian, MM; Junn, E MicroRNA-7 promotes glycolysis to protect against 1-methyl-4-phenylpyridinium-induced cell death. J. Biol. Chem., 2015, 290(19), 12425-12434.
  120. Choi, DC; Chae, YJ; Kabaria, S; Chaudhuri, AD; Jain, MR; Li, H MicroRNA-7 protects against 1-methyl-4-phenylpyridinium-induced cell death by targeting RelA. J Neurosci., 2014, 34(38), 12725-12737.
  121. Li, X.; Su, Y.; Li, N.; Zhang, F.R.; Zhang, N. Berberine attenuates MPP+-induced neuronal injury by regulating LINC00943/miR-142-5p/KPNA4/NF-κB pathway in SK-N-SH Cells. Neurochem. Res., 2021, 46(12), 3286-3300. doi: 10.1007/s11064-021-03431-w PMID: 34427876
  122. Cao, H.; Han, X.; Jia, Y.; Zhang, B. Inhibition of long non-coding RNA HOXA11-AS against neuroinflammation in Parkinson’s disease model via targeting miR-124-3p mediated FSTL1/NF-κB axis. Aging., 2021, 13(8), 11455-11469. doi: 10.18632/aging.202837 PMID: 33839699
  123. Zhang, H.; Wang, Z.; Hu, K.; Liu, H. Downregulation of long noncoding RNA SNHG7 protects against inflammation and apoptosis in Parkinson’s disease model by targeting the miR-425-5p/TRAF5/NF-κB axis. J. Biochem. Mol. Toxicol., 2021, 35(10), e22867. doi: 10.1002/jbt.22867 PMID: 34369042
  124. Ghafouri-Fard, S.; Gholipour, M.; Abak, A.; Mazdeh, M.; Taheri, M.; Sayad, A. Expression analysis of NF-κB-related lncRNAs in Parkinson’s disease. Front. Immunol., 2021, 12, 755246. doi: 10.3389/fimmu.2021.755246 PMID: 34721431

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers