Phytochemicals as Substances that Affect Astrogliosis and their Implications for the Management of Neurodegenerative Diseases


Cite item

Full Text

Abstract

:Astrocytes are a multifunctional subset of glial cells that are important in maintaining the health and function of the central nervous system (CNS). Reactive astrocytes may release inflammatory mediators, chemokines, and cytokines, as well as neurotrophic factors. There may be neuroprotective (e.g., cytokines, like IL-6 and TGF-b) and neurotoxic effects (e.g., IL-1β and TNF-a) associated with these molecules. In response to CNS pathologies, astrocytes go to a state called astrogliosis which produces diverse and heterogenic functions specific to the pathology. Astrogliosis has been linked to the progression of many neurodegenerative disorders. Phytochemicals are a large group of compounds derived from natural herbs with health benefits. This review will summarize how several phytochemicals affect neurodegenerative diseases (e.g., Alzheimer’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and Parkinson’s disease) in basic medical and clinical studies and how they might affect astrogliosis in the process.

About the authors

Fatemeh Forouzanfar

Neuroscience Research Center, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Ali Pourbagher-Shahri

Neuroscience Research Center, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Farzaneh Vafaee

Neuroscience Research Center, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Thozhukat Sathyapalan

Department of Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull

Email: info@benthamscience.net

Amirhossein Sahebkar

Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Kumar, A; Fontana, IC; Nordberg, A Reactive astrogliosis: A friend or foe in the pathogenesis of Alzheimer’s disease. J. Neurochem., 2023, 164(3), 309-324. doi: 10.1111/jnc.15565
  2. Parpura, V.; Heneka, M.T.; Montana, V.; Oliet, S.H.R.; Schousboe, A.; Haydon, P.G.; Stout, R.F., Jr; Spray, D.C.; Reichenbach, A.; Pannicke, T.; Pekny, M.; Pekna, M.; Zorec, R.; Verkhratsky, A. Glial cells in (patho)physiology. J. Neurochem., 2012, 121(1), 4-27. doi: 10.1111/j.1471-4159.2012.07664.x PMID: 22251135
  3. Sofroniew, M.V.; Vinters, H.V. Astrocytes: Biology and pathology. Acta Neuropathol., 2010, 119(1), 7-35. doi: 10.1007/s00401-009-0619-8 PMID: 20012068
  4. Eng, L.F.; Vanderhaeghen, J.J.; Bignami, A.; Gerstl, B. An acidic protein isolated from fibrous astrocytes. Brain Res., 1971, 28(2), 351-354. doi: 10.1016/0006-8993(71)90668-8 PMID: 5113526
  5. Guo, Y.; Liu, Y.; Xu, L.; Wu, S.; Yang, C.; Wu, D.; Wu, H.; Li, C. Astrocytic pathology in the immune-mediated motor neuron injury. Amyotroph. Lateral Scler., 2007, 8(4), 230-234. doi: 10.1080/17482960701278612 PMID: 17653921
  6. Zhang, L.; Zhang, W.P.; Chen, K.D.; Qian, X.D.; Fang, S.H.; Wei, E.Q. Caffeic acid attenuates neuronal damage, astrogliosis and glial scar formation in mouse brain with cryoinjury. Life Sci., 2007, 80(6), 530-537. doi: 10.1016/j.lfs.2006.09.039 PMID: 17074364
  7. Serrano-Pozo, A.; Mielke, M.L.; Gómez-Isla, T.; Betensky, R.A.; Growdon, J.H.; Frosch, M.P.; Hyman, B.T. Reactive glia not only associates with plaques but also parallels tangles in Alzheimer’s disease. Am. J. Pathol., 2011, 179(3), 1373-1384. doi: 10.1016/j.ajpath.2011.05.047 PMID: 21777559
  8. Verkhratsky, A.; Zorec, R.; Parpura, V. Stratification of astrocytes in healthy and diseased brain. Brain Pathol., 2017, 27(5), 629-644. doi: 10.1111/bpa.12537 PMID: 28805002
  9. Verkhratsky, A.; Rodríguez, J.J.; Parpura, V. Astroglia in neurological diseases. Future Neurol., 2013, 8(2), 149-158. doi: 10.2217/fnl.12.90 PMID: 23658503
  10. Moulson, A.J.; Squair, J.W.; Franklin, R.J.M.; Tetzlaff, W.; Assinck, P. Diversity oflology: Heterogeneity or plasticity? Future Neurol., 2021, 15, 703810.
  11. Robel, S.; Berninger, B.; Götz, M. The stem cell potential of glia: Lessons from reactive gliosis. Nat. Rev. Neurosci., 2011, 12(2), 88-104. doi: 10.1038/nrn2978 PMID: 21248788
  12. Verkhratsky, A.; Sofroniew, M.V.; Messing, A.; deLanerolle, N.C.; Rempe, D.; Rodríguez, J.J.; Nedergaard, M. Neurological diseases as primary gliopathies: A reassessment of neurocentrism. ASN Neuro, 2012, 4(3), AN20120010. doi: 10.1042/AN20120010 PMID: 22339481
  13. Yang, Z-Y.; Jin, W.L.; Xu, Y.; Jin, M.Z. Microglia in neurodegenerative diseases. Neural Regen. Res., 2021, 16(2), 270-280. doi: 10.4103/1673-5374.290881 PMID: 32859774
  14. Verkhratsky, A.; Rodríguez, J.J.; Steardo, L. Astrogliopathology. Neuroscientist, 2014, 20(6), 576-588. doi: 10.1177/1073858413510208 PMID: 24301046
  15. Colangelo, A.M.; Alberghina, L.; Papa, M. Astrogliosis as a therapeutic target for neurodegenerative diseases. Neurosci. Lett., 2014, 565, 59-64. doi: 10.1016/j.neulet.2014.01.014 PMID: 24457173
  16. Sofroniew, M.V. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci., 2009, 32(12), 638-647. doi: 10.1016/j.tins.2009.08.002 PMID: 19782411
  17. Phatnani, H.; Maniatis, T. Astrocytes in neurodegenerative disease. Cold Spring Harb. Perspect. Biol., 2015, 7(6), a020628. doi: 10.1101/cshperspect.a020628 PMID: 25877220
  18. Forni, C.; Facchiano, F.; Bartoli, M.; Pieretti, S.; Facchiano, A.; D’Arcangelo, D.; Norelli, S.; Valle, G.; Nisini, R.; Beninati, S.; Tabolacci, C.; Jadeja, R.N. Beneficial role of phytochemicals on oxidative stress and age-related diseases. Biomed. Res. Int., 2019, 2019, 8748253. doi: 10.1155/2019/8748253
  19. Dillard, C.J.; German, J.B. Phytochemicals: Nutraceuticals and human health. J. Sci. Food Agric., 2000, 80(12), 1744-1756. doi: 10.1002/1097-0010(20000915)80:123.0.CO;2-W
  20. Fazeli, E.; Ghalibaf, M.H.E.; Forouzanfar, F. Neuroprotective potency of safranal against neurological disorders. Curr. Mol. Med., 2023. PMID: 36397621
  21. Aggarwal, B.B.; Kumar, A.; Bharti, A.C. Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res., 2003, 23(1A), 363-398. PMID: 12680238
  22. Forouzanfar, F.; Barreto, G.; Majeed, M.; Sahebkar, A. Modulatory effects of curcumin on heat shock proteins in cancer: A promising therapeutic approach. Biofactors, 2019, 45(5), 631-640. doi: 10.1002/biof.1522 PMID: 31136038
  23. Forouzanfar, F; Majeed, M; Jamialahmadi, T; Sahebkar, A. Curcumin: A review of its effects on epilepsy. Adv. Exp. Med. Biol., 2021, 1291, 363-373. doi: 10.1007/978-3-030-56153-6_21
  24. Forouzanfar, F.; Majeed, M.; Jamialahmadi, T.; Sahebkar, A. Telomerase: A target for therapeutic effects of curcumin in cancer. Adv. Exp. Med. Biol., 2021, 135-143.
  25. Mantzorou, M.; Pavlidou, E.; Vasios, G.; Tsagalioti, E.; Giaginis, C. Effects of curcumin consumption on human chronic diseases: A narrative review of the most recent clinical data. Phytother. Res., 2018, 32(6), 957-975. doi: 10.1002/ptr.6037 PMID: 29468820
  26. Marchiani, A.; Rozzo, C.; Fadda, A.; Delogu, G.; Ruzza, P. Curcumin and curcumin-like molecules: From spice to drugs. Curr. Med. Chem., 2013, 21(2), 204-222. doi: 10.2174/092986732102131206115810 PMID: 23590716
  27. Mhillaj, E.; Tarozzi, A.; Pruccoli, L.; Cuomo, V.; Trabace, L.; Mancuso, C. Curcumin and heme oxygenase: Neuroprotection and beyond. Int. J. Mol. Sci., 2019, 20(10), 2419. doi: 10.3390/ijms20102419 PMID: 31100781
  28. Yang, M.; Akbar, U.; Mohan, C. Curcumin in autoimmune and rheumatic diseases. Nutrients, 2019, 11(5), 1004. doi: 10.3390/nu11051004 PMID: 31052496
  29. Lelli, D.; Sahebkar, A.; Johnston, T.P.; Pedone, C. Curcumin use in pulmonary diseases: State of the art and future perspectives. Pharmacol. Res., 2017, 115, 133-148. doi: 10.1016/j.phrs.2016.11.017 PMID: 27888157
  30. Mokhtari-Zaer, A., Marefati, N., Atkin, S. L., Butler, A. E., & Sahebkar, A. (2018). The protective role of curcumin in myocardial ischemia-reperfusion injury. J. Cellular Physiol., 2018, 234(1), 214-222. doi: 10.1002/jcp.268481
  31. Mohajeri, M., & Sahebkar, A. (2018). Protective effects of curcumin against doxorubicin-induced toxicity and resistance: A review. Crit. Rev. Oncol.,2018, 122, 30-51. doi: 10.1016/j.critrevonc.2017.12.005
  32. Heidari, Z.; Daei, M.; Boozari, M.; Jamialahmadi, T.; Sahebkar, A. Curcumin supplementation in pediatric patients: A systematic review of current clinical evidence. Phytother. Res., 2022, 36(4), 1442-1458. doi: 10.1002/ptr.7350 PMID: 34904764
  33. Khayatan, D.; Razavi, S.M.; Arab, Z.N.; Niknejad, A.H.; Nouri, K.; Momtaz, S.; Gumpricht, E.; Jamialahmadi, T.; Abdolghaffari, A.H.; Barreto, G.E.; Sahebkar, A. Protective effects of curcumin against traumatic brain injury. Biomed. Pharmacother., 2022, 154, 113621. doi: 10.1016/j.biopha.2022.113621 PMID: 36055110
  34. Soltani, S.; Boozari, M.; Cicero, A.F.G.; Jamialahmadi, T.; Sahebkar, A. Effects of phytochemicals on macrophage cholesterol efflux capacity: Impact on atherosclerosis. Phytother. Res., 2021, 35(6), 2854-2878. doi: 10.1002/ptr.6991 PMID: 33464676
  35. Bachmeier, BA-O; Melchart, D Therapeutic effects of curcumin—from traditional past to present and future clinical applications. Int. J. Mol. Sci., 2019, 20(15), 3757. doi: 10.3390/ijms20153757
  36. Zeng, Y.; Luo, Y.; Wang, L.; Zhang, K.; Peng, J.; Fan, G. Therapeutic effect of curcumin on metabolic diseases: Evidence from clinical studies. Int. J. Mol. Sci., 2023, 24(4), 3323. doi: 10.3390/ijms24043323 PMID: 36834734
  37. Menon, V.P.; Sudheer, A.R. Antioxidant and anti-inflammatory properties of curcumin. The molecular targets and therapeutic uses of curcumin in health and disease. Adv. Exp. Med. Biol., 2007, 595, 105-25.
  38. Momtazi-Borojeni, A.A.; Haftcheshmeh, S.M.; Esmaeili, S.A.; Johnston, T.P.; Abdollahi, E.; Sahebkar, A. Curcumin: A natural modulator of immune cells in systemic lupus erythematosus. Autoimmun. Rev., 2018, 17(2), 125-135. doi: 10.1016/j.autrev.2017.11.016 PMID: 29180127
  39. Chainani-Wu, N. Safety and anti-inflammatory activity of curcumin: A component of tumeric (Curcuma longa). J. Altern. Complement. Med., 2003, 9(1), 161-168. doi: 10.1089/107555303321223035 PMID: 12676044
  40. Sahebkar, A.; Cicero, A.F.G.; Simental-Mendía, L.E.; Aggarwal, B.B.; Gupta, S.C. Curcumin downregulates human tumor necrosis factor-α levels: A systematic review and meta-analysis ofrandomized controlled trials. Pharmacol. Res., 2016, 107, 234-242. doi: 10.1016/j.phrs.2016.03.026 PMID: 27025786
  41. Hasanzadeh, S.; Read, M.I.; Bland, A.R.; Majeed, M.; Jamialahmadi, T.; Sahebkar, A. Curcumin: An inflammasome silencer. Pharmacol. Res., 2020, 159, 104921. doi: 10.1016/j.phrs.2020.104921 PMID: 32464325
  42. Matsushita, Y.; Ueda, H. Curcumin blocks chronic morphine analgesic tolerance and brain-derived neurotrophic factor upregulation. Neuroreport, 2009, 20(1), 63-68. doi: 10.1097/WNR.0b013e328314decb PMID: 19033880
  43. Parsamanesh, N.; Moossavi, M.; Bahrami, A.; Butler, A.E.; Sahebkar, A. Therapeutic potential of curcumin in diabetic complications. Pharmacol. Res., 2018, 136, 181-193. doi: 10.1016/j.phrs.2018.09.012 PMID: 30219581
  44. De, R.; Kundu, P.; Swarnakar, S.; Ramamurthy, T.; Chowdhury, A.; Nair, G.B.; Mukhopadhyay, A.K. Antimicrobial activity of curcumin against Helicobacter pylori isolates from India and during infections in mice. Antimicrob. Agents Chemother., 2009, 53(4), 1592-1597. doi: 10.1128/AAC.01242-08 PMID: 19204190
  45. Park, J.; Conteas, C.N. Anti-carcinogenic properties of curcumin on colorectal cancer. World J. Gastrointest. Oncol., 2010, 2(4), 169-176. doi: 10.4251/wjgo.v2.i4.169 PMID: 21160593
  46. Momtazi, A A.; Sahebkar, A. Difluorinated curcumin: A promising curcumin analogue with improved anti-tumor activity and pharmacokinetic profile. Curr. Pharma. Desi.,2016, 22(28), 4386-4397. doi: 10.2174/1381612822666160527113501
  47. Sharma, N.; Nehru, B. Curcumin affords neuroprotection and inhibits α-synuclein aggregation in lipopolysaccharide-induced Parkinson’s disease model. Inflammopharmacology, 2018, 26(2), 349-360. doi: 10.1007/s10787-017-0402-8 PMID: 29027056
  48. Tripanichkul, W.; Jaroensuppaperch, E. Curcumin protects nigrostriatal dopaminergic neurons and reduces glial activation in 6-hydroxydopamine hemiparkinsonian mice model. Int. J. Neurosci., 2012, 122(5), 263-270. doi: 10.3109/00207454.2011.648760 PMID: 22176529
  49. Sanchez, A.; Tripathy, D.; Grammas, P. RANTES release contributes to the protective action of PACAP38 against sodium nitroprusside in cortical neurons. Neuropeptides, 2009, 43(4), 315-320. doi: 10.1016/j.npep.2009.05.002 PMID: 19497618
  50. Lin, M.S.; Hung, K.S.; Chiu, W.T.; Sun, Y.Y.; Tsai, S.H.; Lin, J.W.; Lee, Y.H. Curcumin enhances neuronal survival in N-methyl-d-aspartic acid toxicity by inducing RANTES expression in astrocytes via PI-3K and MAPK signaling pathways. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2011, 35(4), 931-938. doi: 10.1016/j.pnpbp.2010.12.022 PMID: 21199667
  51. Sundaram, J.R.; Poore, C.P.; Sulaimee, N.H.B.; Pareek, T.; Cheong, W.F.; Wenk, M.R.; Pant, H.C.; Frautschy, S.A.; Low, C.M.; Kesavapany, S. Curcumin ameliorates neuroinflammation, neurodegeneration, and memory deficits in p25 transgenic mouse model that bears hallmarks of Alzheimer’s disease. J. Alzheimers Dis., 2017, 60(4), 1429-1442. doi: 10.3233/JAD-170093 PMID: 29036814
  52. Yu, S.; Wang, X.; He, X.; Wang, Y.; Gao, S.; Ren, L.; Shi, Y. Curcumin exerts anti-inflammatory and antioxidative properties in 1-methyl-4-phenylpyridinium ion (MPP+)-stimulated mesencephalic astrocytes by interference with TLR4 and downstream signaling pathway. Cell Stress Chaperones, 2016, 21(4), 697-705. doi: 10.1007/s12192-016-0695-3 PMID: 27164829
  53. Chico, L.; Ienco, E.C.; Bisordi, C.; Lo Gerfo, A.; Petrozzi, L.; Petrucci, A.; Mancuso, M.; Siciliano, G. Amyotrophic lateral sclerosis and oxidative stress: A double-blind therapeutic trial after curcumin supplementation. CNS Neurol. Disord. Drug Targets, 2018, 17(10), 767-779. doi: 10.2174/1871527317666180720162029 PMID: 30033879
  54. Ahmadi, M.; Agah, E.; Nafissi, S.; Jaafari, M.R.; Harirchian, M.H.; Sarraf, P.; Faghihi-Kashani, S.; Hosseini, S.J.; Ghoreishi, A.; Aghamollaii, V.; Hosseini, M.; Tafakhori, A. Safety and efficacy of nanocurcumin as add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: A pilot randomized clinical trial. Neurotherapeutics, 2018, 15(2), 430-438. doi: 10.1007/s13311-018-0606-7 PMID: 29352425
  55. Baum, L.; Lam, C.W.K.; Cheung, S.K.K.; Kwok, T.; Lui, V.; Tsoh, J.; Lam, L.; Leung, V.; Hui, E.; Ng, C.; Woo, J.; Chiu, H.F.K.; Goggins, W.B.; Zee, B.C.Y.; Cheng, K.F.; Fong, C.Y.S.; Wong, A.; Mok, H.; Chow, M.S.S.; Ho, P.C.; Ip, S.P.; Ho, C.S.; Yu, X.W.; Lai, C.Y.L.; Chan, M.H.; Szeto, S.; Chan, I.H.S.; Mok, V. Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J. Clin. Psychopharmacol., 2008, 28(1), 110-113. doi: 10.1097/jcp.0b013e318160862c PMID: 18204357
  56. Ringman, J.M.; Frautschy, S.A.; Teng, E.; Begum, A.N.; Bardens, J.; Beigi, M.; Gylys, K.H.; Badmaev, V.; Heath, D.D.; Apostolova, L.G.; Porter, V.; Vanek, Z.; Marshall, G.A.; Hellemann, G.; Sugar, C.; Masterman, D.L.; Montine, T.J.; Cummings, J.L.; Cole, G.M. Oral curcumin for Alzheimer’s disease: Tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study. Alzheimers Res. Ther., 2012, 4(5), 43. doi: 10.1186/alzrt146 PMID: 23107780
  57. Yuan, C-X.; Yang, X-M.; Ye, Q.; Yuan, X-L.; Zhang, H-Z. Zishenpingchan granules for the treatment of Parkinson’s disease: A randomized, double-blind, placebo-controlled clinical trial. Neural Regen. Res., 2018, 13(7), 1269-1275. doi: 10.4103/1673-5374.235075 PMID: 30028337
  58. Mohseni, M.; Sahebkar, A.; Askari, G.; Johnston, T.P.; Alikiaii, B.; Bagherniya, M. The clinical use of curcumin on neurological disorders: An updated systematic review of clinical trials. Phytother. Res., 2021, 35(12), 6862-6882. doi: 10.1002/ptr.7273 PMID: 34528307
  59. Forouzanfar, F.; Hosseinzadeh, H. Protective role of Nigella sativa and thymoquinone in oxidative stress: A review. Nuts and seeds in health and disease prevention. Academic Press, 2020, 127-146. doi: 10.1016/B978-0-12-818553-7.00011-5
  60. Mashayekhi-Sardoo, H.; Rezaee, R.; Karimi, G. An overview of in vivo toxicological profile of thymoquinone. Toxin Rev., 2020, 39(2), 115-122. doi: 10.1080/15569543.2018.1514637
  61. Ahmad, A.; Raish, M.; Alkharfy, K.M.; Alsarra, I.A.; Khan, A.; Ahad, A.; Jan, B.L.; Shakeel, F. Solubility, solubility parameters and solution thermodynamics of thymoquinone in different mono solvents. J. Mol. Liq., 2018, 272, 912-918. doi: 10.1016/j.molliq.2018.10.104
  62. Gali-Muhtasib, H.; Roessner, A.; Schneider-Stock, R. Thymoquinone: A promising anti-cancer drug from natural sources. Int. J. Biochem. Cell Biol., 2006, 38(8), 1249-1253. doi: 10.1016/j.biocel.2005.10.009 PMID: 16314136
  63. Atta, M.; Almadaly, E.; El-Far, A.; Saleh, R.; Assar, D.; Al Jaouni, S.; Mousa, S. Thymoquinone defeats diabetes-induced testicular damage in rats targeting antioxidant, inflammatory and aromatase expression. Int. J. Mol. Sci., 2017, 18(5), 919. doi: 10.3390/ijms18050919 PMID: 28448463
  64. Majdalawieh, A.F.; Fayyad, M.W. Immunomodulatory and anti-inflammatory action of Nigella sativa and thymoquinone: A comprehensive review. Int. Immunopharmacol., 2015, 28(1), 295-304. doi: 10.1016/j.intimp.2015.06.023 PMID: 26117430
  65. Goel, S.; Mishra, P. Thymoquinone inhibits biofilm formation and has selective antibacterial activity due to ROS generation. Appl. Microbiol. Biotechnol., 2018, 102(4), 1955-1967. doi: 10.1007/s00253-018-8736-8 PMID: 29356869
  66. Dariani, S.; Baluchnejadmojarad, T.; Roghani, M. Thymoquinone attenuates astrogliosis, neurodegeneration, mossy fiber sprouting, and oxidative stress in a model of temporal lobe epilepsy. J. Mol. Neurosci., 2013, 51(3), 679-686. doi: 10.1007/s12031-013-0043-3 PMID: 23794216
  67. Amoah, S.; Sandjo, L.; Kratz, J.; Biavatti, M. Rosmarinic acid-pharmaceutical and clinical aspects. Planta Med., 2016, 82(5), 388-406. doi: 10.1055/s-0035-1568274 PMID: 26845712
  68. Nicolai, M.; Pereira, P.; Vitor, R.F.; Reis, C.P.; Roberto, A.; Rijo, P. Antioxidant activity and rosmarinic acid content of ultrasound-assisted ethanolic extracts of medicinal plants. Measurement, 2016, 89, 328-332. doi: 10.1016/j.measurement.2016.04.033
  69. Rocha, J.; Eduardo-Figueira, M.; Barateiro, A.; Fernandes, A.; Brites, D.; Bronze, R.; Duarte, C.M.M.; Serra, A.T.; Pinto, R.; Freitas, M.; Fernandes, E.; Silva-Lima, B.; Mota-Filipe, H.; Sepodes, B. Anti-inflammatory effect of rosmarinic acid and an extract of Rosmarinus officinalis in rat models of local and systemic inflammation. Basic Clin. Pharmacol. Toxicol., 2015, 116(5), 398-413. doi: 10.1111/bcpt.12335 PMID: 25287116
  70. Swamy, M.K.; Sinniah, U.R.; Ghasemzadeh, A. Anticancer potential of rosmarinic acid and its improved production through biotechnological interventions and functional genomics. Appl. Microbiol. Biotechnol., 2018, 102(18), 7775-7793. doi: 10.1007/s00253-018-9223-y PMID: 30022261
  71. Kantar Gok, D.; Hidisoglu, E.; Ocak, G.A.; Er, H.; Acun, A.D.; Yargıcoglu, P. Protective role of rosmarinic acid on amyloid beta 42-induced echoic memory decline: Implication of oxidative stress and cholinergic impairment. Neurochem. Int., 2018, 118, 1-13. doi: 10.1016/j.neuint.2018.04.008 PMID: 29655652
  72. Noguchi-Shinohara, M.; Ono, K.; Hamaguchi, T.; Nagai, T.; Kobayashi, S.; Komatsu, J.; Samuraki-Yokohama, M.; Iwasa, K.; Yokoyama, K.; Nakamura, H.; Yamada, M. Safety and efficacy of Melissa officinalis extract containing rosmarinic acid in the prevention of Alzheimer’s disease progression. Sci. Rep., 2020, 10(1), 18627. doi: 10.1038/s41598-020-73729-2 PMID: 33122694
  73. Mahboubi, M. Melissa officinalis and rosmarinic acid in management of memory functions and Alzheimer disease. Asian Pac. J. Trop. Biomed., 2019, 9(2), 47.
