Phytochemicals as Substances that Affect Astrogliosis and their Implications for the Management of Neurodegenerative Diseases
- Authors: Forouzanfar F.1, Pourbagher-Shahri A.1, Vafaee F.1, Sathyapalan T.2, Sahebkar A.3
-
Affiliations:
- Neuroscience Research Center, Mashhad University of Medical Sciences
- Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences
- Issue: Vol 31, No 34 (2024)
- Pages: 5550-5566
- Section: Anti-Infectives and Infectious Diseases
- URL: https://rjeid.com/0929-8673/article/view/645062
- DOI: https://doi.org/10.2174/0929867330666230504121523
- ID: 645062
Cite item
Full Text
Abstract
:Astrocytes are a multifunctional subset of glial cells that are important in maintaining the health and function of the central nervous system (CNS). Reactive astrocytes may release inflammatory mediators, chemokines, and cytokines, as well as neurotrophic factors. There may be neuroprotective (e.g., cytokines, like IL-6 and TGF-b) and neurotoxic effects (e.g., IL-1β and TNF-a) associated with these molecules. In response to CNS pathologies, astrocytes go to a state called astrogliosis which produces diverse and heterogenic functions specific to the pathology. Astrogliosis has been linked to the progression of many neurodegenerative disorders. Phytochemicals are a large group of compounds derived from natural herbs with health benefits. This review will summarize how several phytochemicals affect neurodegenerative diseases (e.g., Alzheimers disease, Huntingtons disease, amyotrophic lateral sclerosis, and Parkinsons disease) in basic medical and clinical studies and how they might affect astrogliosis in the process.
About the authors
Fatemeh Forouzanfar
Neuroscience Research Center, Mashhad University of Medical Sciences
Email: info@benthamscience.net
Ali Pourbagher-Shahri
Neuroscience Research Center, Mashhad University of Medical Sciences
Email: info@benthamscience.net
Farzaneh Vafaee
Neuroscience Research Center, Mashhad University of Medical Sciences
Email: info@benthamscience.net
Thozhukat Sathyapalan
Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull
Email: info@benthamscience.net
Amirhossein Sahebkar
Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
References
- Kumar, A; Fontana, IC; Nordberg, A Reactive astrogliosis: A friend or foe in the pathogenesis of Alzheimers disease. J. Neurochem., 2023, 164(3), 309-324. doi: 10.1111/jnc.15565
- Parpura, V.; Heneka, M.T.; Montana, V.; Oliet, S.H.R.; Schousboe, A.; Haydon, P.G.; Stout, R.F., Jr; Spray, D.C.; Reichenbach, A.; Pannicke, T.; Pekny, M.; Pekna, M.; Zorec, R.; Verkhratsky, A. Glial cells in (patho)physiology. J. Neurochem., 2012, 121(1), 4-27. doi: 10.1111/j.1471-4159.2012.07664.x PMID: 22251135
- Sofroniew, M.V.; Vinters, H.V. Astrocytes: Biology and pathology. Acta Neuropathol., 2010, 119(1), 7-35. doi: 10.1007/s00401-009-0619-8 PMID: 20012068
- Eng, L.F.; Vanderhaeghen, J.J.; Bignami, A.; Gerstl, B. An acidic protein isolated from fibrous astrocytes. Brain Res., 1971, 28(2), 351-354. doi: 10.1016/0006-8993(71)90668-8 PMID: 5113526
- Guo, Y.; Liu, Y.; Xu, L.; Wu, S.; Yang, C.; Wu, D.; Wu, H.; Li, C. Astrocytic pathology in the immune-mediated motor neuron injury. Amyotroph. Lateral Scler., 2007, 8(4), 230-234. doi: 10.1080/17482960701278612 PMID: 17653921
- Zhang, L.; Zhang, W.P.; Chen, K.D.; Qian, X.D.; Fang, S.H.; Wei, E.Q. Caffeic acid attenuates neuronal damage, astrogliosis and glial scar formation in mouse brain with cryoinjury. Life Sci., 2007, 80(6), 530-537. doi: 10.1016/j.lfs.2006.09.039 PMID: 17074364
- Serrano-Pozo, A.; Mielke, M.L.; Gómez-Isla, T.; Betensky, R.A.; Growdon, J.H.; Frosch, M.P.; Hyman, B.T. Reactive glia not only associates with plaques but also parallels tangles in Alzheimers disease. Am. J. Pathol., 2011, 179(3), 1373-1384. doi: 10.1016/j.ajpath.2011.05.047 PMID: 21777559
- Verkhratsky, A.; Zorec, R.; Parpura, V. Stratification of astrocytes in healthy and diseased brain. Brain Pathol., 2017, 27(5), 629-644. doi: 10.1111/bpa.12537 PMID: 28805002
- Verkhratsky, A.; Rodríguez, J.J.; Parpura, V. Astroglia in neurological diseases. Future Neurol., 2013, 8(2), 149-158. doi: 10.2217/fnl.12.90 PMID: 23658503
- Moulson, A.J.; Squair, J.W.; Franklin, R.J.M.; Tetzlaff, W.; Assinck, P. Diversity oflology: Heterogeneity or plasticity? Future Neurol., 2021, 15, 703810.
- Robel, S.; Berninger, B.; Götz, M. The stem cell potential of glia: Lessons from reactive gliosis. Nat. Rev. Neurosci., 2011, 12(2), 88-104. doi: 10.1038/nrn2978 PMID: 21248788
- Verkhratsky, A.; Sofroniew, M.V.; Messing, A.; deLanerolle, N.C.; Rempe, D.; Rodríguez, J.J.; Nedergaard, M. Neurological diseases as primary gliopathies: A reassessment of neurocentrism. ASN Neuro, 2012, 4(3), AN20120010. doi: 10.1042/AN20120010 PMID: 22339481
- Yang, Z-Y.; Jin, W.L.; Xu, Y.; Jin, M.Z. Microglia in neurodegenerative diseases. Neural Regen. Res., 2021, 16(2), 270-280. doi: 10.4103/1673-5374.290881 PMID: 32859774
- Verkhratsky, A.; Rodríguez, J.J.; Steardo, L. Astrogliopathology. Neuroscientist, 2014, 20(6), 576-588. doi: 10.1177/1073858413510208 PMID: 24301046
- Colangelo, A.M.; Alberghina, L.; Papa, M. Astrogliosis as a therapeutic target for neurodegenerative diseases. Neurosci. Lett., 2014, 565, 59-64. doi: 10.1016/j.neulet.2014.01.014 PMID: 24457173
- Sofroniew, M.V. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci., 2009, 32(12), 638-647. doi: 10.1016/j.tins.2009.08.002 PMID: 19782411
- Phatnani, H.; Maniatis, T. Astrocytes in neurodegenerative disease. Cold Spring Harb. Perspect. Biol., 2015, 7(6), a020628. doi: 10.1101/cshperspect.a020628 PMID: 25877220
- Forni, C.; Facchiano, F.; Bartoli, M.; Pieretti, S.; Facchiano, A.; DArcangelo, D.; Norelli, S.; Valle, G.; Nisini, R.; Beninati, S.; Tabolacci, C.; Jadeja, R.N. Beneficial role of phytochemicals on oxidative stress and age-related diseases. Biomed. Res. Int., 2019, 2019, 8748253. doi: 10.1155/2019/8748253
- Dillard, C.J.; German, J.B. Phytochemicals: Nutraceuticals and human health. J. Sci. Food Agric., 2000, 80(12), 1744-1756. doi: 10.1002/1097-0010(20000915)80:123.0.CO;2-W
- Fazeli, E.; Ghalibaf, M.H.E.; Forouzanfar, F. Neuroprotective potency of safranal against neurological disorders. Curr. Mol. Med., 2023. PMID: 36397621
- Aggarwal, B.B.; Kumar, A.; Bharti, A.C. Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res., 2003, 23(1A), 363-398. PMID: 12680238
- Forouzanfar, F.; Barreto, G.; Majeed, M.; Sahebkar, A. Modulatory effects of curcumin on heat shock proteins in cancer: A promising therapeutic approach. Biofactors, 2019, 45(5), 631-640. doi: 10.1002/biof.1522 PMID: 31136038
- Forouzanfar, F; Majeed, M; Jamialahmadi, T; Sahebkar, A. Curcumin: A review of its effects on epilepsy. Adv. Exp. Med. Biol., 2021, 1291, 363-373. doi: 10.1007/978-3-030-56153-6_21
- Forouzanfar, F.; Majeed, M.; Jamialahmadi, T.; Sahebkar, A. Telomerase: A target for therapeutic effects of curcumin in cancer. Adv. Exp. Med. Biol., 2021, 135-143.
- Mantzorou, M.; Pavlidou, E.; Vasios, G.; Tsagalioti, E.; Giaginis, C. Effects of curcumin consumption on human chronic diseases: A narrative review of the most recent clinical data. Phytother. Res., 2018, 32(6), 957-975. doi: 10.1002/ptr.6037 PMID: 29468820
- Marchiani, A.; Rozzo, C.; Fadda, A.; Delogu, G.; Ruzza, P. Curcumin and curcumin-like molecules: From spice to drugs. Curr. Med. Chem., 2013, 21(2), 204-222. doi: 10.2174/092986732102131206115810 PMID: 23590716
- Mhillaj, E.; Tarozzi, A.; Pruccoli, L.; Cuomo, V.; Trabace, L.; Mancuso, C. Curcumin and heme oxygenase: Neuroprotection and beyond. Int. J. Mol. Sci., 2019, 20(10), 2419. doi: 10.3390/ijms20102419 PMID: 31100781
- Yang, M.; Akbar, U.; Mohan, C. Curcumin in autoimmune and rheumatic diseases. Nutrients, 2019, 11(5), 1004. doi: 10.3390/nu11051004 PMID: 31052496
- Lelli, D.; Sahebkar, A.; Johnston, T.P.; Pedone, C. Curcumin use in pulmonary diseases: State of the art and future perspectives. Pharmacol. Res., 2017, 115, 133-148. doi: 10.1016/j.phrs.2016.11.017 PMID: 27888157
- Mokhtari-Zaer, A., Marefati, N., Atkin, S. L., Butler, A. E., & Sahebkar, A. (2018). The protective role of curcumin in myocardial ischemia-reperfusion injury. J. Cellular Physiol., 2018, 234(1), 214-222. doi: 10.1002/jcp.268481
- Mohajeri, M., & Sahebkar, A. (2018). Protective effects of curcumin against doxorubicin-induced toxicity and resistance: A review. Crit. Rev. Oncol.,2018, 122, 30-51. doi: 10.1016/j.critrevonc.2017.12.005
- Heidari, Z.; Daei, M.; Boozari, M.; Jamialahmadi, T.; Sahebkar, A. Curcumin supplementation in pediatric patients: A systematic review of current clinical evidence. Phytother. Res., 2022, 36(4), 1442-1458. doi: 10.1002/ptr.7350 PMID: 34904764
- Khayatan, D.; Razavi, S.M.; Arab, Z.N.; Niknejad, A.H.; Nouri, K.; Momtaz, S.; Gumpricht, E.; Jamialahmadi, T.; Abdolghaffari, A.H.; Barreto, G.E.; Sahebkar, A. Protective effects of curcumin against traumatic brain injury. Biomed. Pharmacother., 2022, 154, 113621. doi: 10.1016/j.biopha.2022.113621 PMID: 36055110
- Soltani, S.; Boozari, M.; Cicero, A.F.G.; Jamialahmadi, T.; Sahebkar, A. Effects of phytochemicals on macrophage cholesterol efflux capacity: Impact on atherosclerosis. Phytother. Res., 2021, 35(6), 2854-2878. doi: 10.1002/ptr.6991 PMID: 33464676
- Bachmeier, BA-O; Melchart, D Therapeutic effects of curcuminfrom traditional past to present and future clinical applications. Int. J. Mol. Sci., 2019, 20(15), 3757. doi: 10.3390/ijms20153757
- Zeng, Y.; Luo, Y.; Wang, L.; Zhang, K.; Peng, J.; Fan, G. Therapeutic effect of curcumin on metabolic diseases: Evidence from clinical studies. Int. J. Mol. Sci., 2023, 24(4), 3323. doi: 10.3390/ijms24043323 PMID: 36834734
- Menon, V.P.; Sudheer, A.R. Antioxidant and anti-inflammatory properties of curcumin. The molecular targets and therapeutic uses of curcumin in health and disease. Adv. Exp. Med. Biol., 2007, 595, 105-25.
- Momtazi-Borojeni, A.A.; Haftcheshmeh, S.M.; Esmaeili, S.A.; Johnston, T.P.; Abdollahi, E.; Sahebkar, A. Curcumin: A natural modulator of immune cells in systemic lupus erythematosus. Autoimmun. Rev., 2018, 17(2), 125-135. doi: 10.1016/j.autrev.2017.11.016 PMID: 29180127
- Chainani-Wu, N. Safety and anti-inflammatory activity of curcumin: A component of tumeric (Curcuma longa). J. Altern. Complement. Med., 2003, 9(1), 161-168. doi: 10.1089/107555303321223035 PMID: 12676044
- Sahebkar, A.; Cicero, A.F.G.; Simental-Mendía, L.E.; Aggarwal, B.B.; Gupta, S.C. Curcumin downregulates human tumor necrosis factor-α levels: A systematic review and meta-analysis ofrandomized controlled trials. Pharmacol. Res., 2016, 107, 234-242. doi: 10.1016/j.phrs.2016.03.026 PMID: 27025786
- Hasanzadeh, S.; Read, M.I.; Bland, A.R.; Majeed, M.; Jamialahmadi, T.; Sahebkar, A. Curcumin: An inflammasome silencer. Pharmacol. Res., 2020, 159, 104921. doi: 10.1016/j.phrs.2020.104921 PMID: 32464325
- Matsushita, Y.; Ueda, H. Curcumin blocks chronic morphine analgesic tolerance and brain-derived neurotrophic factor upregulation. Neuroreport, 2009, 20(1), 63-68. doi: 10.1097/WNR.0b013e328314decb PMID: 19033880
- Parsamanesh, N.; Moossavi, M.; Bahrami, A.; Butler, A.E.; Sahebkar, A. Therapeutic potential of curcumin in diabetic complications. Pharmacol. Res., 2018, 136, 181-193. doi: 10.1016/j.phrs.2018.09.012 PMID: 30219581
- De, R.; Kundu, P.; Swarnakar, S.; Ramamurthy, T.; Chowdhury, A.; Nair, G.B.; Mukhopadhyay, A.K. Antimicrobial activity of curcumin against Helicobacter pylori isolates from India and during infections in mice. Antimicrob. Agents Chemother., 2009, 53(4), 1592-1597. doi: 10.1128/AAC.01242-08 PMID: 19204190
- Park, J.; Conteas, C.N. Anti-carcinogenic properties of curcumin on colorectal cancer. World J. Gastrointest. Oncol., 2010, 2(4), 169-176. doi: 10.4251/wjgo.v2.i4.169 PMID: 21160593
- Momtazi, A A.; Sahebkar, A. Difluorinated curcumin: A promising curcumin analogue with improved anti-tumor activity and pharmacokinetic profile. Curr. Pharma. Desi.,2016, 22(28), 4386-4397. doi: 10.2174/1381612822666160527113501
- Sharma, N.; Nehru, B. Curcumin affords neuroprotection and inhibits α-synuclein aggregation in lipopolysaccharide-induced Parkinsons disease model. Inflammopharmacology, 2018, 26(2), 349-360. doi: 10.1007/s10787-017-0402-8 PMID: 29027056
- Tripanichkul, W.; Jaroensuppaperch, E. Curcumin protects nigrostriatal dopaminergic neurons and reduces glial activation in 6-hydroxydopamine hemiparkinsonian mice model. Int. J. Neurosci., 2012, 122(5), 263-270. doi: 10.3109/00207454.2011.648760 PMID: 22176529
- Sanchez, A.; Tripathy, D.; Grammas, P. RANTES release contributes to the protective action of PACAP38 against sodium nitroprusside in cortical neurons. Neuropeptides, 2009, 43(4), 315-320. doi: 10.1016/j.npep.2009.05.002 PMID: 19497618
- Lin, M.S.; Hung, K.S.; Chiu, W.T.; Sun, Y.Y.; Tsai, S.H.; Lin, J.W.; Lee, Y.H. Curcumin enhances neuronal survival in N-methyl-d-aspartic acid toxicity by inducing RANTES expression in astrocytes via PI-3K and MAPK signaling pathways. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, 35(4), 931-938. doi: 10.1016/j.pnpbp.2010.12.022 PMID: 21199667
- Sundaram, J.R.; Poore, C.P.; Sulaimee, N.H.B.; Pareek, T.; Cheong, W.F.; Wenk, M.R.; Pant, H.C.; Frautschy, S.A.; Low, C.M.; Kesavapany, S. Curcumin ameliorates neuroinflammation, neurodegeneration, and memory deficits in p25 transgenic mouse model that bears hallmarks of Alzheimers disease. J. Alzheimers Dis., 2017, 60(4), 1429-1442. doi: 10.3233/JAD-170093 PMID: 29036814
- Yu, S.; Wang, X.; He, X.; Wang, Y.; Gao, S.; Ren, L.; Shi, Y. Curcumin exerts anti-inflammatory and antioxidative properties in 1-methyl-4-phenylpyridinium ion (MPP+)-stimulated mesencephalic astrocytes by interference with TLR4 and downstream signaling pathway. Cell Stress Chaperones, 2016, 21(4), 697-705. doi: 10.1007/s12192-016-0695-3 PMID: 27164829
- Chico, L.; Ienco, E.C.; Bisordi, C.; Lo Gerfo, A.; Petrozzi, L.; Petrucci, A.; Mancuso, M.; Siciliano, G. Amyotrophic lateral sclerosis and oxidative stress: A double-blind therapeutic trial after curcumin supplementation. CNS Neurol. Disord. Drug Targets, 2018, 17(10), 767-779. doi: 10.2174/1871527317666180720162029 PMID: 30033879
- Ahmadi, M.; Agah, E.; Nafissi, S.; Jaafari, M.R.; Harirchian, M.H.; Sarraf, P.; Faghihi-Kashani, S.; Hosseini, S.J.; Ghoreishi, A.; Aghamollaii, V.; Hosseini, M.; Tafakhori, A. Safety and efficacy of nanocurcumin as add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: A pilot randomized clinical trial. Neurotherapeutics, 2018, 15(2), 430-438. doi: 10.1007/s13311-018-0606-7 PMID: 29352425
- Baum, L.; Lam, C.W.K.; Cheung, S.K.K.; Kwok, T.; Lui, V.; Tsoh, J.; Lam, L.; Leung, V.; Hui, E.; Ng, C.; Woo, J.; Chiu, H.F.K.; Goggins, W.B.; Zee, B.C.Y.; Cheng, K.F.; Fong, C.Y.S.; Wong, A.; Mok, H.; Chow, M.S.S.; Ho, P.C.; Ip, S.P.; Ho, C.S.; Yu, X.W.; Lai, C.Y.L.; Chan, M.H.; Szeto, S.; Chan, I.H.S.; Mok, V. Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J. Clin. Psychopharmacol., 2008, 28(1), 110-113. doi: 10.1097/jcp.0b013e318160862c PMID: 18204357
- Ringman, J.M.; Frautschy, S.A.; Teng, E.; Begum, A.N.; Bardens, J.; Beigi, M.; Gylys, K.H.; Badmaev, V.; Heath, D.D.; Apostolova, L.G.; Porter, V.; Vanek, Z.; Marshall, G.A.; Hellemann, G.; Sugar, C.; Masterman, D.L.; Montine, T.J.; Cummings, J.L.; Cole, G.M. Oral curcumin for Alzheimers disease: Tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study. Alzheimers Res. Ther., 2012, 4(5), 43. doi: 10.1186/alzrt146 PMID: 23107780
- Yuan, C-X.; Yang, X-M.; Ye, Q.; Yuan, X-L.; Zhang, H-Z. Zishenpingchan granules for the treatment of Parkinsons disease: A randomized, double-blind, placebo-controlled clinical trial. Neural Regen. Res., 2018, 13(7), 1269-1275. doi: 10.4103/1673-5374.235075 PMID: 30028337
- Mohseni, M.; Sahebkar, A.; Askari, G.; Johnston, T.P.; Alikiaii, B.; Bagherniya, M. The clinical use of curcumin on neurological disorders: An updated systematic review of clinical trials. Phytother. Res., 2021, 35(12), 6862-6882. doi: 10.1002/ptr.7273 PMID: 34528307
- Forouzanfar, F.; Hosseinzadeh, H. Protective role of Nigella sativa and thymoquinone in oxidative stress: A review. Nuts and seeds in health and disease prevention. Academic Press, 2020, 127-146. doi: 10.1016/B978-0-12-818553-7.00011-5
- Mashayekhi-Sardoo, H.; Rezaee, R.; Karimi, G. An overview of in vivo toxicological profile of thymoquinone. Toxin Rev., 2020, 39(2), 115-122. doi: 10.1080/15569543.2018.1514637
- Ahmad, A.; Raish, M.; Alkharfy, K.M.; Alsarra, I.A.; Khan, A.; Ahad, A.; Jan, B.L.; Shakeel, F. Solubility, solubility parameters and solution thermodynamics of thymoquinone in different mono solvents. J. Mol. Liq., 2018, 272, 912-918. doi: 10.1016/j.molliq.2018.10.104
- Gali-Muhtasib, H.; Roessner, A.; Schneider-Stock, R. Thymoquinone: A promising anti-cancer drug from natural sources. Int. J. Biochem. Cell Biol., 2006, 38(8), 1249-1253. doi: 10.1016/j.biocel.2005.10.009 PMID: 16314136
- Atta, M.; Almadaly, E.; El-Far, A.; Saleh, R.; Assar, D.; Al Jaouni, S.; Mousa, S. Thymoquinone defeats diabetes-induced testicular damage in rats targeting antioxidant, inflammatory and aromatase expression. Int. J. Mol. Sci., 2017, 18(5), 919. doi: 10.3390/ijms18050919 PMID: 28448463
- Majdalawieh, A.F.; Fayyad, M.W. Immunomodulatory and anti-inflammatory action of Nigella sativa and thymoquinone: A comprehensive review. Int. Immunopharmacol., 2015, 28(1), 295-304. doi: 10.1016/j.intimp.2015.06.023 PMID: 26117430
- Goel, S.; Mishra, P. Thymoquinone inhibits biofilm formation and has selective antibacterial activity due to ROS generation. Appl. Microbiol. Biotechnol., 2018, 102(4), 1955-1967. doi: 10.1007/s00253-018-8736-8 PMID: 29356869
- Dariani, S.; Baluchnejadmojarad, T.; Roghani, M. Thymoquinone attenuates astrogliosis, neurodegeneration, mossy fiber sprouting, and oxidative stress in a model of temporal lobe epilepsy. J. Mol. Neurosci., 2013, 51(3), 679-686. doi: 10.1007/s12031-013-0043-3 PMID: 23794216
- Amoah, S.; Sandjo, L.; Kratz, J.; Biavatti, M. Rosmarinic acid-pharmaceutical and clinical aspects. Planta Med., 2016, 82(5), 388-406. doi: 10.1055/s-0035-1568274 PMID: 26845712
- Nicolai, M.; Pereira, P.; Vitor, R.F.; Reis, C.P.; Roberto, A.; Rijo, P. Antioxidant activity and rosmarinic acid content of ultrasound-assisted ethanolic extracts of medicinal plants. Measurement, 2016, 89, 328-332. doi: 10.1016/j.measurement.2016.04.033
- Rocha, J.; Eduardo-Figueira, M.; Barateiro, A.; Fernandes, A.; Brites, D.; Bronze, R.; Duarte, C.M.M.; Serra, A.T.; Pinto, R.; Freitas, M.; Fernandes, E.; Silva-Lima, B.; Mota-Filipe, H.; Sepodes, B. Anti-inflammatory effect of rosmarinic acid and an extract of Rosmarinus officinalis in rat models of local and systemic inflammation. Basic Clin. Pharmacol. Toxicol., 2015, 116(5), 398-413. doi: 10.1111/bcpt.12335 PMID: 25287116
- Swamy, M.K.; Sinniah, U.R.; Ghasemzadeh, A. Anticancer potential of rosmarinic acid and its improved production through biotechnological interventions and functional genomics. Appl. Microbiol. Biotechnol., 2018, 102(18), 7775-7793. doi: 10.1007/s00253-018-9223-y PMID: 30022261
- Kantar Gok, D.; Hidisoglu, E.; Ocak, G.A.; Er, H.; Acun, A.D.; Yargıcoglu, P. Protective role of rosmarinic acid on amyloid beta 42-induced echoic memory decline: Implication of oxidative stress and cholinergic impairment. Neurochem. Int., 2018, 118, 1-13. doi: 10.1016/j.neuint.2018.04.008 PMID: 29655652
- Noguchi-Shinohara, M.; Ono, K.; Hamaguchi, T.; Nagai, T.; Kobayashi, S.; Komatsu, J.; Samuraki-Yokohama, M.; Iwasa, K.; Yokoyama, K.; Nakamura, H.; Yamada, M. Safety and efficacy of Melissa officinalis extract containing rosmarinic acid in the prevention of Alzheimers disease progression. Sci. Rep., 2020, 10(1), 18627. doi: 10.1038/s41598-020-73729-2 PMID: 33122694
- Mahboubi, M. Melissa officinalis and rosmarinic acid in management of memory functions and Alzheimer disease. Asian Pac. J. Trop. Biomed., 2019, 9(2), 47.
- Ahmad, S.; Elsherbiny, N.M.; Haque, R.; Khan, M.B.; Ishrat, T.; Shah, Z.A.; Khan, M.M.; Ali, M.; Jamal, A.; Katare, D.P.; Liou, G.I.; Bhatia, K. Sesamin attenuates neurotoxicity in mouse model of ischemic brain stroke. Neurotoxicology, 2014, 45, 100-110. doi: 10.1016/j.neuro.2014.10.002 PMID: 25316624
- Martinchik, A.N. Nutritional value of sesame seeds. Vopr. Pitan., 2011, 80(3), 41-43. PMID: 21842753
- Monteiro, É.; Chibli, L.; Yamamoto, C.; Pereira, M.; Vilela, F.; Rodarte, M.; de Oliveira Pinto, M.; da Penha Henriques do Amaral, M.; Silvério, M.; de Matos Araújo, A.; da Luz André de Araújo, A.; Del-Vechio-Vieira, G.; de Sousa, O. Antinociceptive and anti-inflammatory activities of the sesame oil and sesamin. Nutrients, 2014, 6(5), 1931-1944. doi: 10.3390/nu6051931 PMID: 24824289
- Zhang, M.; Lee, H.J.; Park, K.H.; Park, H.J.; Choi, H.S.; Lim, S.C.; Lee, M.K. Modulatory effects of sesamin on dopamine biosynthesis and l-DOPA-induced cytotoxicity in PC12 cells. Neuropharmacology, 2012, 62(7), 2219-2226. doi: 10.1016/j.neuropharm.2012.01.012 PMID: 22293035
- Hou, R.C.W.; Wu, C.C.; Yang, C.H.; Jeng, K.C.G. Protective effects of sesamin and sesamolin on murine BV-2 microglia cell line under hypoxia. Neurosci. Lett., 2004, 367(1), 10-13. doi: 10.1016/j.neulet.2004.05.073 PMID: 15308287
- Baluchnejadmojarad, T.; Mansouri, M.; Ghalami, J.; Mokhtari, Z.; Roghani, M. Sesamin imparts neuroprotection against intrastriatal 6-hydroxydopamine toxicity by inhibition of astroglial activation, apoptosis, and oxidative stress. Biomed. Pharmacother., 2017, 88, 754-761. doi: 10.1016/j.biopha.2017.01.123 PMID: 28157651
- Goh, YX; Jalil, J; Lam, KW; Husain, K; Premakumar, CM Genistein: A review on its anti-inflammatory properties. Front Pharmacol., 2022, 13, 820969. doi: 10.3389/fphar.2022.820969
- Ji, G.; Yang, Q.; Hao, J.; Guo, L.; Chen, X.; Hu, J.; Leng, L.; Jiang, Z. Anti-inflammatory effect of genistein on non-alcoholic steatohepatitis rats induced by high fat diet and its potential mechanisms. Int. Immunopharmacol., 2011, 11(6), 762-768. doi: 10.1016/j.intimp.2011.01.036 PMID: 21320636
- Bagheri, M.; Joghataei, M.T.; Mohseni, S.; Roghani, M. Genistein ameliorates learning and memory deficits in amyloid β(1-40) rat model of Alzheimers disease. Neurobiol. Learn. Mem., 2011, 95(3), 270-276. doi: 10.1016/j.nlm.2010.12.001 PMID: 21144907
- Bagheri, M.; Roghani, M.; Joghataei, M.T.; Mohseni, S. Genistein inhibits aggregation of exogenous amyloid-beta1-40 and alleviates astrogliosis in the hippocampus of rats. Brain Res., 2012, 1429, 145-154. doi: 10.1016/j.brainres.2011.10.020 PMID: 22079317
- Bagheri, M.; Rezakhani, A.; Nyström, S.; Turkina, M.V.; Roghani, M.; Hammarström, P.; Mohseni, S. Amyloid beta(1-40)-induced astrogliosis and the effect of genistein treatment in rat: A three-dimensional confocal morphometric and proteomic study. PLoS One, 2013, 8(10), e76526. doi: 10.1371/journal.pone.0076526 PMID: 24130779
- Valles, S.L.; Dolz-Gaiton, P.; Gambini, J.; Borras, C.; LLoret, A.; Pallardo, F.V.; Viña, J. Estradiol or genistein prevent Alzheimers disease-associated inflammation correlating with an increase PPARγ expression in cultured astrocytes. Brain Res., 2010, 1312, 138-144. doi: 10.1016/j.brainres.2009.11.044 PMID: 19948157
- Mirahmadi, S.M.S.; Shahmohammadi, A.; Rousta, A.M.; Azadi, M.R.; Fahanik-Babaei, J.; Baluchnejadmojarad, T.; Roghani, M. Soy isoflavone genistein attenuates lipopolysaccharide-induced cognitive impairments in the rat via exerting anti-oxidative and anti-inflammatory effects. Cytokine, 2018, 104, 151-159. doi: 10.1016/j.cyto.2017.10.008 PMID: 29102164
- Bagheri, M.; Rezakhani, A.; Nyström, S.; Turkina, M.V.; Roghani, M.; Hammarström, P.; Mohseni, S. Genistein inhibits Aβ1-40-induced astrogliosis: A three-dimensional confocal morphometric analysis. 2012.
- Zhao, Z.; Fu, J.; Li, S.; Li, Z. Neuroprotective effects of genistein in a sod1-g93a transgenic mouse model of amyotrophic lateral sclerosis. J. Neuroimmune Pharmacol., 2019, 14(4), 688-696. doi: 10.1007/s11481-019-09866-x PMID: 31321663
- Viña, J.; Escudero, J.; Baquero, M.; Cebrián, M.; Carbonell-Asíns, J.A.; Muñoz, J.E.; Satorres, E.; Meléndez, J.C.; Ferrer-Rebolleda, J.; Cózar-Santiago, M.P.; Santabárbara-Gómez, J.M.; Jové, M.; Pamplona, R.; Tarazona-Santabalbina, F.J.; Borrás, C. Genistein effect on cognition in prodromal Alzheimers disease patients. The GENIAL clinical trial. Alzheimers Res. Ther., 2022, 14(1), 164. doi: 10.1186/s13195-022-01097-2 PMID: 36329553
- Fan, S.; Zhang, Z.; Zheng, Y.; Lu, J.; Wu, D.; Shan, Q.; Hu, B.; Wang, Y. Troxerutin protects the mouse kidney from d-galactose-caused injury through anti-inflammation and anti-oxidation. Int. Immunopharmacol., 2009, 9(1), 91-96. doi: 10.1016/j.intimp.2008.10.008 PMID: 19000936
- Panat, N.A.; Maurya, D.K.; Ghaskadbi, S.S.; Sandur, S.K. Troxerutin, a plant flavonoid, protects cells against oxidative stress-induced cell death through radical scavenging mechanism. Food Chem., 2016, 194, 32-45. doi: 10.1016/j.foodchem.2015.07.078 PMID: 26471524
- Zhang, Z.F.; Zhang, Y.; Fan, S.H.; Zhuang, J.; Zheng, Y.L.; Lu, J.; Wu, D.M.; Shan, Q.; Hu, B. Troxerutin protects against 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47)-induced liver inflammation by attenuating oxidative stress-mediated NAD+-depletion. J. Hazard. Mater., 2015, 283, 98-109. doi: 10.1016/j.jhazmat.2014.09.012 PMID: 25262482
- Baluchnejadmojarad, T.; Jamali-Raeufy, N.; Zabihnejad, S.; Rabiee, N.; Roghani, M. Troxerutin exerts neuroprotection in 6-hydroxydopamine lesion rat model of Parkinsons disease: Possible involvement of PI3K/ERβ signaling. Eur. J. Pharmacol., 2017, 801, 72-78. doi: 10.1016/j.ejphar.2017.03.002 PMID: 28284752
- Lin, Y.; Shi, R.; Wang, X.; Shen, H.M. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr. Cancer Drug Targets, 2008, 8(7), 634-646. doi: 10.2174/156800908786241050 PMID: 18991571
- Imran, M.; Rauf, A.; Abu-Izneid, T.; Nadeem, M.; Shariati, M.A.; Khan, I.A.; Imran, A.; Orhan, I.E.; Rizwan, M.; Atif, M.; Gondal, T.A.; Mubarak, M.S. Luteolin, a flavonoid, as an anticancer agent: A review. Biomed. Pharmacother., 2019, 112, 108612. doi: 10.1016/j.biopha.2019.108612 PMID: 30798142
- Kempuraj, D.; Thangavel, R.; Kempuraj, D.D.; Ahmed, M.E.; Selvakumar, G.P.; Raikwar, S.P.; Zaheer, S.A.; Iyer, S.S.; Govindarajan, R.; Chandrasekaran, P.N.; Zaheer, A. Neuroprotective effects of flavone luteolin in neuroinflammation and neurotrauma. Biofactors, 2021, 47(2), 190-197. doi: 10.1002/biof.1687 PMID: 33098588
- Luo, Y.; Shang, P.; Li, D. Luteolin: A flavonoid that has multiple cardio-protective effects and its molecular mechanisms. Front. Pharmacol., 2017, 8, 692. doi: 10.3389/fphar.2017.00692 PMID: 29056912
- Patil, S.P.; Jain, P.D.; Sancheti, J.S.; Ghumatkar, P.J.; Tambe, R.; Sathaye, S. RETRACTED: Neuroprotective and neurotrophic effects of Apigenin and Luteolin in MPTP induced parkinsonism in mice. Neuropharmacology, 2014, 86, 192-202. doi: 10.1016/j.neuropharm.2014.07.012 PMID: 25087727
- Siracusa, R; Paterniti, I; Impellizzeri, D; Cordaro, M; Crupi, R; Navarra, M The association of palmitoylethanolamide with luteolin decreases neuroinflammation and stimulates autophagy in Parkinsons disease model. CNS Neurol. Disord. Drug Targets, 2015, 14(10), 1350-65. doi: 10.2174/1871527314666150821102823
- Paterniti, I; Cordaro, M; Campolo, M; Siracusa, R; Cornelius, C; Navarra, M Neuroprotection by association of palmitoylethanolamide with luteolin in experimental Alzheimer's disease models: The control of neuroinflammation. CNS Neurol. Disord. Drug Targets, 2014, 13(9), 1530-41. doi: 10.2174/1871527313666140806124322
- Song, D.; Hao, J.; Fan, D. Biological properties and clinical applications of berberine. Front. Med., 2020, 14(5), 564-582. doi: 10.1007/s11684-019-0724-6 PMID: 32335802
- Sondhi, S.; Singh, N.; Goyal, K.; Jindal, S. A laconic review on extraction, biological activities of herbal formulations of berberine: A traditional drug. J. Drug Deliv. Ther., 2020, 10(5), 345-357. doi: 10.22270/jddt.v10i5.4300
- Ye, M.; Fu, S.; Pi, R.; He, F. Neuropharmacological and pharmacokinetic properties of berberine: A review of recent research. J. Pharm. Pharmacol., 2010, 61(7), 831-837. doi: 10.1211/jpp.61.07.0001 PMID: 19589224
- Zhu, F.; Qian, C. Berberine chloride can ameliorate the spatial memory impairment and increase the expression of interleukin-1beta and inducible nitric oxide synthase in the rat model of Alzheimers disease. BMC Neurosci., 2006, 7(1), 78. doi: 10.1186/1471-2202-7-78 PMID: 17137520
- Durairajan, S.S.K.; Liu, L.F.; Lu, J.H.; Chen, L.L.; Yuan, Q.; Chung, S.K.; Huang, L.; Li, X.S.; Huang, J.D.; Li, M. Berberine ameliorates β-amyloid pathology, gliosis, and cognitive impairment in an Alzheimers disease transgenic mouse model. Neurobiol. Aging, 2012, 33(12), 2903-2919. doi: 10.1016/j.neurobiolaging.2012.02.016 PMID: 22459600
- Sadraie, S.; Kiasalari, Z.; Razavian, M.; Azimi, S.; Sedighnejad, L.; Afshin-Majd, S.; Baluchnejadmojarad, T.; Roghani, M. Berberine ameliorates lipopolysaccharide-induced learning and memory deficit in the rat: Insights into underlying molecular mechanisms. Metab. Brain Dis., 2019, 34(1), 245-255. doi: 10.1007/s11011-018-0349-5 PMID: 30456649
- Bie, B.; Sun, J.; Guo, Y.; Li, J.; Jiang, W.; Yang, J.; Huang, C.; Li, Z. Baicalein: A review of its anti-cancer effects and mechanisms in Hepatocellular Carcinoma. Biomed. Pharmacother., 2017, 93, 1285-1291. doi: 10.1016/j.biopha.2017.07.068 PMID: 28747003
- Huang, Y.; Tsang, S.Y.; Yao, X.; Chen, Z.Y. Biological properties of baicalein in cardiovascular system. Curr. Drug Targets Cardiovasc. Haematol. Disord., 2005, 5(2), 177-184. doi: 10.2174/1568006043586206 PMID: 15853750
- Dinda, B.; Dinda, S.; DasSharma, S.; Banik, R.; Chakraborty, A.; Dinda, M. Therapeutic potentials of baicalin and its aglycone, baicalein against inflammatory disorders. Eur. J. Med. Chem., 2017, 131, 68-80. doi: 10.1016/j.ejmech.2017.03.004 PMID: 28288320
- Chen, M.; Lai, L.; Li, X.; Zhang, X.; He, X.; Liu, W.; Li, R.; Ke, X.; Fu, C.; Huang, Z.; Duan, C. Baicalein attenuates neurological deficits and preserves blood-brain barrier integrity in a rat model of intracerebral hemorrhage. Neurochem. Res., 2016, 41(11), 3095-3102. doi: 10.1007/s11064-016-2032-8 PMID: 27518088
- Lee, E.; Park, H.R.; Ji, S.T.; Lee, Y.; Lee, J. Baicalein attenuates astroglial activation in the 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine-induced Parkinsons disease model by downregulating the activations of nuclear factor-κB, ERK, and JNK. J. Neurosci. Res., 2014, 92(1), 130-139. doi: 10.1002/jnr.23307 PMID: 24166733
- Mu, X.; He, G.; Cheng, Y.; Li, X.; Xu, B.; Du, G. Baicalein exerts neuroprotective effects in 6-hydroxydopamine-induced experimental parkinsonism in vivo and in vitro. Pharmacol. Biochem. Behav., 2009, 92(4), 642-648. doi: 10.1016/j.pbb.2009.03.008 PMID: 19327378
- Cheng, Y.; He, G.; Mu, X.; Zhang, T.; Li, X.; Hu, J.; Xu, B.; Du, G. Neuroprotective effect of baicalein against MPTP neurotoxicity: Behavioral, biochemical and immunohistochemical profile. Neurosci. Lett., 2008, 441(1), 16-20. doi: 10.1016/j.neulet.2008.05.116 PMID: 18586394
- Islam, MS; Quispe, C; Hossain, R; Islam, MT; Al-Harrasi, A; Al-Rawahi, A Neuropharmacological effects of quercetin: A literature-based review. Front Pharmacol., 2021, 12, 665031. doi: 10.3389/fphar.2021.665031
- Davis, J.M.; Murphy, E.A.; Carmichael, M.D. Effects of the dietary flavonoid quercetin upon performance and health. Curr. Sports Med. Rep., 2009, 8(4), 206-213. doi: 10.1249/JSR.0b013e3181ae8959 PMID: 19584608
- Aguirre, L.; Arias, N.; Teresa Macarulla, M.; Gracia, A.; Portillo, M.P. Beneficial effects of quercetin on obesity and diabetes. Open Nutraceuticals J., 2011, 4(1)
- Sabogal-Guáqueta, A.M.; Muñoz-Manco, J.I.; Ramírez-Pineda, J.R.; Lamprea-Rodriguez, M.; Osorio, E.; Cardona-Gómez, G.P. The flavonoid quercetin ameliorates Alzheimers disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimers disease model mice. Neuropharmacology, 2015, 93, 134-145. doi: 10.1016/j.neuropharm.2015.01.027 PMID: 25666032
- Moreno, L.C.G.I.; Puerta, E.; Suárez-Santiago, J.E.; Santos-Magalhães, N.S.; Ramirez, M.J.; Irache, J.M. Effect of the oral administration of nanoencapsulated quercetin on a mouse model of Alzheimers disease. Int. J. Pharm., 2017, 517(1-2), 50-57. doi: 10.1016/j.ijpharm.2016.11.061 PMID: 27915007
- Sandhir, R.; Mehrotra, A. Quercetin supplementation is effective in improving mitochondrial dysfunctions induced by 3-nitropropionic acid: Implications in Huntingtons disease. Biochim. Biophys. Acta Mol. Basis Dis., 2013, 1832(3), 421-430. doi: 10.1016/j.bbadis.2012.11.018 PMID: 23220257
- Lu, Y.; Liu, Q.; Yu, Q. Quercetin enrich diet during the early-middle not middle-late stage of Alzheimers disease ameliorates cognitive dysfunction. Am. J. Transl. Res., 2018, 10(4), 1237-1246. PMID: 29736217
- Martinez, R.M.; Pinho-Ribeiro, F.A.; Steffen, V.S.; Caviglione, C.V.; Vignoli, J.A.; Barbosa, D.S.; Baracat, M.M.; Georgetti, S.R.; Verri, W.A., Jr; Casagrande, R. Naringenin inhibits UVB irradiation-induced inflammation and oxidative stress in the skin of hairless mice. J. Nat. Prod., 2015, 78(7), 1647-1655. doi: 10.1021/acs.jnatprod.5b00198 PMID: 26154512
- Al-Rejaie, S.S.; Aleisa, A.M.; Abuohashish, H.M.; Parmar, M.Y.; Ola, M.S.; Al-Hosaini, A.A.; Ahmed, M.M. Naringenin neutralises oxidative stress and nerve growth factor discrepancy in experimental diabetic neuropathy. Neurol. Res., 2015, 37(10), 924-933. doi: 10.1179/1743132815Y.0000000079 PMID: 26187552
- Krishnakumar, N.; Sulfikkarali, N.; RajendraPrasad, N.; Karthikeyan, S. Enhanced anticancer activity of naringenin-loaded nanoparticles in human cervical (HeLa) cancer cells. Biomedicine & Preventive Nutrition, 2011, 1(4), 223-231. doi: 10.1016/j.bionut.2011.09.003
- Wang, G.Q.; Zhang, B.; He, X.M.; Li, D.D.; Shi, J.S.; Zhang, F. Naringenin targets on astroglial Nrf2 to support dopaminergic neurons. Pharmacol. Res., 2019, 139, 452-459. doi: 10.1016/j.phrs.2018.11.043 PMID: 30527894
- Ganeshpurkar, A.; Saluja, A.K. The pharmacological potential of rutin. Saudi Pharm. J., 2017, 25(2), 149-164. doi: 10.1016/j.jsps.2016.04.025 PMID: 28344465
- Al-Dhabi, N.A.; Arasu, M.V.; Park, C.H.; Park, S.U. An up-to-date review of rutin and its biological and pharmacological activities. EXCLI J., 2015, 14, 59-63. PMID: 26535031
- Guardia, T.; Rotelli, A.E.; Juarez, A.O.; Pelzer, L.E. Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Farmaco, 2001, 56(9), 683-687. doi: 10.1016/S0014-827X(01)01111-9 PMID: 11680812
- Singh, M.; Govindarajan, R.; Rawat, A.K.S.; Khare, P.B. Antimicrobial flavonoid rutin from Pteris vittata L. against pathogenic gastrointestinal microflora. Am. Fern J., 2008, 98(2), 98-103. doi: 10.1640/0002-8444(2008)9898:AFRFPV2.0.CO;2
- Abdelfattah, M.S.; Badr, S.E.A.; Lotfy, S.A.; Attia, G.H.; Aref, A.M.; Abdel Moneim, A.E. Rutin and selenium Co-administration reverse 3-nitropropionic acid-induced neurochemical and molecular impairments in a mouse model of Huntingtons disease. Neurotox. Res., 2020, 37(1), 77-92. PMID: 31332714
- Berman, A.Y.; Motechin, R.A.; Wiesenfeld, M.Y.; Holz, M.K. The therapeutic potential of resveratrol: A review of clinical trials. NPJ Precis. Oncol., 2017, 1(1), 35. doi: 10.1038/s41698-017-0038-6 PMID: 28989978
- Kulkarni, S.S.; Cantó, C. The molecular targets of resveratrol. Biochim. Biophys. Acta Mol. Basis Dis., 2015, 1852(6), 1114-1123. doi: 10.1016/j.bbadis.2014.10.005
- Miguel, C.A.; Noya-Riobó, M.V.; Mazzone, G.L.; Villar, M.J.; Coronel, M.F. Antioxidant, anti-inflammatory and neuroprotective actions of resveratrol after experimental nervous system insults. Special focus on the molecular mechanisms involved. Neurochem. Int., 2021, 150, 105188. doi: 10.1016/j.neuint.2021.105188 PMID: 34536545
- Wu, S.X.; Xiong, R.G.; Huang, S.Y.; Zhou, D.D.; Saimaiti, A.; Zhao, C.N.; Shang, A.; Zhang, Y.J.; Gan, R.Y.; Li, H.B. Effects and mechanisms of resveratrol for prevention and management of cancers: An updated review. Crit. Rev. Food Sci. Nutr., 2022, 2022, 1-19. doi: 10.1080/10408398.2022.2101428 PMID: 35852215
- Sahebkar, A. Effects of resveratrol supplementation on plasma lipids: A systematic review and meta-analysis of randomized controlled trials. Nutr. Rev., 2013, 71(12), 822-835. doi: 10.1111/nure.12081 PMID: 24111838
- Sahebkar, A.; Serban, C.; Ursoniu, S.; Wong, N.D.; Muntner, P.; Graham, I.M.; Mikhailidis, D.P.; Rizzo, M.; Rysz, J.; Sperling, L.S.; Lip, G.Y.H.; Banach, M. Lack of efficacy of resveratrol on C-reactive protein and selected cardiovascular risk factors Results from a systematic review and meta-analysis of randomized controlled trials. Int. J. Cardiol., 2015, 189(1), 47-55. doi: 10.1016/j.ijcard.2015.04.008 PMID: 25885871
- Tang, PC; Ng, YF; Ho, S; Gyda, M; Chan, SW Resveratrol and cardiovascular health - Promising therapeutic or hopeless illusion? Pharmacol. Res., 2014, 90, 88-115.
- Sun, X.Y.; Dong, Q.X.; Zhu, J.; Sun, X.; Zhang, L.F.; Qiu, M.; Yu, X.L.; Liu, R.T. Resveratrol rescues tau-induced cognitive deficits and neuropathology in a mouse model of tauopathy. Curr. Alzheimer Res., 2019, 16(8), 710-722. doi: 10.2174/1567205016666190801153751 PMID: 31368873
- Zhang, F; Wang, Y-Y; Liu, H; Lu, Y-F; Wu, Q; Liu, J Resveratrol produces neurotrophic effects on cultured dopaminergic neurons through prompting astroglial BDNF and GDNF release. Evid Based Complement Alternat Med., 2012, 2012, 937605. doi: 10.1155/2012/937605
- Arús, B.A.; Souza, D.G.; Bellaver, B.; Souza, D.O.; Gonçalves, C.A.; Quincozes-Santos, A.; Bobermin, L.D. Resveratrol modulates GSH system in C6 astroglial cells through heme oxygenase 1 pathway. Mol. Cell. Biochem., 2017, 428(1-2), 67-77. doi: 10.1007/s11010-016-2917-5 PMID: 28070834
- Bellaver, B.; Souza, D.G.; Bobermin, L.D.; Souza, D.O.; Gonçalves, C.A.; Quincozes-Santos, A. Resveratrol protects hippocampal astrocytes against LPS-induced neurotoxicity through HO-1, p38 and ERK pathways. Neurochem. Res., 2015, 40(8), 1600-1608. doi: 10.1007/s11064-015-1636-8 PMID: 26088684
- Frozza, R.L.; Bernardi, A.; Hoppe, J.B.; Meneghetti, A.B.; Matté, A.; Battastini, A.M.O.; Pohlmann, A.R.; Guterres, S.S.; Salbego, C. Neuroprotective effects of resveratrol against Aβ administration in rats are improved by lipid-core nanocapsules. Mol. Neurobiol., 2013, 47(3), 1066-1080. doi: 10.1007/s12035-013-8401-2 PMID: 23315270
- Moussa, C.; Hebron, M.; Huang, X.; Ahn, J.; Rissman, R.A.; Aisen, P.S.; Turner, R.S. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimers disease. J. Neuroinflammation, 2017, 14(1), 1. doi: 10.1186/s12974-016-0779-0 PMID: 28086917
- Turner, R.S.; Thomas, R.G.; Craft, S.; van Dyck, C.H.; Mintzer, J.; Reynolds, B.A.; Brewer, J.B.; Rissman, R.A.; Raman, R.; Aisen, P.S. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology, 2015, 85(16), 1383-1391. doi: 10.1212/WNL.0000000000002035 PMID: 26362286
- Simone, D.A.; Baumann, T.K.; LaMotte, R.H. Dose-dependent pain and mechanical hyperalgesia in humans after intradermal injection of capsaicin. Pain, 1989, 38(1), 99-107. doi: 10.1016/0304-3959(89)90079-1 PMID: 2780068
- Kim, C.S.; Kawada, T.; Kim, B.S.; Han, I.S.; Choe, S.Y.; Kurata, T.; Yu, R. Capsaicin exhibits anti-inflammatory property by inhibiting IkB-a degradation in LPS-stimulated peritoneal macrophages. Cell. Signal., 2003, 15(3), 299-306. doi: 10.1016/S0898-6568(02)00086-4 PMID: 12531428
- Galano, A.; Martínez, A. Capsaicin, a tasty free radical scavenger: Mechanism of action and kinetics. J. Phys. Chem. B, 2012, 116(3), 1200-1208. doi: 10.1021/jp211172f PMID: 22188587
- Kang, J.H.; Kim, C.S.; Han, I.S.; Kawada, T.; Yu, R. Capsaicin, a spicy component of hot peppers, modulates adipokine gene expression and protein release from obese-mouse adipose tissues and isolated adipocytes, and suppresses the inflammatory responses of adipose tissue macrophages. FEBS Lett., 2007, 581(23), 4389-4396. doi: 10.1016/j.febslet.2007.07.082 PMID: 17719033
- Chung, Y.C.; Baek, J.Y.; Kim, S.R.; Ko, H.W.; Bok, E.; Shin, W.H.; Won, S.Y.; Jin, B.K. Capsaicin prevents degeneration of dopamine neurons by inhibiting glial activation and oxidative stress in the MPTP model of Parkinsons disease. Exp. Mol. Med., 2017, 49(3), e298. doi: 10.1038/emm.2016.159 PMID: 28255166
- Garcia-Garcia, E.; Andrieux, K.; Gil, S.; Couvreur, P. Colloidal carriers and blood-brain barrier (BBB) translocation: A way to deliver drugs to the brain? Int. J. Pharm., 2005, 298(2), 274-292. doi: 10.1016/j.ijpharm.2005.03.031 PMID: 15896933
- Oller-Salvia, B.; Sánchez-Navarro, M.; Giralt, E.; Teixidó, M. Blood-brain barrier shuttle peptides: An emerging paradigm for brain delivery. Chem. Soc. Rev., 2016, 45(17), 4690-4707. doi: 10.1039/C6CS00076B PMID: 27188322
- Hersh, D.S.; Wadajkar, A.S.; Roberts, N.; Perez, J.G.; Connolly, N.P.; Frenkel, V.; Winkles, J.A.; Woodworth, G.F.; Kim, A.J. Evolving drug delivery strategies to overcome the blood brain barrier. Curr. Pharm. Des., 2016, 22(9), 1177-1193. doi: 10.2174/1381612822666151221150733 PMID: 26685681
- Teleanu, D.; Chircov, C.; Grumezescu, A.; Volceanov, A.; Teleanu, R. Blood-brain delivery methods using nanotechnology. Pharmaceutics, 2018, 10(4), 269. doi: 10.3390/pharmaceutics10040269 PMID: 30544966
- Chakraborty, J.; Singh, R.; Dutta, D.; Naskar, A.; Rajamma, U.; Mohanakumar, K.P. Quercetin improves behavioral deficiencies, restores astrocytes and microglia, and reduces serotonin metabolism in 3-nitropropionic acid-induced rat model of Huntingtons Disease. CNS Neurosci. Ther., 2014, 20(1), 10-19. doi: 10.1111/cns.12189 PMID: 24188794
Supplementary files