  74. Ahmad, S.; Elsherbiny, N.M.; Haque, R.; Khan, M.B.; Ishrat, T.; Shah, Z.A.; Khan, M.M.; Ali, M.; Jamal, A.; Katare, D.P.; Liou, G.I.; Bhatia, K. Sesamin attenuates neurotoxicity in mouse model of ischemic brain stroke. Neurotoxicology, 2014, 45, 100-110. doi: 10.1016/j.neuro.2014.10.002 PMID: 25316624
  75. Martinchik, A.N. Nutritional value of sesame seeds. Vopr. Pitan., 2011, 80(3), 41-43. PMID: 21842753
  76. Monteiro, É.; Chibli, L.; Yamamoto, C.; Pereira, M.; Vilela, F.; Rodarte, M.; de Oliveira Pinto, M.; da Penha Henriques do Amaral, M.; Silvério, M.; de Matos Araújo, A.; da Luz André de Araújo, A.; Del-Vechio-Vieira, G.; de Sousa, O. Antinociceptive and anti-inflammatory activities of the sesame oil and sesamin. Nutrients, 2014, 6(5), 1931-1944. doi: 10.3390/nu6051931 PMID: 24824289
  77. Zhang, M.; Lee, H.J.; Park, K.H.; Park, H.J.; Choi, H.S.; Lim, S.C.; Lee, M.K. Modulatory effects of sesamin on dopamine biosynthesis and l-DOPA-induced cytotoxicity in PC12 cells. Neuropharmacology, 2012, 62(7), 2219-2226. doi: 10.1016/j.neuropharm.2012.01.012 PMID: 22293035
  78. Hou, R.C.W.; Wu, C.C.; Yang, C.H.; Jeng, K.C.G. Protective effects of sesamin and sesamolin on murine BV-2 microglia cell line under hypoxia. Neurosci. Lett., 2004, 367(1), 10-13. doi: 10.1016/j.neulet.2004.05.073 PMID: 15308287
  79. Baluchnejadmojarad, T.; Mansouri, M.; Ghalami, J.; Mokhtari, Z.; Roghani, M. Sesamin imparts neuroprotection against intrastriatal 6-hydroxydopamine toxicity by inhibition of astroglial activation, apoptosis, and oxidative stress. Biomed. Pharmacother., 2017, 88, 754-761. doi: 10.1016/j.biopha.2017.01.123 PMID: 28157651
  80. Goh, YX; Jalil, J; Lam, KW; Husain, K; Premakumar, CM Genistein: A review on its anti-inflammatory properties. Front Pharmacol., 2022, 13, 820969. doi: 10.3389/fphar.2022.820969
  81. Ji, G.; Yang, Q.; Hao, J.; Guo, L.; Chen, X.; Hu, J.; Leng, L.; Jiang, Z. Anti-inflammatory effect of genistein on non-alcoholic steatohepatitis rats induced by high fat diet and its potential mechanisms. Int. Immunopharmacol., 2011, 11(6), 762-768. doi: 10.1016/j.intimp.2011.01.036 PMID: 21320636
  82. Bagheri, M.; Joghataei, M.T.; Mohseni, S.; Roghani, M. Genistein ameliorates learning and memory deficits in amyloid β(1-40) rat model of Alzheimer’s disease. Neurobiol. Learn. Mem., 2011, 95(3), 270-276. doi: 10.1016/j.nlm.2010.12.001 PMID: 21144907
  83. Bagheri, M.; Roghani, M.; Joghataei, M.T.; Mohseni, S. Genistein inhibits aggregation of exogenous amyloid-beta1-40 and alleviates astrogliosis in the hippocampus of rats. Brain Res., 2012, 1429, 145-154. doi: 10.1016/j.brainres.2011.10.020 PMID: 22079317
  84. Bagheri, M.; Rezakhani, A.; Nyström, S.; Turkina, M.V.; Roghani, M.; Hammarström, P.; Mohseni, S. Amyloid beta(1-40)-induced astrogliosis and the effect of genistein treatment in rat: A three-dimensional confocal morphometric and proteomic study. PLoS One, 2013, 8(10), e76526. doi: 10.1371/journal.pone.0076526 PMID: 24130779
  85. Valles, S.L.; Dolz-Gaiton, P.; Gambini, J.; Borras, C.; LLoret, A.; Pallardo, F.V.; Viña, J. Estradiol or genistein prevent Alzheimer’s disease-associated inflammation correlating with an increase PPARγ expression in cultured astrocytes. Brain Res., 2010, 1312, 138-144. doi: 10.1016/j.brainres.2009.11.044 PMID: 19948157
  86. Mirahmadi, S.M.S.; Shahmohammadi, A.; Rousta, A.M.; Azadi, M.R.; Fahanik-Babaei, J.; Baluchnejadmojarad, T.; Roghani, M. Soy isoflavone genistein attenuates lipopolysaccharide-induced cognitive impairments in the rat via exerting anti-oxidative and anti-inflammatory effects. Cytokine, 2018, 104, 151-159. doi: 10.1016/j.cyto.2017.10.008 PMID: 29102164
  87. Bagheri, M.; Rezakhani, A.; Nyström, S.; Turkina, M.V.; Roghani, M.; Hammarström, P.; Mohseni, S. Genistein inhibits Aβ1-40-induced astrogliosis: A three-dimensional confocal morphometric analysis. 2012.
  88. Zhao, Z.; Fu, J.; Li, S.; Li, Z. Neuroprotective effects of genistein in a sod1-g93a transgenic mouse model of amyotrophic lateral sclerosis. J. Neuroimmune Pharmacol., 2019, 14(4), 688-696. doi: 10.1007/s11481-019-09866-x PMID: 31321663
  89. Viña, J.; Escudero, J.; Baquero, M.; Cebrián, M.; Carbonell-Asíns, J.A.; Muñoz, J.E.; Satorres, E.; Meléndez, J.C.; Ferrer-Rebolleda, J.; Cózar-Santiago, M.P.; Santabárbara-Gómez, J.M.; Jové, M.; Pamplona, R.; Tarazona-Santabalbina, F.J.; Borrás, C. Genistein effect on cognition in prodromal Alzheimer’s disease patients. The GENIAL clinical trial. Alzheimers Res. Ther., 2022, 14(1), 164. doi: 10.1186/s13195-022-01097-2 PMID: 36329553
  90. Fan, S.; Zhang, Z.; Zheng, Y.; Lu, J.; Wu, D.; Shan, Q.; Hu, B.; Wang, Y. Troxerutin protects the mouse kidney from d-galactose-caused injury through anti-inflammation and anti-oxidation. Int. Immunopharmacol., 2009, 9(1), 91-96. doi: 10.1016/j.intimp.2008.10.008 PMID: 19000936
  91. Panat, N.A.; Maurya, D.K.; Ghaskadbi, S.S.; Sandur, S.K. Troxerutin, a plant flavonoid, protects cells against oxidative stress-induced cell death through radical scavenging mechanism. Food Chem., 2016, 194, 32-45. doi: 10.1016/j.foodchem.2015.07.078 PMID: 26471524
  92. Zhang, Z.F.; Zhang, Y.; Fan, S.H.; Zhuang, J.; Zheng, Y.L.; Lu, J.; Wu, D.M.; Shan, Q.; Hu, B. Troxerutin protects against 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47)-induced liver inflammation by attenuating oxidative stress-mediated NAD+-depletion. J. Hazard. Mater., 2015, 283, 98-109. doi: 10.1016/j.jhazmat.2014.09.012 PMID: 25262482
  93. Baluchnejadmojarad, T.; Jamali-Raeufy, N.; Zabihnejad, S.; Rabiee, N.; Roghani, M. Troxerutin exerts neuroprotection in 6-hydroxydopamine lesion rat model of Parkinson’s disease: Possible involvement of PI3K/ERβ signaling. Eur. J. Pharmacol., 2017, 801, 72-78. doi: 10.1016/j.ejphar.2017.03.002 PMID: 28284752
  94. Lin, Y.; Shi, R.; Wang, X.; Shen, H.M. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr. Cancer Drug Targets, 2008, 8(7), 634-646. doi: 10.2174/156800908786241050 PMID: 18991571
  95. Imran, M.; Rauf, A.; Abu-Izneid, T.; Nadeem, M.; Shariati, M.A.; Khan, I.A.; Imran, A.; Orhan, I.E.; Rizwan, M.; Atif, M.; Gondal, T.A.; Mubarak, M.S. Luteolin, a flavonoid, as an anticancer agent: A review. Biomed. Pharmacother., 2019, 112, 108612. doi: 10.1016/j.biopha.2019.108612 PMID: 30798142
  96. Kempuraj, D.; Thangavel, R.; Kempuraj, D.D.; Ahmed, M.E.; Selvakumar, G.P.; Raikwar, S.P.; Zaheer, S.A.; Iyer, S.S.; Govindarajan, R.; Chandrasekaran, P.N.; Zaheer, A. Neuroprotective effects of flavone luteolin in neuroinflammation and neurotrauma. Biofactors, 2021, 47(2), 190-197. doi: 10.1002/biof.1687 PMID: 33098588
  97. Luo, Y.; Shang, P.; Li, D. Luteolin: A flavonoid that has multiple cardio-protective effects and its molecular mechanisms. Front. Pharmacol., 2017, 8, 692. doi: 10.3389/fphar.2017.00692 PMID: 29056912
  98. Patil, S.P.; Jain, P.D.; Sancheti, J.S.; Ghumatkar, P.J.; Tambe, R.; Sathaye, S. RETRACTED: Neuroprotective and neurotrophic effects of Apigenin and Luteolin in MPTP induced parkinsonism in mice. Neuropharmacology, 2014, 86, 192-202. doi: 10.1016/j.neuropharm.2014.07.012 PMID: 25087727
  99. Siracusa, R; Paterniti, I; Impellizzeri, D; Cordaro, M; Crupi, R; Navarra, M The association of palmitoylethanolamide with luteolin decreases neuroinflammation and stimulates autophagy in Parkinson’s disease model. CNS Neurol. Disord. Drug Targets, 2015, 14(10), 1350-65. doi: 10.2174/1871527314666150821102823
  100. Paterniti, I; Cordaro, M; Campolo, M; Siracusa, R; Cornelius, C; Navarra, M Neuroprotection by association of palmitoylethanolamide with luteolin in experimental Alzheimer's disease models: The control of neuroinflammation. CNS Neurol. Disord. Drug Targets, 2014, 13(9), 1530-41. doi: 10.2174/1871527313666140806124322
  101. Song, D.; Hao, J.; Fan, D. Biological properties and clinical applications of berberine. Front. Med., 2020, 14(5), 564-582. doi: 10.1007/s11684-019-0724-6 PMID: 32335802
  102. Sondhi, S.; Singh, N.; Goyal, K.; Jindal, S. A laconic review on extraction, biological activities of herbal formulations of berberine: A traditional drug. J. Drug Deliv. Ther., 2020, 10(5), 345-357. doi: 10.22270/jddt.v10i5.4300
  103. Ye, M.; Fu, S.; Pi, R.; He, F. Neuropharmacological and pharmacokinetic properties of berberine: A review of recent research. J. Pharm. Pharmacol., 2010, 61(7), 831-837. doi: 10.1211/jpp.61.07.0001 PMID: 19589224
  104. Zhu, F.; Qian, C. Berberine chloride can ameliorate the spatial memory impairment and increase the expression of interleukin-1beta and inducible nitric oxide synthase in the rat model of Alzheimer’s disease. BMC Neurosci., 2006, 7(1), 78. doi: 10.1186/1471-2202-7-78 PMID: 17137520
  105. Durairajan, S.S.K.; Liu, L.F.; Lu, J.H.; Chen, L.L.; Yuan, Q.; Chung, S.K.; Huang, L.; Li, X.S.; Huang, J.D.; Li, M. Berberine ameliorates β-amyloid pathology, gliosis, and cognitive impairment in an Alzheimer’s disease transgenic mouse model. Neurobiol. Aging, 2012, 33(12), 2903-2919. doi: 10.1016/j.neurobiolaging.2012.02.016 PMID: 22459600
  106. Sadraie, S.; Kiasalari, Z.; Razavian, M.; Azimi, S.; Sedighnejad, L.; Afshin-Majd, S.; Baluchnejadmojarad, T.; Roghani, M. Berberine ameliorates lipopolysaccharide-induced learning and memory deficit in the rat: Insights into underlying molecular mechanisms. Metab. Brain Dis., 2019, 34(1), 245-255. doi: 10.1007/s11011-018-0349-5 PMID: 30456649
  107. Bie, B.; Sun, J.; Guo, Y.; Li, J.; Jiang, W.; Yang, J.; Huang, C.; Li, Z. Baicalein: A review of its anti-cancer effects and mechanisms in Hepatocellular Carcinoma. Biomed. Pharmacother., 2017, 93, 1285-1291. doi: 10.1016/j.biopha.2017.07.068 PMID: 28747003
  108. Huang, Y.; Tsang, S.Y.; Yao, X.; Chen, Z.Y. Biological properties of baicalein in cardiovascular system. Curr. Drug Targets Cardiovasc. Haematol. Disord., 2005, 5(2), 177-184. doi: 10.2174/1568006043586206 PMID: 15853750
  109. Dinda, B.; Dinda, S.; DasSharma, S.; Banik, R.; Chakraborty, A.; Dinda, M. Therapeutic potentials of baicalin and its aglycone, baicalein against inflammatory disorders. Eur. J. Med. Chem., 2017, 131, 68-80. doi: 10.1016/j.ejmech.2017.03.004 PMID: 28288320
  110. Chen, M.; Lai, L.; Li, X.; Zhang, X.; He, X.; Liu, W.; Li, R.; Ke, X.; Fu, C.; Huang, Z.; Duan, C. Baicalein attenuates neurological deficits and preserves blood-brain barrier integrity in a rat model of intracerebral hemorrhage. Neurochem. Res., 2016, 41(11), 3095-3102. doi: 10.1007/s11064-016-2032-8 PMID: 27518088
  111. Lee, E.; Park, H.R.; Ji, S.T.; Lee, Y.; Lee, J. Baicalein attenuates astroglial activation in the 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine-induced Parkinson’s disease model by downregulating the activations of nuclear factor-κB, ERK, and JNK. J. Neurosci. Res., 2014, 92(1), 130-139. doi: 10.1002/jnr.23307 PMID: 24166733
  112. Mu, X.; He, G.; Cheng, Y.; Li, X.; Xu, B.; Du, G. Baicalein exerts neuroprotective effects in 6-hydroxydopamine-induced experimental parkinsonism in vivo and in vitro. Pharmacol. Biochem. Behav., 2009, 92(4), 642-648. doi: 10.1016/j.pbb.2009.03.008 PMID: 19327378
  113. Cheng, Y.; He, G.; Mu, X.; Zhang, T.; Li, X.; Hu, J.; Xu, B.; Du, G. Neuroprotective effect of baicalein against MPTP neurotoxicity: Behavioral, biochemical and immunohistochemical profile. Neurosci. Lett., 2008, 441(1), 16-20. doi: 10.1016/j.neulet.2008.05.116 PMID: 18586394
  114. Islam, MS; Quispe, C; Hossain, R; Islam, MT; Al-Harrasi, A; Al-Rawahi, A Neuropharmacological effects of quercetin: A literature-based review. Front Pharmacol., 2021, 12, 665031. doi: 10.3389/fphar.2021.665031
  115. Davis, J.M.; Murphy, E.A.; Carmichael, M.D. Effects of the dietary flavonoid quercetin upon performance and health. Curr. Sports Med. Rep., 2009, 8(4), 206-213. doi: 10.1249/JSR.0b013e3181ae8959 PMID: 19584608
  116. Aguirre, L.; Arias, N.; Teresa Macarulla, M.; Gracia, A.; Portillo, M.P. Beneficial effects of quercetin on obesity and diabetes. Open Nutraceuticals J., 2011, 4(1)
  117. Sabogal-Guáqueta, A.M.; Muñoz-Manco, J.I.; Ramírez-Pineda, J.R.; Lamprea-Rodriguez, M.; Osorio, E.; Cardona-Gómez, G.P. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology, 2015, 93, 134-145. doi: 10.1016/j.neuropharm.2015.01.027 PMID: 25666032
  118. Moreno, L.C.G.I.; Puerta, E.; Suárez-Santiago, J.E.; Santos-Magalhães, N.S.; Ramirez, M.J.; Irache, J.M. Effect of the oral administration of nanoencapsulated quercetin on a mouse model of Alzheimer’s disease. Int. J. Pharm., 2017, 517(1-2), 50-57. doi: 10.1016/j.ijpharm.2016.11.061 PMID: 27915007
  119. Sandhir, R.; Mehrotra, A. Quercetin supplementation is effective in improving mitochondrial dysfunctions induced by 3-nitropropionic acid: Implications in Huntington’s disease. Biochim. Biophys. Acta Mol. Basis Dis., 2013, 1832(3), 421-430. doi: 10.1016/j.bbadis.2012.11.018 PMID: 23220257
  120. Lu, Y.; Liu, Q.; Yu, Q. Quercetin enrich diet during the early-middle not middle-late stage of Alzheimer’s disease ameliorates cognitive dysfunction. Am. J. Transl. Res., 2018, 10(4), 1237-1246. PMID: 29736217
  121. Martinez, R.M.; Pinho-Ribeiro, F.A.; Steffen, V.S.; Caviglione, C.V.; Vignoli, J.A.; Barbosa, D.S.; Baracat, M.M.; Georgetti, S.R.; Verri, W.A., Jr; Casagrande, R. Naringenin inhibits UVB irradiation-induced inflammation and oxidative stress in the skin of hairless mice. J. Nat. Prod., 2015, 78(7), 1647-1655. doi: 10.1021/acs.jnatprod.5b00198 PMID: 26154512
  122. Al-Rejaie, S.S.; Aleisa, A.M.; Abuohashish, H.M.; Parmar, M.Y.; Ola, M.S.; Al-Hosaini, A.A.; Ahmed, M.M. Naringenin neutralises oxidative stress and nerve growth factor discrepancy in experimental diabetic neuropathy. Neurol. Res., 2015, 37(10), 924-933. doi: 10.1179/1743132815Y.0000000079 PMID: 26187552
  123. Krishnakumar, N.; Sulfikkarali, N.; RajendraPrasad, N.; Karthikeyan, S. Enhanced anticancer activity of naringenin-loaded nanoparticles in human cervical (HeLa) cancer cells. Biomedicine & Preventive Nutrition, 2011, 1(4), 223-231. doi: 10.1016/j.bionut.2011.09.003
  124. Wang, G.Q.; Zhang, B.; He, X.M.; Li, D.D.; Shi, J.S.; Zhang, F. Naringenin targets on astroglial Nrf2 to support dopaminergic neurons. Pharmacol. Res., 2019, 139, 452-459. doi: 10.1016/j.phrs.2018.11.043 PMID: 30527894
  125. Ganeshpurkar, A.; Saluja, A.K. The pharmacological potential of rutin. Saudi Pharm. J., 2017, 25(2), 149-164. doi: 10.1016/j.jsps.2016.04.025 PMID: 28344465
  126. Al-Dhabi, N.A.; Arasu, M.V.; Park, C.H.; Park, S.U. An up-to-date review of rutin and its biological and pharmacological activities. EXCLI J., 2015, 14, 59-63. PMID: 26535031
  127. Guardia, T.; Rotelli, A.E.; Juarez, A.O.; Pelzer, L.E. Anti-inflammatory properties of plant flavonoids. Effects of rutin, quercetin and hesperidin on adjuvant arthritis in rat. Farmaco, 2001, 56(9), 683-687. doi: 10.1016/S0014-827X(01)01111-9 PMID: 11680812
  128. Singh, M.; Govindarajan, R.; Rawat, A.K.S.; Khare, P.B. Antimicrobial flavonoid rutin from Pteris vittata L. against pathogenic gastrointestinal microflora. Am. Fern J., 2008, 98(2), 98-103. doi: 10.1640/0002-8444(2008)9898:AFRFPV2.0.CO;2
  129. Abdelfattah, M.S.; Badr, S.E.A.; Lotfy, S.A.; Attia, G.H.; Aref, A.M.; Abdel Moneim, A.E. Rutin and selenium Co-administration reverse 3-nitropropionic acid-induced neurochemical and molecular impairments in a mouse model of Huntington’s disease. Neurotox. Res., 2020, 37(1), 77-92. PMID: 31332714
  130. Berman, A.Y.; Motechin, R.A.; Wiesenfeld, M.Y.; Holz, M.K. The therapeutic potential of resveratrol: A review of clinical trials. NPJ Precis. Oncol., 2017, 1(1), 35. doi: 10.1038/s41698-017-0038-6 PMID: 28989978
  131. Kulkarni, S.S.; Cantó, C. The molecular targets of resveratrol. Biochim. Biophys. Acta Mol. Basis Dis., 2015, 1852(6), 1114-1123. doi: 10.1016/j.bbadis.2014.10.005
  132. Miguel, C.A.; Noya-Riobó, M.V.; Mazzone, G.L.; Villar, M.J.; Coronel, M.F. Antioxidant, anti-inflammatory and neuroprotective actions of resveratrol after experimental nervous system insults. Special focus on the molecular mechanisms involved. Neurochem. Int., 2021, 150, 105188. doi: 10.1016/j.neuint.2021.105188 PMID: 34536545
  133. Wu, S.X.; Xiong, R.G.; Huang, S.Y.; Zhou, D.D.; Saimaiti, A.; Zhao, C.N.; Shang, A.; Zhang, Y.J.; Gan, R.Y.; Li, H.B. Effects and mechanisms of resveratrol for prevention and management of cancers: An updated review. Crit. Rev. Food Sci. Nutr., 2022, 2022, 1-19. doi: 10.1080/10408398.2022.2101428 PMID: 35852215
  134. Sahebkar, A. Effects of resveratrol supplementation on plasma lipids: A systematic review and meta-analysis of randomized controlled trials. Nutr. Rev., 2013, 71(12), 822-835. doi: 10.1111/nure.12081 PMID: 24111838
  135. Sahebkar, A.; Serban, C.; Ursoniu, S.; Wong, N.D.; Muntner, P.; Graham, I.M.; Mikhailidis, D.P.; Rizzo, M.; Rysz, J.; Sperling, L.S.; Lip, G.Y.H.; Banach, M. Lack of efficacy of resveratrol on C-reactive protein and selected cardiovascular risk factors — Results from a systematic review and meta-analysis of randomized controlled trials. Int. J. Cardiol., 2015, 189(1), 47-55. doi: 10.1016/j.ijcard.2015.04.008 PMID: 25885871
  136. Tang, PC; Ng, YF; Ho, S; Gyda, M; Chan, SW Resveratrol and cardiovascular health - Promising therapeutic or hopeless illusion? Pharmacol. Res., 2014, 90, 88-115.
  137. Sun, X.Y.; Dong, Q.X.; Zhu, J.; Sun, X.; Zhang, L.F.; Qiu, M.; Yu, X.L.; Liu, R.T. Resveratrol rescues tau-induced cognitive deficits and neuropathology in a mouse model of tauopathy. Curr. Alzheimer Res., 2019, 16(8), 710-722. doi: 10.2174/1567205016666190801153751 PMID: 31368873
  138. Zhang, F; Wang, Y-Y; Liu, H; Lu, Y-F; Wu, Q; Liu, J Resveratrol produces neurotrophic effects on cultured dopaminergic neurons through prompting astroglial BDNF and GDNF release. Evid Based Complement Alternat Med., 2012, 2012, 937605. doi: 10.1155/2012/937605
  139. Arús, B.A.; Souza, D.G.; Bellaver, B.; Souza, D.O.; Gonçalves, C.A.; Quincozes-Santos, A.; Bobermin, L.D. Resveratrol modulates GSH system in C6 astroglial cells through heme oxygenase 1 pathway. Mol. Cell. Biochem., 2017, 428(1-2), 67-77. doi: 10.1007/s11010-016-2917-5 PMID: 28070834
  140. Bellaver, B.; Souza, D.G.; Bobermin, L.D.; Souza, D.O.; Gonçalves, C.A.; Quincozes-Santos, A. Resveratrol protects hippocampal astrocytes against LPS-induced neurotoxicity through HO-1, p38 and ERK pathways. Neurochem. Res., 2015, 40(8), 1600-1608. doi: 10.1007/s11064-015-1636-8 PMID: 26088684
  141. Frozza, R.L.; Bernardi, A.; Hoppe, J.B.; Meneghetti, A.B.; Matté, A.; Battastini, A.M.O.; Pohlmann, A.R.; Guterres, S.S.; Salbego, C. Neuroprotective effects of resveratrol against Aβ administration in rats are improved by lipid-core nanocapsules. Mol. Neurobiol., 2013, 47(3), 1066-1080. doi: 10.1007/s12035-013-8401-2 PMID: 23315270
  142. Moussa, C.; Hebron, M.; Huang, X.; Ahn, J.; Rissman, R.A.; Aisen, P.S.; Turner, R.S. Resveratrol regulates neuro-inflammation and induces adaptive immunity in Alzheimer’s disease. J. Neuroinflammation, 2017, 14(1), 1. doi: 10.1186/s12974-016-0779-0 PMID: 28086917
  143. Turner, R.S.; Thomas, R.G.; Craft, S.; van Dyck, C.H.; Mintzer, J.; Reynolds, B.A.; Brewer, J.B.; Rissman, R.A.; Raman, R.; Aisen, P.S. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology, 2015, 85(16), 1383-1391. doi: 10.1212/WNL.0000000000002035 PMID: 26362286
  144. Simone, D.A.; Baumann, T.K.; LaMotte, R.H. Dose-dependent pain and mechanical hyperalgesia in humans after intradermal injection of capsaicin. Pain, 1989, 38(1), 99-107. doi: 10.1016/0304-3959(89)90079-1 PMID: 2780068
  145. Kim, C.S.; Kawada, T.; Kim, B.S.; Han, I.S.; Choe, S.Y.; Kurata, T.; Yu, R. Capsaicin exhibits anti-inflammatory property by inhibiting IkB-a degradation in LPS-stimulated peritoneal macrophages. Cell. Signal., 2003, 15(3), 299-306. doi: 10.1016/S0898-6568(02)00086-4 PMID: 12531428
  146. Galano, A.; Martínez, A. Capsaicin, a tasty free radical scavenger: Mechanism of action and kinetics. J. Phys. Chem. B, 2012, 116(3), 1200-1208. doi: 10.1021/jp211172f PMID: 22188587
  147. Kang, J.H.; Kim, C.S.; Han, I.S.; Kawada, T.; Yu, R. Capsaicin, a spicy component of hot peppers, modulates adipokine gene expression and protein release from obese-mouse adipose tissues and isolated adipocytes, and suppresses the inflammatory responses of adipose tissue macrophages. FEBS Lett., 2007, 581(23), 4389-4396. doi: 10.1016/j.febslet.2007.07.082 PMID: 17719033
  148. Chung, Y.C.; Baek, J.Y.; Kim, S.R.; Ko, H.W.; Bok, E.; Shin, W.H.; Won, S.Y.; Jin, B.K. Capsaicin prevents degeneration of dopamine neurons by inhibiting glial activation and oxidative stress in the MPTP model of Parkinson’s disease. Exp. Mol. Med., 2017, 49(3), e298. doi: 10.1038/emm.2016.159 PMID: 28255166
  149. Garcia-Garcia, E.; Andrieux, K.; Gil, S.; Couvreur, P. Colloidal carriers and blood-brain barrier (BBB) translocation: A way to deliver drugs to the brain? Int. J. Pharm., 2005, 298(2), 274-292. doi: 10.1016/j.ijpharm.2005.03.031 PMID: 15896933
  150. Oller-Salvia, B.; Sánchez-Navarro, M.; Giralt, E.; Teixidó, M. Blood-brain barrier shuttle peptides: An emerging paradigm for brain delivery. Chem. Soc. Rev., 2016, 45(17), 4690-4707. doi: 10.1039/C6CS00076B PMID: 27188322
  151. Hersh, D.S.; Wadajkar, A.S.; Roberts, N.; Perez, J.G.; Connolly, N.P.; Frenkel, V.; Winkles, J.A.; Woodworth, G.F.; Kim, A.J. Evolving drug delivery strategies to overcome the blood brain barrier. Curr. Pharm. Des., 2016, 22(9), 1177-1193. doi: 10.2174/1381612822666151221150733 PMID: 26685681
  152. Teleanu, D.; Chircov, C.; Grumezescu, A.; Volceanov, A.; Teleanu, R. Blood-brain delivery methods using nanotechnology. Pharmaceutics, 2018, 10(4), 269. doi: 10.3390/pharmaceutics10040269 PMID: 30544966
  153. Chakraborty, J.; Singh, R.; Dutta, D.; Naskar, A.; Rajamma, U.; Mohanakumar, K.P. Quercetin improves behavioral deficiencies, restores astrocytes and microglia, and reduces serotonin metabolism in 3-nitropropionic acid-induced rat model of Huntington’s Disease. CNS Neurosci. Ther., 2014, 20(1), 10-19. doi: 10.1111/cns.12189 PMID: 24188794

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers