Medicinal (Radio) Chemistry: Building Radiopharmaceuticals for the Future

  • Authors: Pijeira M.1, Nunes P.2, Chaviano S.3, Diaz A.4, DaSilva J.4, Ricci-Junior E.5, Alencar L.6, Chen X.7, Santos-Oliveira R.1
  • Affiliations:
    1. Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute
    2. Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials
    3. Laboratoire de Biomatériaux pour l'Imagerie Médicale, Médicine Régénératrice, Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval
    4. , Centre de Recherche du Centre Hospitalier de l'Université de Montréal
    5. Laboratório de Desenvolvimento Galênico, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro
    6. Laboratory of Biophysics and Nanosystems, Federal University of Maranhão, Av. dos Portugueses,
    7. Departments of Diagnostic Radiology, of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore
  • Issue: Vol 31, No 34 (2024)
  • Pages: 5481-5534
  • Section: Anti-Infectives and Infectious Diseases
  • URL: https://rjeid.com/0929-8673/article/view/645060
  • DOI: https://doi.org/10.2174/0929867331666230818092634
  • ID: 645060

Cite item

Full Text

Abstract

:Radiopharmaceuticals are increasingly playing a leading role in diagnosing, monitoring, and treating disease. In comparison with conventional pharmaceuticals, the development of radiopharmaceuticals does follow the principles of medicinal chemistry in the context of imaging-altered physiological processes. The design of a novel radiopharmaceutical has several steps similar to conventional drug discovery and some particularity. In the present work, we revisited the insights of medicinal chemistry in the current radiopharmaceutical development giving examples in oncology, neurology, and cardiology. In this regard, we overviewed the literature on radiopharmaceutical development to study overexpressed targets such as prostate-specific membrane antigen and fibroblast activation protein in cancer; β-amyloid plaques and tau protein in brain disorders; and angiotensin II type 1 receptor in cardiac disease. The work addresses concepts in the field of radiopharmacy with a special focus on the potential use of radiopharmaceuticals for nuclear imaging and theranostics.

About the authors

Martha Pijeira

Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute

Email: info@benthamscience.net

Paulo Nunes

Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials

Email: info@benthamscience.net

Samila Chaviano

Laboratoire de Biomatériaux pour l'Imagerie Médicale, Médicine Régénératrice, Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval

Email: info@benthamscience.net

Aida Diaz

, Centre de Recherche du Centre Hospitalier de l'Université de Montréal

Email: info@benthamscience.net

Jean DaSilva

, Centre de Recherche du Centre Hospitalier de l'Université de Montréal

Email: info@benthamscience.net

Eduardo Ricci-Junior

Laboratório de Desenvolvimento Galênico, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro

Email: info@benthamscience.net

Luciana Alencar

Laboratory of Biophysics and Nanosystems, Federal University of Maranhão, Av. dos Portugueses,

Email: info@benthamscience.net

Xiaoyuan Chen

Departments of Diagnostic Radiology, of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore

Email: info@benthamscience.net

Ralph Santos-Oliveira

Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute

Author for correspondence.
Email: info@benthamscience.net

References

  1. WHO. Monogragraps: Radiopharmaceuticals. , Available from: https://digicollections.net/phint/2020/index.html#d/b.6.3.1.1.1 (Accessed on: Feb 7, 2022).
  2. Qin, X.; Han, D.; Wu, J.C. Molecular imaging of cardiac regenerative medicine. Curr. Opin. Biomed. Eng., 2019, 9, 66-73. doi: 10.1016/j.cobme.2019.04.006
  3. Danad, I.; Raijmakers, P.G.; Driessen, R.S.; Leipsic, J.; Raju, R.; Naoum, C.; Knuuti, J.; Mäki, M.; Underwood, R.S.; Min, J.K.; Elmore, K.; Stuijfzand, W.J.; van Royen, N.; Tulevski, I.I.; Somsen, A.G.; Huisman, M.C.; van Lingen, A.A.; Heymans, M.W.; van de Ven, P.M.; van Kuijk, C.; Lammertsma, A.A.; van Rossum, A.C.; Knaapen, P. Comparison of coronary CT angiography, SPECT, PET, and hybrid imaging for diagnosis of ischemic heart disease determined by fractional flow reserve. JAMA Cardiol., 2017, 2(10), 1100-1107. doi: 10.1001/jamacardio.2017.2471 PMID: 28813561
  4. Al Badarin, F.J.; Malhotra, S. Diagnosis and prognosis of coronary artery disease with SPECT and PET. Curr. Cardiol. Rep., 2019, 21(7), 57. doi: 10.1007/s11886-019-1146-4 PMID: 31104158
  5. Sheikhbahaei, S.; Taghipour, M.; Ahmad, R.; Fakhry, C.; Kiess, A.P.; Chung, C.H.; Subramaniam, R.M. Diagnostic accuracy of follow-up FDG PET or PET/CT in patients with head and neck cancer after definitive treatment: A systematic review and meta-analysis. AJR Am. J. Roentgenol., 2015, 205(3), 629-639. doi: 10.2214/AJR.14.14166 PMID: 26295652
  6. Hope, T.A.; Goodman, J.Z.; Allen, I.E.; Calais, J.; Fendler, W.P.; Carroll, P.R. Meta-analysis of 68 Ga-PSMA-11 PET accuracy for the detection of prostate cancer validated by histopathology. J. Nucl. Med., 2019, 60(6), 786-793. doi: 10.2967/jnumed.118.219501 PMID: 30530831
  7. Rager, O.; Lee-Felker, S.A.; Tabouret-Viaud, C.; Felker, E.R.; Poncet, A.; Amzalag, G.; Garibotto, V.; Zaidi, H.; Walter, M.A. Accuracy of whole-body HDP SPECT/CT, FDG PET/CT, and their combination for detecting bone metastases in breast cancer: An intra-personal comparison. Am. J. Nucl. Med. Mol. Imaging, 2018, 8(3), 159-168. PMID: 30042868
  8. Gherghe, M.; Mutuleanu, M.D.; Stanciu, A.E.; Irimescu, I.; Lazar, A.; Bacinschi, X.; Anghel, R.M. Quantitative analysis of SPECT-CT data in metastatic breast cancer patients—the clinical significance. Cancers., 2022, 14(2), 273. doi: 10.3390/cancers14020273 PMID: 35053436
  9. Zhang-Yin, J.T.; Girard, A.; Bertaux, M. What does PET imaging bring to neuro-oncology in 2022? a review. Cancers., 2022, 14(4), 879. doi: 10.3390/cancers14040879 PMID: 35205625
  10. Kerstens, V.S.; Varrone, A. Dopamine transporter imaging in neurodegenerative movement disorders: PET vs. SPECT. Clin. Transl. Imaging, 2020, 8(5), 349-356. doi: 10.1007/s40336-020-00386-w
  11. Minoshima, S.; Mosci, K.; Cross, D.; Thientunyakit, T. Brain F-18FDG PET for clinical dementia workup: Differential diagnosis of Alzheimer’s disease and other types of dementing disorders. Semin. Nucl. Med., 2021, 51(3), 230-240. doi: 10.1053/j.semnuclmed.2021.01.002 PMID: 33546814
  12. Ferrando, R.; Damian, A. Brain SPECT as a biomarker of neurodegeneration in dementia in the era of molecular imaging: Still a valid option? Front. Neurol., 2021, 12, 629442. doi: 10.3389/fneur.2021.629442 PMID: 34040574
  13. Willmann, J.K.; van Bruggen, N.; Dinkelborg, L.M.; Gambhir, S.S. Molecular imaging in drug development. Nat. Rev. Drug Discov., 2008, 7(7), 591-607. doi: 10.1038/nrd2290 PMID: 18591980
  14. Waaijer, S.J.H.; Kok, I.C.; Eisses, B.; Schröder, C.P.; Jalving, M.; Brouwers, A.H.; Lub-de Hooge, M.N.; de Vries, E.G.E. Molecular imaging in cancer drug development. J. Nucl. Med., 2018, 59(5), 726-732. doi: 10.2967/jnumed.116.188045 PMID: 29371402
  15. Son, H.; Jang, K.; Lee, H.; Kim, S.E.; Kang, K.W.; Lee, H. Use of molecular imaging in clinical drug development: A systematic review. Nucl. Med. Mol. Imaging, 2019, 53(3), 208-215. doi: 10.1007/s13139-019-00593-y PMID: 31231441
  16. Saw, M.M. Medicinal radiopharmaceutical chemistry of metal radiopharmaceuticals. Cosmos., 2012, 8(1), 11-81. doi: 10.1142/S0219607712300044
  17. Imming, P. Medicinal chemistry: Definitions and objectives, drug activity phases, drug classification systems. In: The Practice of Medicinal Chemistry; Wermut, C.G., Ed.; Academic Press, 2008; pp. 63-72. doi: 10.1016/B978-0-12-374194-3.00002-0
  18. Farahani, A.M.; Maleki, F.; Sadeghzadeh, N. The influence of different spacers on biological profile of peptide radiopharmaceuticals for diagnosis and therapy of human cancers. Anti-Cancer Agents Med. Chem., 2020, 20, 402-416.
  19. Evans, B.J.; King, A.T.; Katsifis, A.; Matesic, L.; Jamie, J.F. Methods to enhance the metabolic stability of peptide-based PET radiopharmaceuticals. Molecules., 2020, 25(10), 2314. doi: 10.3390/molecules25102314 PMID: 32423178
  20. Valenta, I.; Pacher, P.; Dilsizian, V.; Schindler, T.H. Novel myocardial PET/CT receptor imaging and potential therapeutic targets. Curr. Cardiol. Rep., 2019, 21(7), 55. doi: 10.1007/s11886-019-1148-2 PMID: 31104205
  21. Coenen, H.H.; Gee, A.D.; Adam, M.; Antoni, G.; Cutler, C.S.; Fujibayashi, Y.; Jeong, J.M.; Mach, R.H.; Mindt, T.L.; Pike, V.W.; Windhorst, A.D. Consensus nomenclature rules for radiopharmaceutical chemistry — Setting the record straight. Nucl. Med. Biol., 2017, 55, v-xi. doi: 10.1016/j.nucmedbio.2017.09.004 PMID: 29074076
  22. Willowson, K.P. Production of radionuclides for clinical nuclear medicine. Eur. J. Phys., 2019, 40(4), 043001. doi: 10.1088/1361-6404/ab169b
  23. Talip, Z.; Favaretto, C.; Geistlich, S.; Meulen, N.P. A step-by-step guide for the novel radiometal production for medical applications: Case studies with 68Ga, 44Sc, 177Lu and 161Tb. Molecules., 2020, 25(4), 966. doi: 10.3390/molecules25040966 PMID: 32093425
  24. Dash, A.; Chakravarty, R. Radionuclide generators: The prospect of availing PET radiotracers to meet current clinical needs and future research demands. Am. J. Nucl. Med. Mol. Imaging, 2019, 9(1), 30-66. PMID: 30911436
  25. Conti, M.; Eriksson, L. Physics of pure and non-pure positron emitters for PET: A review and a discussion. EJNMMI Phys., 2016, 3(1), 8. doi: 10.1186/s40658-016-0144-5 PMID: 27271304
  26. Dubost, E.; McErlain, H.; Babin, V.; Sutherland, A.; Cailly, T. Recent advances in synthetic methods for radioiodination. J. Org. Chem., 2020, 85(13), 8300-8310. doi: 10.1021/acs.joc.0c00644 PMID: 32369696
  27. Al-Alawy, I.T.; Mohammed, R.S. Nuclear data relevant to the production of radioiodine I-123, I-125 by indirect route and medical applications. Int. Lett. Chem. Phys., 2016, 63, 90-97. doi: 10.56431/p-5qtbcu
  28. Rösch, F.; Herzog, H.; Qaim, S. The beginning and development of the theranostic approach in nuclear medicine, as exemplified by the radionuclide pair 86Y and 90Y. Pharmaceuticals., 2017, 10(4), 56. doi: 10.3390/ph10020056 PMID: 28632200
  29. Poty, S.; Francesconi, L.C.; McDevitt, M.R.; Morris, M.J.; Lewis, J.S. α-Emitters for radiotherapy: From basic radiochemistry to clinical studies—part 1. J. Nucl. Med., 2018, 59(6), 878-884. doi: 10.2967/jnumed.116.186338 PMID: 29545378
  30. Nelson, B.J.B.; Andersson, J.D.; Wuest, F. Targeted alpha therapy: Progress in radionuclide production, radiochemistry, and applications. Pharmaceutics., 2020, 13(1), 49. doi: 10.3390/pharmaceutics13010049 PMID: 33396374
  31. Bruland, O.; Jonasdottir, T.; Fisher, D.; Larsen, R. Radium-223: From radiochemical development to clinical applications in targeted cancer therapy. Curr. Radiopharm., 2008, 1(3), 203-208. doi: 10.2174/1874471010801030203
  32. Hockley, B.G.; Scott, P.J.H. An automated method for preparation of 18Fsodium fluoride for injection, USP to address the technetium-99m isotope shortage. Appl. Radiat. Isot., 2010, 68(1), 117-119. doi: 10.1016/j.apradiso.2009.08.012 PMID: 19762249
  33. Letellier, A.; Johnson, A.C.; Kit, N.H.; Savigny, J.F.; Batalla, A.; Parienti, J.J.; Aide, N. Uptake of radium-223 dichloride and early 18FNaF PET response are driven by baseline 18FNaF parameters: A pilot study in castration-resistant prostate cancer patients. Mol. Imaging Biol., 2018, 20(3), 482-491. doi: 10.1007/s11307-017-1132-4 PMID: 29027074
  34. Mínguez, P.; Rodeño, E.; Genollá, J.; Domínguez, M.; Expósito, A.; Sjögreen Gleisner, K. Analysis of activity uptake, effective half-life and time-integrated activity for low- and high-risk papillary thyroid cancer patients treated with 1.11 GBq and 3.7 GBq of 131I-NaI respectively. Phys. Med., 2019, 65, 143-149. doi: 10.1016/j.ejmp.2019.08.017 PMID: 31473501
  35. Vermeulen, K.; Vandamme, M.; Bormans, G.; Cleeren, F. Design and Challenges of Radiopharmaceuticals. In: Seminars in nuclear medicine; WB Saunders, 2019; Vol. 49, pp. 339-356.
  36. Sanad, M.H.; Marzook, E.A.; El-Kawy, O.A. Radiochemical and biological characterization of 99mTc-oxiracetam as a model for brain imaging. Radiochemistry., 2017, 59(6), 624-629. doi: 10.1134/S1066362217060011X
  37. Uccelli, L.; Martini, P.; Pasquali, M.; Boschi, A. Radiochemical purity and stability of 99mTc-HMPAO in routine preparations. J. Radioanal. Nucl. Chem., 2017, 314(2), 1177-1181. doi: 10.1007/s10967-017-5437-1
  38. de Menezes, F.D.; dos Reis, S.R.R.; Pinto, S.R.; Portilho, F.L.; do Vale Chaves e Mello, F.; Helal-Neto, E.; da Silva de Barros, A.O.; Alencar, L.M.R.; de Menezes, A.S.; dos Santos, C.C.; Saraiva-Souza, A.; Perini, J.A.; Machado, D.E.; Felzenswalb, I.; Araujo-Lima, C.F.; Sukhanova, A.; Nabiev, I.; Santos-Oliveira, R. Graphene quantum dots unraveling: Green synthesis, characterization, radiolabeling with 99mTc, in vivo behavior and mutagenicity. Mater. Sci. Eng. C, 2019, 102, 405-414. doi: 10.1016/j.msec.2019.04.058
  39. Costa, B.; Ilem-Özdemir, D.; Santos-Oliveira, R. Technetium-99m metastable radiochemistry for pharmaceutical applications: Old chemistry for new products. J. Coord. Chem., 2019, 72(11), 1759-1784. doi: 10.1080/00958972.2019.1632838
  40. Liu, S. Bifunctional coupling agents for radiolabeling of biomolecules and target-specific delivery of metallic radionuclides. Adv. Drug Deliv. Rev., 2008, 60(12), 1347-1370. doi: 10.1016/j.addr.2008.04.006 PMID: 18538888
  41. Banerjee, S.; Pillai, M.R.A.; Knapp, F.F.R. Lutetium-177 therapeutic radiopharmaceuticals: linking chemistry, radiochemistry, and practical applications. Chem. Rev., 2015, 115(8), 2934-2974. doi: 10.1021/cr500171e PMID: 25865818
  42. Spang, P.; Herrmann, C.; Roesch, F. Bifunctional gallium-68 chelators: Past, present, and future. Semin. Nucl. Med., 2016, 46(5), 373-394. doi: 10.1053/j.semnuclmed.2016.04.003 PMID: 27553464
  43. Duatti, A. Review on 99mTc radiopharmaceuticals with emphasis on new advancements. Nucl. Med. Biol., 2021, 92, 202-216. doi: 10.1016/j.nucmedbio.2020.05.005 PMID: 32475681
  44. Eder, M.; Schäfer, M.; Bauder-Wüst, U.; Hull, W.E.; Wängler, C.; Mier, W.; Haberkorn, U.; Eisenhut, M. 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjug. Chem., 2012, 23(4), 688-697. doi: 10.1021/bc200279b PMID: 22369515
  45. Benešová, M.; Schäfer, M.; Bauder-Wüst, U.; Afshar-Oromieh, A.; Kratochwil, C.; Mier, W.; Haberkorn, U.; Kopka, K.; Eder, M. Preclinical evaluation of a tailor-made DOTA-conjugated PSMA inhibitor with optimized linker moiety for imaging and endoradiotherapy of prostate cancer. J. Nucl. Med., 2015, 56(6), 914-920. doi: 10.2967/jnumed.114.147413 PMID: 25883127
  46. Robu, S.; Schottelius, M.; Eiber, M.; Maurer, T.; Gschwend, J.; Schwaiger, M.; Wester, H.J. Preclinical evaluation and first patient application of 99m Tc-PSMA-I&S for SPECT imaging and radioguided surgery in prostate cancer. J. Nucl. Med., 2017, 58(2), 235-242. doi: 10.2967/jnumed.116.178939 PMID: 27635024
  47. Lindner, T.; Loktev, A.; Altmann, A.; Giesel, F.; Kratochwil, C.; Debus, J.; Jäger, D.; Mier, W.; Haberkorn, U. Development of quinoline-based theranostic ligands for the targeting of fibroblast activation protein. J. Nucl. Med., 2018, 59(9), 1415-1422. doi: 10.2967/jnumed.118.210443 PMID: 29626119
  48. Loktev, A.; Lindner, T.; Burger, E.M.; Altmann, A.; Giesel, F.; Kratochwil, C.; Debus, J.; Marmé, F.; Jäger, D.; Mier, W.; Haberkorn, U. Development of fibroblast activation protein–targeted radiotracers with improved tumor retention. J. Nucl. Med., 2019, 60(10), 1421-1429. doi: 10.2967/jnumed.118.224469 PMID: 30850501
  49. Lindner, T.; Altmann, A.; Krämer, S.; Kleist, C.; Loktev, A.; Kratochwil, C.; Giesel, F.; Mier, W.; Marme, F.; Debus, J.; Haberkorn, U. Design and development of 99m Tc-Labeled FAPI tracers for SPECT imaging and 188 Re therapy. J. Nucl. Med., 2020, 61(10), 1507-1513. doi: 10.2967/jnumed.119.239731 PMID: 32169911
  50. Fersing, C.; Bouhlel, A.; Cantelli, C.; Garrigue, P.; Lisowski, V.; Guillet, B. A comprehensive review of non-covalent radiofluorination approaches using aluminum 18Ffluoride: Will 18FAlF Replace 68Ga for metal chelate labeling? Molecules, 2019, 24(16), 2866. doi: 10.3390/molecules24162866 PMID: 31394799
  51. Lindner, T.; Altmann, A.; Giesel, F.; Kratochwil, C.; Kleist, C.; Krämer, S.; Mier, W.; Cardinale, J.; Kauczor, H.U.; Jäger, D.; Debus, J.; Haberkorn, U. 18F-labeled tracers targeting fibroblast activation protein. EJNMMI Radiopharm. Chem., 2021, 6(1), 26. doi: 10.1186/s41181-021-00144-x PMID: 34417894
  52. Wang, H.; Guo, X.; Jiang, S.; Tang, G. Automated synthesis of 18FFlorbetaben as Alzheimer’s disease imaging agent based on a synthesis module system. Appl. Radiat. Isot., 2013, 71(1), 41-46. doi: 10.1016/j.apradiso.2012.09.014 PMID: 23085550
  53. Zhang, L.; Zhang, A.; Yao, X.; Zhang, Y.; Liu, F.; Hong, H.; Zha, Z.; Liu, Y.; Wu, Z.; Qiao, J.; Zhu, L.; Kung, H.F. An improved preparation of 18 FAV-45 by simplified solid-phase extraction purification. J. Labelled Comp. Radiopharm., 2020, 63(3), 108-118. doi: 10.1002/jlcr.3813 PMID: 31697847
  54. Mossine, A.V.; Brooks, A.F.; Henderson, B.D.; Hockley, B.G.; Frey, K.A.; Scott, P.J.H. An updated radiosynthesis of 18FAV1451 for tau PET imaging. EJNMMI Radiopharm. Chem., 2017, 2(1), 7. doi: 10.1186/s41181-017-0027-7 PMID: 29503848
  55. Kung, M.P.; Hou, C.; Zhuang, Z.P.; Zhang, B.; Skovronsky, D.; Trojanowski, J.Q.; Lee, V.M.Y.; Kung, H.F. IMPY: An improved thioflavin-T derivative for in vivo labeling of β-amyloid plaques. Brain Res., 2002, 956(2), 202-210. doi: 10.1016/S0006-8993(02)03436-4 PMID: 12445687
  56. Goud, N.S.; Bhattacharya, A.; Joshi, R.K.; Nagaraj, C.; Bharath, R.D.; Kumar, P. Carbon-11: Radiochemistry and target-based PET molecular imaging applications in oncology, cardiology, and neurology. J. Med. Chem., 2021, 64(3), 1223-1259. doi: 10.1021/acs.jmedchem.0c01053 PMID: 33499603
  57. Schirrmacher, R.; Wängler, B.; Bailey, J.; Bernard-Gauthier, V. Small prosthetic groups in 18f-radiochemistry: Useful auxiliaries for the design of 18F-PET tracers. In: Seminars in nuclear medicine; WB Saunders, 2017; Vol. 47, pp. 474-492.
  58. Navarro, L.; Berdal, M.; Chérel, M.; Pecorari, F.; Gestin, J.F.; Guérard, F. Prosthetic groups for radioiodination and astatination of peptides and proteins: A comparative study of five potential bioorthogonal labeling strategies. Bioorg. Med. Chem., 2019, 27(1), 167-174. doi: 10.1016/j.bmc.2018.11.034 PMID: 30529152
  59. Goud, N.S.; Joshi, R.K.; Bharath, R.D.; Kumar, P. Fluorine-18: A radionuclide with diverse range of radiochemistry and synthesis strategies for target based PET diagnosis. Eur. J. Med. Chem., 2020, 187, 111979. doi: 10.1016/j.ejmech.2019.111979 PMID: 31877537
  60. Olberg, D.E.; Arukwe, J.M.; Grace, D.; Hjelstuen, O.K.; Solbakken, M.; Kindberg, G.M.; Cuthbertson, A. One step radiosynthesis of 6-(18)Ffluoronicotinic acid 2,3,5,6-tetrafluorophenyl ester ((18)FF-Py-TFP): A new prosthetic group for efficient labeling of biomolecules with fluorine-18. J. Med. Chem., 2010, 53(4), 1732-1740. doi: 10.1021/jm9015813 PMID: 20088512
  61. Cardinale, J.; Schäfer, M.; Benešová, M.; Bauder-Wüst, U.; Leotta, K.; Eder, M.; Neels, O.C.; Haberkorn, U.; Giesel, F.L.; Kopka, K. Preclinical evaluation of 18 F-PSMA-1007, a new prostate-specific membrane antigen ligand for prostate cancer imaging. J. Nucl. Med., 2017, 58(3), 425-431. doi: 10.2967/jnumed.116.181768 PMID: 27789722
  62. Coliva, A.; Monterisi, C.; Apollaro, A.; Gatti, D.; Penso, M.; Gianolli, L.; Perani, D.; Gilardi, M.C.; Carpinelli, A. Synthesis optimization of 2-(4-N-11Cmethylaminophenyl)-6-hydroxybenzothiazole (11CPIB), β-amyloid PET imaging tracer for Alzheimer’s disease diagnosis. Appl. Radiat. Isot., 2015, 105, 66-71. doi: 10.1016/j.apradiso.2015.07.003 PMID: 26248085
  63. Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33. doi: 10.3322/caac.21708 PMID: 35020204
  64. Davis, M.I.; Bennett, M.J.; Thomas, L.M.; Bjorkman, P.J. Crystal structure of prostate-specific membrane antigen, a tumor marker and peptidase. Proc. Natl. Acad. Sci. USA, 2005, 102(17), 5981-5986. doi: 10.1073/pnas.0502101102 PMID: 15837926
  65. Ristau, B.T.; O’Keefe, D.S.; Bacich, D.J. The prostate-specific membrane antigen: Lessons and current clinical implications from 20 years of research. Urol. Oncol., 2014, 32(3), 272-279. doi: 10.1016/j.urolonc.2013.09.003 PMID: 24321253
  66. Perner, S.; Hofer, M.D.; Kim, R.; Shah, R.B.; Li, H.; Möller, P.; Hautmann, R.E.; Gschwend, J.E.; Kuefer, R.; Rubin, M.A. Prostate-specific membrane antigen expression as a predictor of prostate cancer progression. Hum. Pathol., 2007, 38(5), 696-701. doi: 10.1016/j.humpath.2006.11.012 PMID: 17320151
  67. Minner, S.; Wittmer, C.; Graefen, M.; Salomon, G.; Steuber, T.; Haese, A.; Huland, H.; Bokemeyer, C.; Yekebas, E.; Dierlamm, J.; Balabanov, S.; Kilic, E.; Wilczak, W.; Simon, R.; Sauter, G.; Schlomm, T. High level PSMA expression is associated with early psa recurrence in surgically treated prostate cancer. Prostate, 2011, 71(3), 281-288. doi: 10.1002/pros.21241 PMID: 20809553
  68. Sweat, S.D.; Pacelli, A.; Murphy, G.P.; Bostwick, D.G. Prostate-specific membrane antigen expression is greatest in prostate adenocarcinoma and lymph node metastases. Urology, 1998, 52(4), 637-640. doi: 10.1016/S0090-4295(98)00278-7 PMID: 9763084
  69. Gorges, T.M.; Riethdorf, S.; von Ahsen, O.; Nastały, P.; Röck, K.; Boede, M.; Peine, S.; Kuske, A.; Schmid, E.; Kneip, C.; König, F.; Rudolph, M.; Pantel, K. Heterogeneous PSMA expression on circulating tumor cells - a potential basis for stratification and monitoring of PSMA-directed therapies in prostate cancer. Oncotarget., 2016, 7(23), 34930-34941. doi: 10.18632/oncotarget.9004 PMID: 27145459
  70. Chang, S.S.; Reuter, V.E.; Heston, W.D.W.; Bander, N.H.; Grauer, L.S.; Gaudin, P.B. Five different anti-prostate-specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumor-associated neovasculature. Cancer Res., 1999, 59(13), 3192-3198. PMID: 10397265
  71. Nomura, N.; Pastorino, S.; Jiang, P.; Lambert, G.; Crawford, J.R.; Gymnopoulos, M.; Piccioni, D.; Juarez, T.; Pingle, S.C.; Makale, M.; Kesari, S. Prostate specific membrane antigen (PSMA) expression in primary gliomas and breast cancer brain metastases. Cancer Cell Int., 2014, 14(1), 26. doi: 10.1186/1475-2867-14-26 PMID: 24645697
  72. O’Keefe, D.S.; Bacich, D.J.; Huang, S.S.; Heston, W.D.W. A perspective on the evolving story of PSMA biology, PSMA-based imaging, and endoradiotherapeutic strategies. J. Nucl. Med., 2018, 59(7), 1007-1013. doi: 10.2967/jnumed.117.203877 PMID: 29674422
  73. Horoszewicz, J.S.; Leong, S.S.; Kawinski, E.; Karr, J.P.; Rosenthal, H.; Chu, T.M.; Mirand, E.A.; Murphy, G.P. LNCaP model of human prostatic carcinoma. Cancer Res., 1983, 43(4), 1809-1818. PMID: 6831420
  74. Israeli, R.S.; Powell, C.T.; Fair, W.R.; Heston, W.D.W. Molecular cloning of a complementary DNA encoding a prostate-specific membrane antigen. Cancer Res., 1993, 53(2), 227-230. PMID: 8417812
  75. Kozikowski, A.P.; Nan, F.; Conti, P.; Zhang, J.; Ramadan, E.; Bzdega, T.; Wroblewska, B.; Neale, J.H.; Pshenichkin, S.; Wroblewski, J.T. Design of remarkably simple, yet potent urea-based inhibitors of glutamate carboxypeptidase II (NAALADase). J. Med. Chem., 2001, 44(3), 298-301. doi: 10.1021/jm000406m PMID: 11462970
  76. Weineisen, M.; Simecek, J.; Schottelius, M.; Schwaiger, M.; Wester, H.J. Synthesis and preclinical evaluation of DOTAGA-conjugated PSMA ligands for functional imaging and endoradiotherapy of prostate cancer. EJNMMI Res., 2014, 4(1), 63. doi: 10.1186/s13550-014-0063-1 PMID: 26116124
  77. Weineisen, M.; Schottelius, M.; Simecek, J.; Baum, R.P.; Yildiz, A.; Beykan, S.; Kulkarni, H.R.; Lassmann, M.; Klette, I.; Eiber, M.; Schwaiger, M.; Wester, H.J. 68 Ga- and 177 Lu-Labeled PSMA I&T: Optimization of a PSMA-targeted theranostic concept and first proof-of-concept human studies. J. Nucl. Med., 2015, 56(8), 1169-1176. doi: 10.2967/jnumed.115.158550 PMID: 26089548
  78. Benešová, M.; Bauder-Wüst, U.; Schäfer, M.; Klika, K.D.; Mier, W.; Haberkorn, U.; Kopka, K.; Eder, M. Linker modification strategies to control the prostate-specific membrane antigen (PSMA)-targeting and pharmacokinetic properties of DOTA-conjugated PSMA inhibitors. J. Med. Chem., 2016, 59(5), 1761-1775. doi: 10.1021/acs.jmedchem.5b01210 PMID: 26878194
  79. Robu, S.; Schmidt, A.; Eiber, M.; Schottelius, M.; Günther, T.; Hooshyar Yousefi, B.; Schwaiger, M.; Wester, H.J. Synthesis and preclinical evaluation of novel 18F-labeled Glu-urea-Glu-based PSMA inhibitors for prostate cancer imaging: A comparison with 18F-DCFPyl and 18F-PSMA-1007. EJNMMI Res., 2018, 8(1), 30. doi: 10.1186/s13550-018-0382-8 PMID: 29651565
  80. Mease, R.C.; Dusich, C.L.; Foss, C.A.; Ravert, H.T.; Dannals, R.F.; Seidel, J.; Prideaux, A.; Fox, J.J.; Sgouros, G.; Kozikowski, A.P.; Pomper, M.G. N-N-(S)-1,3-Dicarboxypropylcarbamoyl-4-18Ffluorobenzyl-L-cysteine, 18FDCFBC: A new imaging probe for prostate cancer. Clin. Cancer Res., 2008, 14(10), 3036-3043. doi: 10.1158/1078-0432.CCR-07-1517 PMID: 18483369
  81. Cho, S.Y.; Gage, K.L.; Mease, R.C.; Senthamizhchelvan, S.; Holt, D.P.; Jeffrey-Kwanisai, A.; Endres, C.J.; Dannals, R.F.; Sgouros, G.; Lodge, M.; Eisenberger, M.A.; Rodriguez, R.; Carducci, M.A.; Rojas, C.; Slusher, B.S.; Kozikowski, A.P.; Pomper, M.G. Biodistribution, tumor detection, and radiation dosimetry of 18F-DCFBC, a low-molecular-weight inhibitor of prostate-specific membrane antigen, in patients with metastatic prostate cancer. J. Nucl. Med., 2012, 53(12), 1883-1891. doi: 10.2967/jnumed.112.104661 PMID: 23203246
  82. Rowe, S.P.; Gage, K.L.; Faraj, S.F.; Macura, K.J.; Cornish, T.C.; Gonzalez-Roibon, N.; Guner, G.; Munari, E.; Partin, A.W.; Pavlovich, C.P.; Han, M.; Carter, H.B.; Bivalacqua, T.J.; Blackford, A.; Holt, D.; Dannals, R.F.; Netto, G.J.; Lodge, M.A.; Mease, R.C.; Pomper, M.G.; Cho, S.Y. 18 F-DCFBC PET/CT for PSMA-based detection and characterization of primary prostate cancer. J. Nucl. Med., 2015, 56(7), 1003-1010. doi: 10.2967/jnumed.115.154336 PMID: 26069305
  83. Rowe, S.P.; Macura, K.J.; Ciarallo, A.; Mena, E.; Blackford, A.; Nadal, R.; Antonarakis, E.S.; Eisenberger, M.A.; Carducci, M.A.; Ross, A.E.; Kantoff, P.W.; Holt, D.P.; Dannals, R.F.; Mease, R.C.; Pomper, M.G.; Cho, S.Y. Comparison of prostate-specific membrane antigen–based 18 F-DCFBC PET/CT to conventional imaging modalities for detection of hormone-naïve and castration-resistant metastatic prostate cancer. J. Nucl. Med., 2016, 57(1), 46-53. doi: 10.2967/jnumed.115.163782 PMID: 26493203
  84. Chen, Y.; Pullambhatla, M.; Foss, C.A.; Byun, Y.; Nimmagadda, S.; Senthamizhchelvan, S.; Sgouros, G.; Mease, R.C.; Pomper, M.G. 2-(3-1-Carboxy-5-(6-18Ffluoro-pyridine-3-carbonyl)-amino-pentyl-ureido)-pentanedioic acid, 18FDCFPyL, a PSMA-based PET imaging agent for prostate cancer. Clin. Cancer Res., 2011, 17(24), 7645-7653. doi: 10.1158/1078-0432.CCR-11-1357 PMID: 22042970
  85. Bouvet, V.; Wuest, M.; Jans, H.S.; Janzen, N.; Genady, A.R.; Valliant, J.F.; Benard, F.; Wuest, F. Automated synthesis of 18FDCFPyL via direct radiofluorination and validation in preclinical prostate cancer models. EJNMMI Res., 2016, 6(1), 40. doi: 10.1186/s13550-016-0195-6 PMID: 27142881
  86. Pan, K.H.; Wang, J.F.; Wang, C.Y.; Nikzad, A.A.; Kong, F.Q.; Jian, L.; Zhang, Y.Q.; Lu, X.M.; Xu, B.; Wang, Y.L.; Chen, M. Evaluation of 18F-DCFPyL PSMA PET/CT for prostate cancer: A meta-analysis. Front. Oncol., 2021, 10, 597422. doi: 10.3389/fonc.2020.597422 PMID: 33680924
  87. Metser, U.; Zukotynski, K.; Mak, V.; Langer, D.; MacCrostie, P.; Finelli, A.; Kapoor, A.; Chin, J.; Lavallée, L.; Klotz, L.H.; Hagerty, M.; Hildebrand, C.; Bauman, G. Effect of 18 F-DCFPyL PET/CT on the management of patients with recurrent prostate cancer: Results of a prospective multicenter registry trial. Radiology, 2022, 303(2), 414-422. doi: 10.1148/radiol.211824 PMID: 35076300
  88. U.S. Food and Drug Administration (FDA). FDA approves second PSMA-targeted PET imaging drug for men with prostate cancer. Available from: https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-second-psma-targeted-pet-imaging-drug-men-prostate-cancer (Accessed on: May 24, 2023).
  89. Zechmann, C.M.; Afshar-Oromieh, A.; Armor, T.; Stubbs, J.B.; Mier, W.; Hadaschik, B.; Joyal, J.; Kopka, K.; Debus, J.; Babich, J.W.; Haberkorn, U. Radiation dosimetry and first therapy results with a 124I/131I-labeled small molecule (MIP-1095) targeting PSMA for prostate cancer therapy. Eur. J. Nucl. Med. Mol. Imaging, 2014, 41(7), 1280-1292. doi: 10.1007/s00259-014-2713-y PMID: 24577951
  90. Study of I-131-1095 radiotherapy in combination with enzalutamide in patients with metastatic castration-resistant prostate cancer who are chemotherapy naive and have progressed on abiraterone. Patent NCT03939689, 2023.
  91. Rajasekaran, S.A.; Anilkumar, G.; Oshima, E.; Bowie, J.U.; Liu, H.; Heston, W.; Bander, N.H.; Rajasekaran, A.K. A novel cytoplasmic tail MXXXL motif mediates the internalization of prostate-specific membrane antigen. Mol. Biol. Cell, 2003, 14(12), 4835-4845. doi: 10.1091/mbc.e02-11-0731 PMID: 14528023
  92. Liu, T.; Toriyabe, Y.; Kazak, M.; Berkman, C.E. Pseudoirreversible inhibition of prostate-specific membrane antigen by phosphoramidate peptidomimetics. Biochemistry, 2008, 47(48), 12658-12660. doi: 10.1021/bi801883v PMID: 18983168
  93. Afshar-Oromieh, A.; Haberkorn, U.; Eder, M.; Eisenhut, M.; Zechmann, C.M. 68GaGallium-labelled PSMA ligand as superior PET tracer for the diagnosis of prostate cancer: comparison with 18F-FECH. Eur. J. Nucl. Med. Mol. Imaging, 2012, 39(6), 1085-1086. doi: 10.1007/s00259-012-2069-0 PMID: 22310854
  94. Hope, T.A.; Aggarwal, R.; Chee, B.; Tao, D.; Greene, K.L.; Cooperberg, M.R.; Feng, F.; Chang, A.; Ryan, C.J.; Small, E.J.; Carroll, P.R. Impact of 68 Ga-PSMA-11 PET on management in patients with biochemically recurrent prostate cancer. J. Nucl. Med., 2017, 58(12), 1956-1961. doi: 10.2967/jnumed.117.192476 PMID: 28522741
  95. Calais, J.; Czernin, J.; Cao, M.; Kishan, A.U.; Hegde, J.V.; Shaverdian, N.; Sandler, K.; Chu, F.I.; King, C.R.; Steinberg, M.L.; Rauscher, I.; Schmidt-Hegemann, N.S.; Poeppel, T.; Hetkamp, P.; Ceci, F.; Herrmann, K.; Fendler, W.P.; Eiber, M.; Nickols, N.G. 68 Ga-PSMA-11 PET/CT mapping of prostate cancer biochemical recurrence after radical prostatectomy in 270 patients with a PSA level of less than 1.0 ng/mL: Impact on salvage radiotherapy planning. J. Nucl. Med., 2018, 59(2), 230-237. doi: 10.2967/jnumed.117.201749 PMID: 29123013
  96. Cardinal Health. 2021. FDA-Approved Radiopharmaceuticals. Available from: https://www.cardinalhealth.com/content/dam/corp/web/documents/fact-sheet/cardinal-health-fda-approved-radiopharmaceuticals.pdf
  97. Eder, M.; Wängler, B.; Knackmuss, S.; LeGall, F.; Little, M.; Haberkorn, U.; Mier, W.; Eisenhut, M. Tetrafluorophenolate of HBED-CC: A versatile conjugation agent for 68Ga-labeled small recombinant antibodies. Eur. J. Nucl. Med. Mol. Imaging, 2008, 35(10), 1878-1886. doi: 10.1007/s00259-008-0816-z PMID: 18509635
  98. Bräuer, A.; Grubert, L.S.; Roll, W.; Schrader, A.J.; Schäfers, M.; Bögemann, M.; Rahbar, K. 177Lu-PSMA-617 radioligand therapy and outcome in patients with metastasized castration-resistant prostate cancer. Eur. J. Nucl. Med. Mol. Imaging, 2017, 44(10), 1663-1670. doi: 10.1007/s00259-017-3751-z PMID: 28624848
  99. Hofman, M.S.; Violet, J.; Hicks, R.J.; Ferdinandus, J.; Thang, S.P.; Akhurst, T.; Iravani, A.; Kong, G.; Ravi Kumar, A.; Murphy, D.G.; Eu, P.; Jackson, P.; Scalzo, M.; Williams, S.G.; Sandhu, S. 177 Lu-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): A single-centre, single-arm, phase 2 study. Lancet Oncol., 2018, 19(6), 825-833. doi: 10.1016/S1470-2045(18)30198-0 PMID: 29752180
  100. Yadav, M.P.; Ballal, S.; Bal, C.; Sahoo, R.K.; Damle, N.A.; Tripathi, M.; Seth, A. Efficacy and safety of 177Lu-PSMA-617 radioligand therapy in metastatic castration-resistant prostate cancer patients. Clin. Nucl. Med., 2020, 45(1), 19-31. doi: 10.1097/RLU.0000000000002833 PMID: 31789908
  101. FDA. FDA approves Pluvicto for metastatic castration-resistant prostate cancer. FDA approves Pluvicto for metastatic castration-resistant prostate cancer., Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-pluvicto-metastatic-castration-resistant-prostate-cancer (Accessed on: May 24, 2022).
  102. Kratochwil, C.; Bruchertseifer, F.; Giesel, F.L.; Weis, M.; Verburg, F.A.; Mottaghy, F.; Kopka, K.; Apostolidis, C.; Haberkorn, U.; Morgenstern, A. 225 Ac-PSMA-617 for PSMA-targeted α-radiation therapy of metastatic castration-resistant prostate cancer. J. Nucl. Med., 2016, 57(12), 1941-1944. doi: 10.2967/jnumed.116.178673 PMID: 27390158
  103. Ma, J.; Li, L.; Liao, T.; Gong, W.; Zhang, C. Efficacy and safety of 225Ac-PSMA-617-targeted alpha therapy in metastatic castration-resistant prostate cancer: A systematic review and meta-analysis. Front. Oncol., 2022, 12, 796657. doi: 10.3389/fonc.2022.796657 PMID: 35186737
  104. Study of 225Ac-PSMA-617 in men with PSMA-positive prostate cancer. Patent NCT04597411, 2022.
  105. Wang, Z.; Tian, R.; Niu, G.; Ma, Y.; Lang, L.; Szajek, L.P.; Kiesewetter, D.O.; Jacobson, O.; Chen, X. Single low-dose injection of evans blue modified PSMA-617 radioligand therapy eliminates prostate-specific membrane antigen positive tumors. Bioconjug. Chem., 2018, 29(9), 3213-3221. doi: 10.1021/acs.bioconjchem.8b00556 PMID: 30105912
  106. Zang, J.; Fan, X.; Wang, H.; Liu, Q.; Wang, J.; Li, H.; Li, F.; Jacobson, O.; Niu, G.; Zhu, Z.; Chen, X. First-in-human study of 177Lu-EB-PSMA-617 in patients with metastatic castration-resistant prostate cancer. Eur. J. Nucl. Med. Mol. Imaging, 2019, 46(1), 148-158. doi: 10.1007/s00259-018-4096-y PMID: 30090965
  107. Zang, J.; Liu, Q.; Sui, H.; Wang, R.; Jacobson, O.; Fan, X.; Zhu, Z.; Chen, X. 177 Lu-EB-PSMA radioligand therapy with escalating doses in patients with metastatic castration-resistant prostate cancer. J. Nucl. Med., 2020, 61(12), 1772-1778. doi: 10.2967/jnumed.120.242263 PMID: 32358086
  108. Therapeutic efficiency and response to 2.0 GBq (54mCi)177Lu-EB-PSMA-617 in patients with mCRPC. Patent NCT04996602, 2022.
  109. Lu177-EB-PSMA617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer. Patent NCT03780075, 2022.
  110. Kuo, H.T.; Merkens, H.; Zhang, Z.; Uribe, C.F.; Lau, J.; Zhang, C.; Colpo, N.; Lin, K.S.; Bénard, F. Enhancing treatment efficacy of 177 Lu-PSMA-617 with the conjugation of an albumin-binding motif: Preclinical dosimetry and endoradiotherapy studies. Mol. Pharm., 2018, 15(11), 5183-5191. doi: 10.1021/acs.molpharmaceut.8b00720 PMID: 30251544
  111. Kuo, H.T.; Lin, K.S.; Zhang, Z.; Uribe, C.F.; Merkens, H.; Zhang, C.; Bénard, F. 177 Lu-labeled albumin-binder–conjugated PSMA-targeting agents with extremely high tumor uptake and enhanced tumor-to-kidney absorbed dose ratio. J. Nucl. Med., 2021, 62(4), 521-527. doi: 10.2967/jnumed.120.250738 PMID: 32859704
  112. Schmuck, S.; Mamach, M.; Wilke, F.; von Klot, C.A.; Henkenberens, C.; Thackeray, J.T.; Sohns, J.M.; Geworski, L.; Ross, T.L.; Wester, H.J.; Christiansen, H.; Bengel, F.M.; Derlin, T. Multiple time-point 68Ga-PSMA I&T PET/CT for characterization of primary prostate cancer. Clin. Nucl. Med., 2017, 42(6), e286-e293. doi: 10.1097/RLU.0000000000001589 PMID: 28221194
  113. Berliner, C.; Tienken, M.; Frenzel, T.; Kobayashi, Y.; Helberg, A.; Kirchner, U.; Klutmann, S.; Beyersdorff, D.; Budäus, L.; Wester, H.J.; Mester, J.; Bannas, P. Detection rate of PET/CT in patients with biochemical relapse of prostate cancer using 68GaPSMA I&T and comparison with published data of 68GaPSMA HBED-CC. Eur. J. Nucl. Med. Mol. Imaging, 2017, 44(4), 670-677. doi: 10.1007/s00259-016-3572-5 PMID: 27896369
  114. Heck, M.M.; Tauber, R.; Schwaiger, S.; Retz, M.; D’Alessandria, C.; Maurer, T.; Gafita, A.; Wester, H.J.; Gschwend, J.E.; Weber, W.A.; Schwaiger, M.; Knorr, K.; Eiber, M. Treatment outcome, toxicity, and predictive factors for radioligand therapy with 177Lu-PSMA-I&T in metastatic castration-resistant prostate cancer. Eur. Urol., 2019, 75(6), 920-926. doi: 10.1016/j.eururo.2018.11.016 PMID: 30473431
  115. Schuchardt, C.; Zhang, J.; Kulkarni, H.R.; Chen, X.; Mueller, D.; Baum, R.P. Prostate-specific membrane antigen radioligand therapy using 177 Lu-PSMA I&T and 177 Lu-PSMA-617 in patients with metastatic castration-resistant prostate cancer: Comparison of safety, biodistribution and dosimetry. J. Nucl. Med., 2021, 63(8), 1199-1207.
  116. Ac-J591 Plus 177Lu-PSMA-I&T for mCRPC. Patent NCT04886986, 2022.
  117. Tagawa, S.T.; Sun, M.; Sartor, A.O.; Thomas, C.; Singh, S.; Bissassar, M.; Fernandez, E.; Niaz, M.J.; Ho, B.; Vallabhajosula, S.; Babich, J.; Molina, A.M.; Sternberg, C.N.; Nanus, D.M.; Osborne, J.; Bander, N.H.; Phase, I. Phase I study of 225 Ac-J591 for men with metastatic castration-resistant prostate cancer (mCRPC). J. Clin. Oncol., 2021, 39(15_suppl), 5015-5015. doi: 10.1200/JCO.2021.39.15_suppl.5015
  118. Schmidt, A.; Wirtz, M.; Färber, S.F.; Osl, T.; Beck, R.; Schottelius, M.; Schwaiger, M.; Wester, H.J. Effect of carbohydration on the theranostic tracer PSMA I&T. ACS Omega, 2018, 3(7), 8278-8287. doi: 10.1021/acsomega.8b00790 PMID: 30087939
  119. Giesel, F.L.; Cardinale, J.; Schäfer, M.; Neels, O.; Benešová, M.; Mier, W.; Haberkorn, U.; Kopka, K.; Kratochwil, C. 18F-Labelled PSMA-1007 shows similarity in structure, biodistribution and tumour uptake to the theragnostic compound PSMA-617. Eur. J. Nucl. Med. Mol. Imaging, 2016, 43(10), 1929-1930. doi: 10.1007/s00259-016-3447-9 PMID: 27342416
  120. Giesel, F.L.; Hadaschik, B.; Cardinale, J.; Radtke, J.; Vinsensia, M.; Lehnert, W.; Kesch, C.; Tolstov, Y.; Singer, S.; Grabe, N.; Duensing, S.; Schäfer, M.; Neels, O.C.; Mier, W.; Haberkorn, U.; Kopka, K.; Kratochwil, C. F-18 labelled PSMA-1007: biodistribution, radiation dosimetry and histopathological validation of tumor lesions in prostate cancer patients. Eur. J. Nucl. Med. Mol. Imaging, 2017, 44(4), 678-688. doi: 10.1007/s00259-016-3573-4 PMID: 27889802
  121. Giesel, F.L.; Knorr, K.; Spohn, F.; Will, L.; Maurer, T.; Flechsig, P.; Neels, O.; Schiller, K.; Amaral, H.; Weber, W.A.; Haberkorn, U.; Schwaiger, M.; Kratochwil, C.; Choyke, P.; Kramer, V.; Kopka, K.; Eiber, M. Detection efficacy of 18 F-PSMA-1007 PET/CT in 251 patients with biochemical recurrence of prostate cancer after radical prostatectomy. J. Nucl. Med., 2019, 60(3), 362-368. doi: 10.2967/jnumed.118.212233 PMID: 30042163
  122. Sachpekidis, C.; Afshar-Oromieh, A.; Kopka, K.; Strauss, D.S.; Pan, L.; Haberkorn, U.; Dimitrakopoulou-Strauss, A. 18F-PSMA-1007 multiparametric, dynamic PET/CT in biochemical relapse and progression of prostate cancer. Eur. J. Nucl. Med. Mol. Imaging, 2020, 47(3), 592-602. doi: 10.1007/s00259-019-04569-0 PMID: 31728588
  123. Efficacy of 18FPSMA-1007 PET/CT in patients with biochemial recurrent prostate cancer. Patent NCT04742361, 2023.
  124. Dietlein, F.; Kobe, C.; Hohberg, M.; Zlatopolskiy, B.D.; Krapf, P.; Endepols, H.; Täger, P.; Hammes, J.; Heidenreich, A.; Persigehl, T.; Neumaier, B.; Drzezga, A.; Dietlein, M. Intraindividual comparison of 18 F-PSMA-1007 with Renally excreted PSMA ligands for PSMA PET imaging in patients with relapsed prostate cancer. J. Nucl. Med., 2020, 61(5), 729-734. doi: 10.2967/jnumed.119.234898 PMID: 31628219
  125. Kuten, J.; Dekalo, S.; Mintz, I.; Yossepowitch, O.; Mano, R.; Even-Sapir, E. The significance of equivocal bone findings in staging PSMA imaging in the preoperative setting: validation of the PSMA-RADS version 1.0. EJNMMI Res., 2021, 11(1), 3. doi: 10.1186/s13550-020-00745-8 PMID: 33409930
  126. Wurzer, A.; Di Carlo, D.; Schmidt, A.; Beck, R.; Eiber, M.; Schwaiger, M.; Wester, H.J. Radiohybrid ligands: A novel tracer concept exemplified by 18 F- or 68 Ga-Labeled rhPSMA inhibitors. J. Nucl. Med., 2020, 61(5), 735-742. doi: 10.2967/jnumed.119.234922 PMID: 31862804
  127. Oh, S.W.; Wurzer, A.; Teoh, E.J.; Oh, S.; Langbein, T.; Krönke, M.; Herz, M.; Kropf, S.; Wester, H.J.; Weber, W.A.; Eiber, M. Quantitative and qualitative analyses of biodistribution and PET image quality of a novel radiohybrid PSMA, 18 F-rhPSMA-7, in patients with prostate cancer. J. Nucl. Med., 2020, 61(5), 702-709. doi: 10.2967/jnumed.119.234609 PMID: 31836686
  128. Eiber, M.; Kroenke, M.; Wurzer, A.; Ulbrich, L.; Jooß, L.; Maurer, T.; Horn, T.; Schiller, K.; Langbein, T.; Buschner, G.; Wester, H.J.; Weber, W. 18 F-rhPSMA-7 PET for the detection of biochemical recurrence of prostate cancer after radical prostatectomy. J. Nucl. Med., 2020, 61(5), 696-701. doi: 10.2967/jnumed.119.234914 PMID: 31836682
  129. Kroenke, M.; Wurzer, A.; Schwamborn, K.; Ulbrich, L.; Jooß, L.; Maurer, T.; Horn, T.; Rauscher, I.; Haller, B.; Herz, M.; Wester, H.J.; Weber, W.A.; Eiber, M. Histologically confirmed diagnostic efficacy of 18 F-rhPSMA-7 PET for N-staging of patients with primary high-risk prostate cancer. J. Nucl. Med., 2020, 61(5), 710-715. doi: 10.2967/jnumed.119.234906 PMID: 31836681
  130. Wurzer, A.; Parzinger, M.; Konrad, M.; Beck, R.; Günther, T.; Felber, V.; Färber, S.; Di Carlo, D.; Wester, H.J. Preclinical comparison of four 18F, natGarhPSMA-7 isomers: Influence of the stereoconfiguration on pharmacokinetics. EJNMMI Res., 2020, 10(1), 149. doi: 10.1186/s13550-020-00740-z PMID: 33284394
  131. Rauscher, I.; Karimzadeh, A.; Schiller, K.; Horn, T.; D’Alessandria, C.; Franz, C.; Wörther, H.; Nguyen, N.; Combs, S.E.; Weber, W.A.; Eiber, M. Detection efficacy of 18F-rhPSMA-7.3 PET/CT and impact on patient management in patients with biochemical recurrence of prostate cancer after radical prostatectomy and prior to potential salvage treatment. J. Nucl. Med., 2021, 62(12), 1719-1726. doi: 10.2967/jnumed.120.260091 PMID: 33712531
  132. Jani, A.B.; Ravizzini, G.C.; Gartrell, B.A.; Siegel, B.A.; Twardowski, P.; Saltzstein, D.; Fleming, M.T.; Chau, A.; Davis, P.; Chapin, B.F.; Schuster, D.M.; Allaf, M.; Avery, R.J.; Avril, N.; Barker, H.; Belkoff, L.; Bostrom, P.; Cher, M.L.; Chisholm, D.; Covington, M.F.; Cox, I.; Esposito, G.; Gardiner, P.; Gauden, D.; Helfand, B.; Hermsen, R.; Josephson, D.; Kay, M.; Koontz, B.F.; Kostakoglu, L.; Kuo, P.; Lavely, W.; Liem, I.H.; Lokuta, M.; Lowentritt, B.; Michalski, J.; Miller, M.P.; Mourtzikos, K.; Pachynski, R.; Penny, R.; Piert, M.; Purysko, A.; Rais-Bahrami, S.; Savir-Baruch, B.; Somford, R.; Tewari, A.; Uchio, E.; Yoo, D.; Zukotynski, K. Diagnostic performance and safety of 18 F-RhPSMA-7.3 Positron emission tomography in men with suspected prostate cancer recurrence: Results from a phase 3, prospective, multicenter study (SPOTLIGHT). J. Urol., 2023, 10-1097.
  133. Kroenke, M.; Schweiger, L.; Horn, T.; Haller, B.; Schwamborn, K.; Wurzer, A.; Maurer, T.; Wester, H.J.; Eiber, M.; Rauscher, I. Validation of 18 F-rhPSMA-7 and 18 F-rhPSMA-7.3 PET imaging results with histopathology from salvage surgery in patients with biochemical recurrence of prostate cancer. J. Nucl. Med., 2022, 63(12), 1809-1814. doi: 10.2967/jnumed.121.263707 PMID: 35393348
  134. Yusufi, N.; Wurzer, A.; Herz, M.; D’Alessandria, C.; Feuerecker, B.; Weber, W.; Wester, H.J.; Nekolla, S.; Eiber, M. Comparative preclinical biodistribution, dosimetry, and endoradiotherapy in metastatic castration-resistant prostate cancer using 19 F/177 Lu-rhPSMA-7.3 and 177 Lu-PSMA I&T. J. Nucl. Med., 2021, 62(8), 1106-1111. doi: 10.2967/jnumed.120.254516 PMID: 33443072
  135. Feuerecker, B.; Chantadisai, M.; Allmann, A.; Tauber, R.; Allmann, J.; Steinhelfer, L.; Rauscher, I.; Wurzer, A.; Wester, H.J.; Weber, W.A.; d’Alessandria, C.; Eiber, M. Pretherapeutic comparative dosimetry of 177 Lu-rhPSMA-7.3 and 177 Lu-PSMA I&T in patients with metastatic castration-resistant prostate cancer. J. Nucl. Med., 2022, 63(6), 833-839. doi: 10.2967/jnumed.121.262671 PMID: 34531260
  136. Rousseau, E.; Lau, J.; Kuo, H.T.; Zhang, Z.; Merkens, H.; Hundal-Jabal, N.; Colpo, N.; Lin, K.S.; Bénard, F. Monosodium glutamate reduces 68 Ga-PSMA-11 uptake in salivary glands and kidneys in a preclinical prostate cancer model. J. Nucl. Med., 2018, 59(12), 1865-1868. doi: 10.2967/jnumed.118.215350 PMID: 30097503
  137. Rupp, N.J.; Umbricht, C.A.; Pizzuto, D.A.; Lenggenhager, D.; Töpfer, A.; Müller, J.; Muehlematter, U.J.; Ferraro, D.A.; Messerli, M.; Morand, G.B.; Huber, G.F.; Eberli, D.; Schibli, R.; Müller, C.; Burger, I.A. First clinicopathologic evidence of a Non–PSMA-related uptake mechanism for 68 Ga-PSMA-11 in salivary glands. J. Nucl. Med., 2019, 60(9), 1270-1276. doi: 10.2967/jnumed.118.222307 PMID: 30737300
  138. Szabo, Z.; Mena, E.; Rowe, S.P.; Plyku, D.; Nidal, R.; Eisenberger, M.A.; Antonarakis, E.S.; Fan, H.; Dannals, R.F.; Chen, Y.; Mease, R.C.; Vranesic, M.; Bhatnagar, A.; Sgouros, G.; Cho, S.Y.; Pomper, M.G. Initial evaluation of 18FDCFPyL for prostate-specific membrane antigen (PSMA)-Targeted PET imaging of prostate cancer. Mol. Imaging Biol., 2015, 17(4), 565-574. doi: 10.1007/s11307-015-0850-8 PMID: 25896814
  139. Hillier, S.M.; Maresca, K.P.; Femia, F.J.; Marquis, J.C.; Foss, C.A.; Nguyen, N.; Zimmerman, C.N.; Barrett, J.A.; Eckelman, W.C.; Pomper, M.G.; Joyal, J.L.; Babich, J.W. Preclinical evaluation of novel glutamate-urea-lysine analogues that target prostate-specific membrane antigen as molecular imaging pharmaceuticals for prostate cancer. Cancer Res., 2009, 69(17), 6932-6940. doi: 10.1158/0008-5472.CAN-09-1682 PMID: 19706750
  140. Kratochwil, C.; Giesel, F.L.; Eder, M.; Afshar-Oromieh, A.; Benešová, M.; Mier, W.; Kopka, K.; Haberkorn, U. 177LuLutetium-labelled PSMA ligand-induced remission in a patient with metastatic prostate cancer. Eur. J. Nucl. Med. Mol. Imaging, 2015, 42(6), 987-988. doi: 10.1007/s00259-014-2978-1 PMID: 25573634
  141. Tolvanen, T.; Kalliokoski, K.; Malaspina, S.; Kuisma, A.; Lahdenpohja, S.; Postema, E.J.; Miller, M.P.; Scheinin, M. Safety, biodistribution, and radiation dosimetry of 18 F-rhPSMA-7.3 in healthy adult volunteers. J. Nucl. Med., 2021, 62(5), 679-684. doi: 10.2967/jnumed.120.252114 PMID: 33067338
  142. Malaspina, S.; Oikonen, V.; Kuisma, A.; Ettala, O.; Mattila, K.; Boström, P.J.; Minn, H.; Kalliokoski, K.; Postema, E.J.; Miller, M.P.; Scheinin, M. Kinetic analysis and optimisation of 18F-rhPSMA-7.3 PET imaging of prostate cancer. Eur. J. Nucl. Med. Mol. Imaging, 2021, 48(11), 3723-3731. doi: 10.1007/s00259-021-05346-8 PMID: 33846844
  143. Park, J.E.; Lenter, M.C.; Zimmermann, R.N.; Garin-Chesa, P.; Old, L.J.; Rettig, W.J. Fibroblast activation protein, a dual specificity serine protease expressed in reactive human tumor stromal fibroblasts. J. Biol. Chem., 1999, 274(51), 36505-36512. doi: 10.1074/jbc.274.51.36505 PMID: 10593948
  144. Teichgräber, V.; Monasterio, C.; Chaitanya, K.; Boger, R.; Gordon, K.; Dieterle, T.; Jäger, D.; Bauer, S. Specific inhibition of fibroblast activation protein (FAP)-alpha prevents tumor progression in vitro. Adv. Med. Sci., 2015, 60(2), 264-272. doi: 10.1016/j.advms.2015.04.006 PMID: 26057860
  145. Yamamura, Y.; Asai, N.; Enomoto, A.; Kato, T.; Mii, S.; Kondo, Y.; Ushida, K.; Niimi, K.; Tsunoda, N.; Nagino, M.; Ichihara, S.; Furukawa, K.; Maeda, K.; Murohara, T.; Takahashi, M. Akt-girdin signaling in cancer-associated fibroblasts contributes to tumor progression. Cancer Res., 2015, 75(5), 813-823. doi: 10.1158/0008-5472.CAN-14-1317 PMID: 25732845
  146. Shiga, K.; Hara, M.; Nagasaki, T.; Sato, T.; Takahashi, H.; Takeyama, H. Cancer-associated fibroblasts: Their characteristics and their roles in tumor growth. Cancers., 2015, 7(4), 2443-2458. doi: 10.3390/cancers7040902 PMID: 26690480
  147. Rettig, W.J.; Chesa, P.G.; Beresford, H.R.; Feickert, H.J.; Jennings, M.T.; Cohen, J.; Oettgen, H.F.; Old, L.J. Differential expression of cell surface antigens and glial fibrillary acidic protein in human astrocytoma subsets. Cancer Res., 1986, 46(12 Pt 1), 6406-6412. PMID: 2877731
  148. Scanlan, M.J.; Raj, B.K.; Calvo, B.; Garin-Chesa, P.; Sanz-Moncasi, M.P.; Healey, J.H.; Old, L.J.; Rettig, W.J. Molecular cloning of fibroblast activation protein alpha, a member of the serine protease family selectively expressed in stromal fibroblasts of epithelial cancers. Proc. Natl. Acad. Sci., 1994, 91(12), 5657-5661. doi: 10.1073/pnas.91.12.5657 PMID: 7911242
  149. Garin-Chesa, P.; Old, L.J.; Rettig, W.J. Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proc. Natl. Acad. Sci., 1990, 87(18), 7235-7239. doi: 10.1073/pnas.87.18.7235 PMID: 2402505
  150. Kelly, T.; Kechelava, S.; Rozypal, T.L.; West, K.W.; Korourian, S. Seprase, a membrane-bound protease, is overexpressed by invasive ductal carcinoma cells of human breast cancers. Mod. Pathol., 1998, 11(9), 855-863. PMID: 9758365
  151. Jin, X.; Iwasa, S.; Okada, K.; Mitsumata, M.; Ooi, A. Expression patterns of seprase, a membrane serine protease, in cervical carcinoma and cervical intraepithelial neoplasm. Anticancer Res., 2003, 23(4), 3195-3198. PMID: 12926053
  152. Mori, Y.; Kono, K.; Matsumoto, Y.; Fujii, H.; Yamane, T.; Mitsumata, M.; Chen, W.T. The expression of a type II transmembrane serine protease (Seprase) in human gastric carcinoma. Oncology., 2004, 67(5-6), 411-419. doi: 10.1159/000082926 PMID: 15713998
  153. Jansen, K.; Heirbaut, L.; Cheng, J.D.; Joossens, J.; Ryabtsova, O.; Cos, P.; Maes, L.; Lambeir, A.M.; De Meester, I.; Augustyns, K.; Van der Veken, P. Selective inhibitors of fibroblast activation protein (FAP) with a (4-Quinolinoyl)-glycyl-2-cyanopyrrolidine scaffold. ACS Med. Chem. Lett., 2013, 4(5), 491-496. doi: 10.1021/ml300410d PMID: 24900696
  154. Jansen, K.; Heirbaut, L.; Verkerk, R.; Cheng, J.D.; Joossens, J.; Cos, P.; Maes, L.; Lambeir, A.M.; De Meester, I.; Augustyns, K.; Van der Veken, P. Extended structure-activity relationship and pharmacokinetic investigation of (4-quinolinoyl)glycyl-2-cyanopyrrolidine inhibitors of fibroblast activation protein (FAP). J. Med. Chem., 2014, 57(7), 3053-3074. doi: 10.1021/jm500031w PMID: 24617858
  155. Loktev, A.; Lindner, T.; Mier, W.; Debus, J.; Altmann, A.; Jäger, D.; Giesel, F.; Kratochwil, C.; Barthe, P.; Roumestand, C.; Haberkorn, U. A tumor-imaging method targeting cancer-associated fibroblasts. J. Nucl. Med., 2018, 59(9), 1423-1429. doi: 10.2967/jnumed.118.210435 PMID: 29626120
  156. Giesel, F.L.; Kratochwil, C.; Lindner, T.; Marschalek, M.M.; Loktev, A.; Lehnert, W.; Debus, J.; Jäger, D.; Flechsig, P.; Altmann, A.; Mier, W.; Haberkorn, U. 68 Ga-FAPI PET/CT: Biodistribution and preliminary dosimetry estimate of 2 DOTA-containing FAP-targeting agents in patients with various cancers. J. Nucl. Med., 2019, 60(3), 386-392. doi: 10.2967/jnumed.118.215913 PMID: 30072500
  157. Ga-FAPI PET/CT in patients with various types of cancer. Patent NCT04499365, 2020.
  158. Ga-FAPi-46 PET/CT scan in imaging patients with sarcoma. Patent NCT04457258, 2023.
  159. Experimental PET imaging scans before cancer surgery to study the amount of PET tracer accumulated in normal and cancer tissues. Patent NCT04147494, 2021.
  160. Giesel, F.L.; Kratochwil, C.; Schlittenhardt, J.; Dendl, K.; Eiber, M.; Staudinger, F.; Kessler, L.; Fendler, W.P.; Lindner, T.; Koerber, S.A.; Cardinale, J.; Sennung, D.; Roehrich, M.; Debus, J.; Sathekge, M.; Haberkorn, U.; Calais, J.; Serfling, S.; Buck, A.L. Head-to-head intra-individual comparison of biodistribution and tumor uptake of 68Ga-FAPI and 18F-FDG PET/CT in cancer patients. Eur. J. Nucl. Med. Mol. Imaging, 2021, 48(13), 4377-4385. doi: 10.1007/s00259-021-05307-1 PMID: 34137945
  161. Zhao, L.; Pang, Y.; Luo, Z.; Fu, K.; Yang, T.; Zhao, L.; Sun, L.; Wu, H.; Lin, Q.; Chen, H. Role of 68GaGa-DOTA-FAPI-04 PET/CT in the evaluation of peritoneal carcinomatosis and comparison with 18F-FDG PET/CT. Eur. J. Nucl. Med. Mol. Imaging, 2021, 48(6), 1944-1955. doi: 10.1007/s00259-020-05146-6 PMID: 33415432
  162. Zhao, L.; Chen, J.; Pang, Y.; Fu, K.; Shang, Q.; Wu, H.; Sun, L.; Lin, Q.; Chen, H. Fibroblast activation protein-based theranostics in cancer research: A state-of-the-art review. Theranostics., 2022, 12(4), 1557-1569. doi: 10.7150/thno.69475 PMID: 35198057
  163. Zhao, L.; Niu, B.; Fang, J.; Pang, Y.; Li, S.; Xie, C.; Sun, L.; Zhang, X.; Guo, Z.; Lin, Q.; Chen, H. Synthesis, preclinical evaluation, and a pilot clinical PET imaging study of 68Ga-labeled FAPI dimer. J. Nucl. Med., 2021, 63(6), 862-868.
  164. Xu, M.; Zhang, P.; Ding, J.; Chen, J.; Huo, L.; Liu, Z. Albumin binder–conjugated fibroblast activation protein inhibitor radiopharmaceuticals for cancer therapy. J. Nucl. Med., 2021, 63(6), 952-958.
  165. Wen, X.; Xu, P.; Shi, M.; Liu, J.; Zeng, X.; Zhang, Y.; Shi, C.; Li, J.; Guo, Z.; Zhang, X.; Khong, P.L.; Chen, X. Evans blue-modified radiolabeled fibroblast activation protein inhibitor as long-acting cancer therapeutics. Theranostics, 2022, 12(1), 422-433. doi: 10.7150/thno.68182 PMID: 34987657
  166. Scheltens, P.; Blennow, K.; Breteler, M.M.B.; de Strooper, B.; Frisoni, G.B.; Salloway, S.; Van der Flier, W.M. Alzheimer’s disease. Lancet, 2016, 388(10043), 505-517. doi: 10.1016/S0140-6736(15)01124-1 PMID: 26921134
  167. Giorgetti, S.; Greco, C.; Tortora, P.; Aprile, F. Targeting amyloid aggregation: An overview of strategies and mechanisms. Int. J. Mol. Sci., 2018, 19(9), 2677. doi: 10.3390/ijms19092677 PMID: 30205618
  168. Walsh, D.; Selkoe, D. Oligomers on the brain: The emerging role of soluble protein aggregates in neurodegeneration. Protein Pept. Lett., 2004, 11(3), 213-228. doi: 10.2174/0929866043407174 PMID: 15182223
  169. Awasthi, M.; Singh, S.; Pandey, V.P.; Dwivedi, U.N. Alzheimer’s disease: An overview of amyloid beta dependent pathogenesis and its therapeutic implications along with in silico approaches emphasizing the role of natural products. J. Neurol. Sci., 2016, 361, 256-271. doi: 10.1016/j.jns.2016.01.008 PMID: 26810552
  170. Villemagne, V.L. Amyloid imaging: Past, present and future perspectives. Ageing Res. Rev., 2016, 30, 95-106. doi: 10.1016/j.arr.2016.01.005 PMID: 26827784
  171. Mathis, C.A.; Lopresti, B.J.; Ikonomovic, M.D.; Klunk, W.E. Small-molecule PET tracers for imaging proteinopathies. Semin. Nucl. Med., 2017, 47(5), 553-575. doi: 10.1053/j.semnuclmed.2017.06.003 PMID: 28826526
  172. Chiti, F.; Dobson, C.M. Protein misfolding, amyloid formation, and human disease: A summary of progress over the last decade. Annu. Rev. Biochem., 2017, 86(1), 27-68. doi: 10.1146/annurev-biochem-061516-045115 PMID: 28498720
  173. Lacerda, S.; Morfin, J.F.; Geraldes, C.F.G.C.; Tóth, É. Metal complexes for multimodal imaging of misfolded protein-related diseases. Dalton Trans., 2017, 46(42), 14461-14474. doi: 10.1039/C7DT02371E PMID: 28952628
  174. Prince, M.J.; Wimo, A.; Guerchet, M.M.; Ali, G.C.; Wu, Y.T.; Prina, M. 2015. The Global Impact of Dementia. An Analysis of Prevalence, Incidence, Cost and Trends. Available from: https://www.alzint.org/u/WorldAlzheimerReport2015.pdf
  175. Hardy, J. Testing times for the "amyloid cascade hypothesis". Neurobiol. Aging, 2002, 23(6), 1073-1074. doi: 10.1016/S0197-4580(02)00042-8 PMID: 12470803
  176. Karran, E.; Mercken, M.; Strooper, B.D. The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat. Rev. Drug Discov., 2011, 10(9), 698-712. doi: 10.1038/nrd3505 PMID: 21852788
  177. Zhang, Y.; Thompson, R.; Zhang, H.; Xu, H. APP processing in Alzheimer’s disease. Mol. Brain, 2011, 4(1), 3. doi: 10.1186/1756-6606-4-3 PMID: 21214928
  178. Sipe, J.D.; Benson, M.D.; Buxbaum, J.N.; Ikeda, S.; Merlini, G.; Saraiva, M.J.M.; Westermark, P. Amyloid fibril proteins and amyloidosis: chemical identification and clinical classification International Society of Amyloidosis 2016 Nomenclature Guidelines. Amyloid, 2016, 23(4), 209-213. doi: 10.1080/13506129.2016.1257986 PMID: 27884064
  179. Kaur, A.; New, E.J.; Sunde, M. Strategies for the molecular imaging of amyloid and the value of a multimodal approach. ACS Sens., 2020, 5(8), 2268-2282. doi: 10.1021/acssensors.0c01101 PMID: 32627533
  180. Pike, V.W. Considerations in the development of reversibly binding PET radioligands for brain imaging. Curr. Med. Chem., 2016, 23(18), 1818-1869. doi: 10.2174/0929867323666160418114826 PMID: 27087244
  181. Furumoto, S.; Okamura, N.; Iwata, R.; Yanai, K.; Arai, H.; Kudo, Y. Recent advances in the development of amyloid imaging agents. Curr. Top. Med. Chem., 2007, 7(18), 1773-1789. doi: 10.2174/156802607782507402 PMID: 17979786
  182. Zhang, L.; Villalobos, A. Strategies to facilitate the discovery of novel CNS PET ligands. EJNMMI Radiopharm. Chem., 2017, 1(1), 13. doi: 10.1186/s41181-016-0016-2 PMID: 29564389
  183. Uzuegbunam, B.C.; Librizzi, D.; Hooshyar, Y.B. PET radiopharmaceuticals for Alzheimer’s disease and Parkinson’s disease diagnosis, the current and future landscape. Molecules, 2020, 25(4), 977. doi: 10.3390/molecules25040977 PMID: 32098280
  184. Hayne, D.J.; Lim, S.; Donnelly, P.S. Metal complexes designed to bind to amyloid-β for the diagnosis and treatment of Alzheimer’s disease. Chem. Soc. Rev., 2014, 43(19), 6701-6715. doi: 10.1039/C4CS00026A PMID: 24671229
  185. Papagiannopoulou, D.; Hadjipavlou-Litina, D. Computational modeling of diagnostic imaging agents for Alzheimer’s disease: Molecular imaging agents for the in vivo detection of amyloid plaques in Alzheimer’s disease. In: Neuromethods; Humana Press Inc., 2018; Vol. 132, pp. 463-479.
  186. Zeng, F.; Goodman, M.M. Fluorine-18 radiolabeled heterocycles as PET tracers for imaging β-amyloid plaques in Alzheimer’s disease. Curr. Top. Med. Chem., 2013, 13(8), 909-919. doi: 10.2174/1568026611313080004 PMID: 23590167
  187. Xu, M.; Ren, W.; Tang, X.; Hu, Y.; Zhang, H. Advances in development of fluorescent probes for detecting amyloid-β aggregates. Acta Pharmacol. Sin., 2016, 37(6), 719-730. doi: 10.1038/aps.2015.155 PMID: 26997567
  188. Eckroat, T.J.; Mayhoub, A.S.; Garneau-Tsodikova, S. Amyloid-β probes: Review of structure–activity and brain-kinetics relationships. Beilstein J. Org. Chem., 2013, 9, 1012-1044. doi: 10.3762/bjoc.9.116 PMID: 23766818
  189. Zhu, L.; Ploessl, K.; Kung, H.F. PET/SPECT imaging agents for neurodegenerative diseases. Chem. Soc. Rev., 2014, 43(19), 6683-6691. doi: 10.1039/C3CS60430F PMID: 24676152
  190. Ono, M.; Saji, H. Recent advances in molecular imaging probes for β-amyloid plaques. MedChemComm, 2015, 6(3), 391-402. doi: 10.1039/C4MD00365A
  191. Mathis, C.A.; Mason, N.S.; Lopresti, B.J.; Klunk, W.E. Development of positron emission tomography β-amyloid plaque imaging agents. Semin. Nucl. Med., 2012, 42(6), 423-432. doi: 10.1053/j.semnuclmed.2012.07.001 PMID: 23026364
  192. Li, Z.; Cui, M.; Dai, J.; Wang, X.; Yu, P.; Yang, Y.; Jia, J.; Fu, H.; Ono, M.; Jia, H.; Saji, H.; Liu, B. Novel cyclopentadienyl tricarbonyl complexes of (99m)Tc mimicking chalcone as potential single-photon emission computed tomography imaging probes for β-amyloid plaques in brain. J. Med. Chem., 2013, 56(2), 471-482. doi: 10.1021/jm3014184 PMID: 23240831
  193. Barrio, J.; Huang, S.; Cole, G.; Satyamurthy, N.; Petric, A.; Phelps, M.; Small, G. PET imaging of tangles and plaques in alzheimer disease with a highly hydrophobic probe. J. Labelled Comp. Radiopharm., 1999, 42, S194-S195.
  194. Agdeppa, E.; Kepe, V.; Liu, J.; Small, G.W.; Huang, S.C.; Petrič, A.; Satyamurthy, N.; Barrio, J.R. 2-dialkylamino-6-acylmalononitrile substituted naphthalenes (DDNP analogs): novel diagnostic and therapeutic tools in Alzheimer’s disease. Mol. Imaging Biol., 2003, 5(6), 404-417. doi: 10.1016/j.mibio.2003.09.010 PMID: 14667495
  195. Agdeppa, E.D.; Kepe, V.; Liu, J.; Flores-Torres, S.; Satyamurthy, N.; Petric, A.; Cole, G.M.; Small, G.W.; Huang, S.C.; Barrio, J.R. Binding characteristics of radiofluorinated 6-dialkylamino-2-naphthylethylidene derivatives as positron emission tomography imaging probes for beta-amyloid plaques in Alzheimer’s disease. J. Neurosci., 2001, 21(24), RC189-RC189. doi: 10.1523/JNEUROSCI.21-24-j0004.2001 PMID: 11734604
  196. Agdeppa, E.D.; Kepe, V.; Petri, A.; Satyamurthy, N.; Liu, J.; Huang, S.C.; Small, G.W.; Cole, G.M.; Barrio, J.R. In vitro detection of (S)-naproxen and ibuprofen binding to plaques in the Alzheimer’s brain using the positron emission tomography molecular imaging probe 2-(1-6-(2-(18)Ffluoroethyl)(methyl)amino-2-naphthylethylidene)malononitrile. Neuroscience, 2003, 117(3), 723-730. doi: 10.1016/S0306-4522(02)00907-7 PMID: 12617976
  197. Klunk, W.E.; Wang, Y.; Huang, G.; Debnath, M.L.; Holt, D.P.; Mathis, C.A. Uncharged thioflavin-T derivatives bind to amyloid-beta protein with high affinity and readily enter the brain. Life Sci., 2001, 69(13), 1471-1484. doi: 10.1016/S0024-3205(01)01232-2 PMID: 11554609
  198. Mathis, C.A.; Wang, Y.; Holt, D.P.; Huang, G.F.; Debnath, M.L.; Klunk, W.E. Synthesis and evaluation of 11C-labeled 6-substituted 2-arylbenzothiazoles as amyloid imaging agents. J. Med. Chem., 2003, 46(13), 2740-2754. doi: 10.1021/jm030026b PMID: 12801237
  199. Klunk, W.E.; Engler, H.; Nordberg, A.; Wang, Y.; Blomqvist, G.; Holt, D.P.; Bergström, M.; Savitcheva, I.; Huang, G.F.; Estrada, S.; Ausén, B.; Debnath, M.L.; Barletta, J.; Price, J.C.; Sandell, J.; Lopresti, B.J.; Wall, A.; Koivisto, P.; Antoni, G.; Mathis, C.A.; Långström, B. Imaging brain amyloid in Alzheimer’s disease with pittsburgh compound-B. Ann. Neurol., 2004, 55(3), 306-319. doi: 10.1002/ana.20009 PMID: 14991808
  200. Pilebro, B.; Arvidsson, S.; Lindqvist, P.; Sundström, T.; Westermark, P.; Antoni, G.; Suhr, O.; Sörensen, J. Positron emission tomography (PET) utilizing Pittsburgh compound B (PIB) for detection of amyloid heart deposits in hereditary transthyretin amyloidosis (ATTR). J. Nucl. Cardiol., 2018, 25(1), 240-248. doi: 10.1007/s12350-016-0638-5 PMID: 27645889
  201. Yousefi, B.H.; von Reutern, B.; Scherübl, D.; Manook, A.; Schwaiger, M.; Grimmer, T.; Henriksen, G.; Förster, S.; Drzezga, A.; Wester, H.J. FIBT versus florbetaben and PiB: A preclinical comparison study with amyloid-PET in transgenic mice. EJNMMI Res., 2015, 5(1), 20. doi: 10.1186/s13550-015-0090-6 PMID: 25918674
  202. de Lartigue, J. Flutemetamol (18F): A β-amyloid positron emission tomography tracer for Alzheimer’s and dementia diagnosis. Drugs Today, 2014, 50(3), 219-229. doi: 10.1358/dot.2014.50.3.2116672 PMID: 24696867
  203. Davis, P. Application Number: 203137Orig1s000. Vizamyl (Flutemetamol F18 Injection). Med. Rev., 2013, 3-69.
  204. Kimura, Y.; Kato, T.; Ito, K.; Ichise, M. SPECT and PET of the brain. In: Clinical Nuclear Medicine; Ahmadzadehfar, H.; Biersack, H.; Freeman, L.; Zuckier, L., Eds.; Springer: Cham, 2020. doi: 10.1007/978-3-030-39457-8_4
  205. Kung, H.F.; Choi, S.R.; Qu, W.; Zhang, W.; Skovronsky, D. 18F stilbenes and styrylpyridines for PET imaging of A β plaques in Alzheimer’s disease: A miniperspective. J. Med. Chem., 2010, 53(3), 933-941. doi: 10.1021/jm901039z PMID: 19845387
  206. Ono, M.; Wilson, A.; Nobrega, J.; Westaway, D.; Verhoeff, P.; Zhuang, Z.P.; Kung, M.P.; Kung, H.F. 11C-labeled stilbene derivatives as Aβ-aggregate-specific PET imaging agents for Alzheimer’s disease. Nucl. Med. Biol., 2003, 30(6), 565-571. doi: 10.1016/S0969-8051(03)00049-0 PMID: 12900282
  207. Verhoeff, N.P.; Wilson, A.A.; Takeshita, S.; Trop, L.; Hussey, D.; Singh, K.; Kung, H.F.; Kung, M.P.; Houle, S. In-vivo imaging of Alzheimer disease beta-amyloid with 11CSB-13 PET. Am. J. Geriatr. Psychiatry, 2004, 12(6), 584-595. PMID: 15545326
  208. Zhang, W.; Oya, S.; Kung, M.P.; Hou, C.; Maier, D.L.; Kung, H.F. F-18 stilbenes as PET imaging agents for detecting β-amyloid plaques in the brain. J. Med. Chem., 2005, 48(19), 5980-5988. doi: 10.1021/jm050166g PMID: 16162001
  209. Ribeiro Morais, G.; Paulo, A.; Santos, I. A synthetic overview of radiolabeled compounds for β-amyloid targeting. Eur. J. Org. Chem., 2012, 2012(7), 1279-1293. doi: 10.1002/ejoc.201101449
  210. Zhang, W.; Kung, M.P.; Oya, S.; Hou, C.; Kung, H.F. 18F-labeled styrylpyridines as PET agents for amyloid plaque imaging. Nucl. Med. Biol., 2007, 34(1), 89-97. doi: 10.1016/j.nucmedbio.2006.10.003 PMID: 17210465
  211. Choi, S.R.; Schneider, J.A.; Bennett, D.A.; Beach, T.G.; Bedell, B.J.; Zehntner, S.P.; Krautkramer, M.J.; Kung, H.F.; Skovronsky, D.M.; Hefti, F.; Clark, C.M. Correlation of amyloid PET ligand florbetapir F 18 binding with Aβ aggregation and neuritic plaque deposition in postmortem brain tissue. Alzheimer Dis. Assoc. Disord., 2012, 26(1), 8-16. doi: 10.1097/WAD.0b013e31821300bc PMID: 22354138
  212. Zhuang, Z.P.; Kung, M.P.; Wilson, A.; Lee, C.W.; Plössl, K.; Hou, C.; Holtzman, D.M.; Kung, H.F. Structure-activity relationship of imidazo1,2-apyridines as ligands for detecting β-amyloid plaques in the brain. J. Med. Chem., 2003, 46(2), 237-243. doi: 10.1021/jm020351j PMID: 12519062
  213. Newberg, A.B.; Wintering, N.A.; Plössl, K.; Hochold, J.; Stabin, M.G.; Watson, M.; Skovronsky, D.; Clark, C.M.; Kung, M-P.; Kung, H.F. Safety, biodistribution, and dosimetry of 123I-IMPY: A novel amyloid plaque-imaging agent for the diagnosis of Alzheimer’s disease. J. Nucl. Med., 2006, 47(5), 748-754. PMID: 16644743
  214. Chang, K.W.; Chen, C.C.; Lee, S.Y.; Shen, L.H.; Wang, H.E. The synthesis and characterization of 124IIMPY, a thioflavin-S derivative, in transgenic mouse models of Alzheimer’s disease. Appl. Radiat. Isot., 2009, 67(7-8), 1397-1400. doi: 10.1016/j.apradiso.2009.02.039 PMID: 19307132
  215. Kung, M.P.; Lin, K-J.; Hsiao, I-T.; Weng, C-C.; Yen, T.C.; Wey, S.P. Amyloid plaque imaging from IMPY/SPECT to AV-45/PET. Biomed. J., 2012, 35(3), 211-218. doi: 10.4103/2319-4170.106151 PMID: 22735052
  216. Chen, C.J.; Bando, K.; Ashino, H.; Taguchi, K.; Shiraishi, H.; Shima, K.; Fujimoto, O.; Kitamura, C.; Matsushima, S.; Uchida, K.; Nakahara, Y.; Kasahara, H.; Minamizawa, T.; Jiang, C.; Zhang, M.R.; Ono, M.; Tokunaga, M.; Suhara, T.; Higuchi, M.; Yamada, K.; Ji, B. In vivo SPECT imaging of amyloid-β deposition with radioiodinated imidazo1,2-apyridine derivative DRM106 in a mouse model of Alzheimer’s disease. J. Nucl. Med., 2015, 56(1), 120-126. doi: 10.2967/jnumed.114.146944 PMID: 25476539
  217. Okumura, Y.; Maya, Y.; Onishi, T.; Shoyama, Y.; Izawa, A.; Nakamura, D.; Tanifuji, S.; Tanaka, A.; Arano, Y.; Matsumoto, H. Design, synthesis, and preliminary evaluation of SPECT probes for imaging β-amyloid in alzheimer’s disease affected brain. ACS Chem. Neurosci., 2018, 9(6), 1503-1514. doi: 10.1021/acschemneuro.8b00064 PMID: 29580057
  218. Sedgwick, A.C.; Brewster, J.T.; Harvey, P.; Iovan, D.A.; Smith, G.; He, X.P.; Tian, H.; Sessler, J.L.; James, T.D. Metal-based imaging agents: Progress towards interrogating neurodegenerative disease. Chem. Soc. Rev., 2020, 49(10), 2886-2915. doi: 10.1039/C8CS00986D PMID: 32226991
  219. Serdons, K.; Verduyckt, T.; Cleynhens, J.; Terwinghe, C.; Mortelmans, L.; Bormans, G.; Verbruggen, A. Synthesis and evaluation of a 99mTc-BAT-phenylbenzothiazole conjugate as a potential in vivo tracer for visualization of amyloid β. Bioorg. Med. Chem. Lett., 2007, 17(22), 6086-6090. doi: 10.1016/j.bmcl.2007.09.055 PMID: 17904367
  220. Molavipordanjani, S.; Emami, S.; Hosseinimehr, S.J. 99mTc-labeled small molecules for diagnosis of Alzheimer’s disease: Past, recent and future perspectives. Curr. Med. Chem., 2019, 26(12), 2166-2189. doi: 10.2174/0929867325666180410104023 PMID: 29637851
  221. Zhang, X.; Yu, P.; Yang, Y.; Hou, Y.; Peng, C.; Liang, Z.; Lu, J.; Chen, B.; Dai, J.; Liu, B.; Cui, M. 99m Tc-Labeled 2-Arylbenzothiazoles: Aβ imaging probes with favorable brain pharmacokinetics for single-photon emission computed tomography. Bioconjug. Chem., 2016, 27(10), 2493-2504. doi: 10.1021/acs.bioconjchem.6b00444 PMID: 27668687
  222. Krasnovskaya, O.; Spector, D.; Zlobin, A.; Pavlov, K.; Gorelkin, P.; Erofeev, A.; Beloglazkina, E.; Majouga, A. Metals in imaging of Alzheimer’s disease. Int. J. Mol. Sci., 2020, 21(23), 9190. doi: 10.3390/ijms21239190 PMID: 33276505
  223. Chen, K.; Cui, M. Recent progress in the development of metal complexes as β-amyloid imaging probes in the brain. MedChemComm., 2017, 8(7), 1393-1407. doi: 10.1039/C7MD00064B PMID: 30108850
  224. Jokar, S.; Behnammanesh, H.; Erfani, M.; Sharifzadeh, M.; Gholami, M.; Sabzevari, O.; Amini, M.; Geramifar, P.; Hajiramezanali, M.; Beiki, D. Synthesis, biological evaluation and preclinical study of a novel 99mTc-peptide: A targeting probe of amyloid-β plaques as a possible diagnostic agent for Alzheimer’s disease. Bioorg. Chem., 2020, 99, 103857. doi: 10.1016/j.bioorg.2020.103857 PMID: 32330736
  225. Xu, M.; Guo, J.; Gu, J.; Zhang, L.; Liu, Z.; Ding, L.; Fu, H.; Ma, Y.; Liang, S.; Wang, H. Preclinical and clinical study on 18FDRKXH1: a novel β-amyloid PET tracer for Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging, 2022, 49(2), 652-663. doi: 10.1007/s00259-021-05421-0 PMID: 34292345
  226. Rivera-Marrero, S.; Fernández-Maza, L.; León-Chaviano, S.; Sablón-Carrazana, M.; Bencomo-Martínez, A.; Perera-Pintado, A.; Prats-Capote, A.; Zoppolo, F.; Kreimerman, I.; Pardo, T.; Reyes, L.; Balcerzyk, M.; Dubed-Bandomo, G.; Mercerón-Martínez, D.; Espinosa-Rodríguez, L.A.; Engler, H.; Savio, E.; Rodríguez-Tanty, C. 18 FAmylovis as a potential PET probe for β-amyloid plaque: Synthesis, in silico, in vitro and in vivo evaluations. Curr. Radiopharm., 2019, 12(1), 58-71. doi: 10.2174/1874471012666190102165053 PMID: 30605068
  227. Heurling, K.; Leuzy, A.; Zimmer, E.R.; Lubberink, M.; Nordberg, A. Imaging β-amyloid using 18Fflutemetamol positron emission tomography: From dosimetry to clinical diagnosis. Eur. J. Nucl. Med. Mol. Imaging, 2016, 43(2), 362-373. doi: 10.1007/s00259-015-3208-1 PMID: 26440450
  228. Zha, Z.; Ploessl, K.; Choi, S.R.; Alexoff, D.; Kung, H.F. Preclinical evaluation of 18FD3FSP, deuterated AV-45, for imaging of β-amyloid in the brain. Nucl. Med. Biol., 2021, 92, 97-106. doi: 10.1016/j.nucmedbio.2020.03.003 PMID: 32245565
  229. Xiao, H.; Choi, S.R.; Zhao, R.; Ploessl, K.; Alexoff, D.; Zhu, L.; Zha, Z.; Kung, H.F. A new highly deuterated 18 FAV-45, 18 FD15FSP, for imaging β-amyloid plaques in the brain. ACS Med. Chem. Lett., 2021, 12(7), 1086-1092. doi: 10.1021/acsmedchemlett.1c00062 PMID: 34267878
  230. Abrahamson, E.E.; Stehouwer, J.S.; Vazquez, A.L.; Huang, G.F.; Mason, N.S.; Lopresti, B.J.; Klunk, W.E.; Mathis, C.A.; Ikonomovic, M.D. Development of a PET radioligand selective for cerebral amyloid angiopathy. Nucl. Med. Biol., 2021, 92, 85-96. doi: 10.1016/j.nucmedbio.2020.05.001 PMID: 32471773
  231. Jia, J.; Zhang, L.; Song, J.; Dai, J.; Cui, M. Discovery of diphenoxy derivatives with flexible linkers as ligands for β-amyloid plaques. Mol. Pharm., 2020, 17(11), 4089-4100. doi: 10.1021/acs.molpharmaceut.0c00537 PMID: 32845647
  232. Rivera-Marrero, S.; Bencomo-Martínez, A.; Orta Salazar, E.; Sablón-Carrazana, M.; García-Pupo, L.; Zoppolo, F.; Arredondo, F.; Dapueto, R.; Daniela Santi, M.; Kreimerman, I.; Pardo, T.; Reyes, L.; Galán, L.; León-Chaviano, S.; Espinosa-Rodríguez, L.A.; Menéndez-Soto del Valle, R.; Savio, E.; Díaz Cintra, S.; Rodríguez-Tanty, C. A new naphthalene derivative with anti-amyloidogenic activity as potential therapeutic agent for Alzheimer’s disease. Bioorg. Med. Chem., 2020, 28(20), 115700. doi: 10.1016/j.bmc.2020.115700 PMID: 33069076
  233. Snellman, A.; Rokka, J.; Lopez-Picon, F.R.; Eskola, O.; Wilson, I.; Farrar, G.; Scheinin, M.; Solin, O.; Rinne, J.O.; Haaparanta-Solin, M. Pharmacokinetics of 18Fflutemetamol in wild-type rodents and its binding to beta amyloid deposits in a mouse model of Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging, 2012, 39(11), 1784-1795. doi: 10.1007/s00259-012-2178-9 PMID: 22801729
  234. Choi, S.R.; Golding, G.; Zhuang, Z.; Zhang, W.; Lim, N.; Hefti, F.; Benedum, T.E.; Kilbourn, M.R.; Skovronsky, D.; Kung, H.F. Preclinical properties of 18F-AV-45: A PET agent for Abeta plaques in the brain. J. Nucl. Med., 2009, 50(11), 1887-1894. doi: 10.2967/jnumed.109.065284 PMID: 19837759
  235. Sundaram, G.S.M.; Dhavale, D.; Prior, J.L.; Sivapackiam, J.; Laforest, R.; Kotzbauer, P.; Sharma, V. Synthesis, characterization, and preclinical validation of a PET radiopharmaceutical for interrogating Aβ (β-amyloid) plaques in Alzheimer’s disease. EJNMMI Res., 2015, 5(1), 33. doi: 10.1186/s13550-015-0112-4 PMID: 26061601
  236. Zhang, W.; Oya, S.; Kung, M.P.; Hou, C.; Maier, D.L.; Kung, H.F. F-18 Polyethyleneglycol stilbenes as PET imaging agents targeting Aβ aggregates in the brain. Nucl. Med. Biol., 2005, 32(8), 799-809. doi: 10.1016/j.nucmedbio.2005.06.001 PMID: 16253804
  237. Brown, P.C. Application number:204677Orig1s000. Florbetaben. Pharmacol. Rev., 2012, 1-246.
  238. Dubois, B.; Hampel, H.; Feldman, H.H.; Scheltens, P.; Aisen, P.; Andrieu, S.; Bakardjian, H.; Benali, H.; Bertram, L.; Blennow, K.; Broich, K.; Cavedo, E.; Crutch, S.; Dartigues, J.F.; Duyckaerts, C.; Epelbaum, S.; Frisoni, G.B.; Gauthier, S.; Genthon, R.; Gouw, A.A.; Habert, M.O.; Holtzman, D.M.; Kivipelto, M.; Lista, S.; Molinuevo, J.L.; O’Bryant, S.E.; Rabinovici, G.D.; Rowe, C.; Salloway, S.; Schneider, L.S.; Sperling, R.; Teichmann, M.; Carrillo, M.C.; Cummings, J.; Jack, C.R., Jr Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria. Alzheimers Dement., 2016, 12(3), 292-323. doi: 10.1016/j.jalz.2016.02.002 PMID: 27012484
  239. Gauthier, S.; Rosa-Neto, P.; Morais, J.A.; Webster, C. World Alzheimer Report 2021: Journey through the Diagnosis of Dementia. 2021.
  240. Robertson, J.S.; Rowe, C.C.; Villemagne, V.L. Tau imaging with PET: An overview of challenges, current progress, and future applications. Q. J. Nucl. Med. Mol. Imaging, 2017, 61(4), 405-413. doi: 10.23736/S1824-4785.17.03012-6 PMID: 28750496
  241. Wang, Y.T.; Edison, P. Tau imaging in neurodegenerative diseases using positron emission tomography. Curr. Neurol. Neurosci. Rep., 2019, 19(7), 45. doi: 10.1007/s11910-019-0962-7 PMID: 31172290
  242. Leuzy, A.; Chiotis, K.; Lemoine, L.; Gillberg, P.G.; Almkvist, O.; Rodriguez-Vieitez, E.; Nordberg, A. Tau PET imaging in neurodegenerative tauopathies—still a challenge. Mol. Psychiatry, 2019, 24, 1112-1134.
  243. Villemagne, V.L.; Doré, V.; Burnham, S.C.; Masters, C.L.; Rowe, C.C. Imaging tau and amyloid-β proteinopathies in Alzheimer disease and other conditions. Nat. Rev. Neurol., 2018, 14(4), 225-236. doi: 10.1038/nrneurol.2018.9 PMID: 29449700
  244. Yeung, A.W.K.; Goto, T.K.; Leung, W.K. The changing landscape of neuroscience research, 2006–2015: A bibliometric study. Front. Neurosci., 2017, 11, 120. doi: 10.3389/fnins.2017.00120 PMID: 28377687
  245. Villemagne, V.L.; Furumoto, S.; Fodero-Tavoletti, M.; Harada, R.; Mulligan, R.S.; Kudo, Y.; Masters, C.L.; Yanai, K.; Rowe, C.C.; Okamura, N. The challenges of tau imaging. Future Neurol., 2012, 7(4), 409-421. doi: 10.2217/fnl.12.34
  246. Dani, M.; Edison, P.; Brooks, D.J. Imaging biomarkers in tauopathies. Parkinsonism Relat. Disord., 2016, 22(S1), S26-S28. doi: 10.1016/j.parkreldis.2015.08.011 PMID: 26299160
  247. Declercq, L.; Celen, S.; Lecina, J.; Ahamed, M.; Tousseyn, T.; Moechars, D.; Alcazar, J.; Ariza, M.; Fierens, K.; Bottelbergs, A.; Mariën, J.; Vandenberghe, R.; Andres, I.J.; Van Laere, K.; Verbruggen, A.; Bormans, G. Comparison of new tau PET-tracer candidates with 18 FT808 and 18 FT807. Mol. Imaging, 2016, 15 doi: 10.1177/1536012115624920 PMID: 27030397
  248. Shin, J.; Kepe, V.; Barrio, J.R.; Small, G.W. The merits of FDDNP-PET imaging in Alzheimer’s disease. J. Alzheimers Dis., 2011, 26(S3), 135-145. doi: 10.3233/JAD-2011-0008 PMID: 21971458
  249. Ossenkoppele, R.; Tolboom, N.; Foster-Dingley, J.C.; Adriaanse, S.F.; Boellaard, R.; Yaqub, M.; Windhorst, A.D.; Barkhof, F.; Lammertsma, A.A.; Scheltens, P.; van der Flier, W.M.; van Berckel, B.N.M. Longitudinal imaging of Alzheimer pathology using 11CPIB, 18FFDDNP and 18FFDG PET. Eur. J. Nucl. Med. Mol. Imaging, 2012, 39(6), 990-1000. doi: 10.1007/s00259-012-2102-3 PMID: 22441582
  250. Wood, H. 11CPBB3—a new PET ligand that identifies tau pathology in the brains of patients with AD. Nat. Rev. Neurol., 2013, 9(11), 599-599. doi: 10.1038/nrneurol.2013.216 PMID: 24145369
  251. Kimura, Y.; Ichise, M.; Ito, H.; Shimada, H.; Ikoma, Y.; Seki, C.; Takano, H.; Kitamura, S.; Shinotoh, H.; Kawamura, K.; Zhang, M.R.; Sahara, N.; Suhara, T.; Higuchi, M. PET quantification of tau pathology in human brain with 11 C-PBB3. J. Nucl. Med., 2015, 56(9), 1359-1365. doi: 10.2967/jnumed.115.160127 PMID: 26182966
  252. Endo, H.; Shimada, H.; Sahara, N.; Ono, M.; Koga, S.; Kitamura, S.; Niwa, F.; Hirano, S.; Kimura, Y.; Ichise, M.; Shinotoh, H.; Zhang, M.R.; Kuwabara, S.; Dickson, D.W.; Toda, T.; Suhara, T.; Higuchi, M. In vivo binding of a tau imaging probe, 11 CPBB3, in patients with progressive supranuclear palsy. Mov. Disord., 2019, 34(5), 744-754. doi: 10.1002/mds.27643 PMID: 30892739
  253. Okamura, N.; Furumoto, S.; Harada, R.; Tago, T.; Yoshikawa, T.; Fodero-Tavoletti, M.; Mulligan, R.S.; Villemagne, V.L.; Akatsu, H.; Yamamoto, T.; Arai, H.; Iwata, R.; Yanai, K.; Kudo, Y. Novel 18F-labeled arylquinoline derivatives for noninvasive imaging of tau pathology in Alzheimer disease. J. Nucl. Med., 2013, 54(8), 1420-1427. doi: 10.2967/jnumed.112.117341 PMID: 23857514
  254. Okamura, N.; Suemoto, T.; Furumoto, S.; Suzuki, M.; Shimadzu, H.; Akatsu, H.; Yamamoto, T.; Fujiwara, H.; Nemoto, M.; Maruyama, M.; Arai, H.; Yanai, K.; Sawada, T.; Kudo, Y. Quinoline and benzimidazole derivatives: Candidate probes for in vivo imaging of tau pathology in Alzheimer’s disease. J. Neurosci., 2005, 25(47), 10857-10862. doi: 10.1523/JNEUROSCI.1738-05.2005 PMID: 16306398
  255. Fodero-Tavoletti, M.T.; Okamura, N.; Furumoto, S.; Mulligan, R.S.; Connor, A.R.; McLean, C.A.; Cao, D.; Rigopoulos, A.; Cartwright, G.A.; O’Keefe, G.; Gong, S.; Adlard, P.A.; Barnham, K.J.; Rowe, C.C.; Masters, C.L.; Kudo, Y.; Cappai, R.; Yanai, K.; Villemagne, V.L. 18F-THK523: A novel in vivo tau imaging ligand for Alzheimer’s disease. Brain, 2011, 134(4), 1089-1100. doi: 10.1093/brain/awr038 PMID: 21436112
  256. Okamura, N.; Furumoto, S.; Fodero-Tavoletti, M.T.; Mulligan, R.S.; Harada, R.; Yates, P.; Pejoska, S.; Kudo, Y.; Masters, C.L.; Yanai, K.; Rowe, C.C.; Villemagne, V.L. Non-invasive assessment of Alzheimer’s disease neurofibrillary pathology using 18F-THK5105 PET. Brain, 2014, 137(6), 1762-1771. doi: 10.1093/brain/awu064 PMID: 24681664
  257. Harada, R.; Okamura, N.; Furumoto, S.; Furukawa, K.; Ishiki, A.; Tomita, N.; Hiraoka, K.; Watanuki, S.; Shidahara, M.; Miyake, M.; Ishikawa, Y.; Matsuda, R.; Inami, A.; Yoshikawa, T.; Tago, T.; Funaki, Y.; Iwata, R.; Tashiro, M.; Yanai, K.; Arai, H.; Kudo, Y. 18FTHK-5117 PET for assessing neurofibrillary pathology in Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging, 2015, 42(7), 1052-1061. doi: 10.1007/s00259-015-3035-4 PMID: 25792456
  258. Harada, R.; Okamura, N.; Furumoto, S.; Furukawa, K.; Ishiki, A.; Tomita, N.; Tago, T.; Hiraoka, K.; Watanuki, S.; Shidahara, M.; Miyake, M.; Ishikawa, Y.; Matsuda, R.; Inami, A.; Yoshikawa, T.; Funaki, Y.; Iwata, R.; Tashiro, M.; Yanai, K.; Arai, H.; Kudo, Y. 18 F-THK5351: A novel PET radiotracer for imaging neurofibrillary pathology in alzheimer disease. J. Nucl. Med., 2016, 57(2), 208-214. doi: 10.2967/jnumed.115.164848 PMID: 26541774
  259. Chien, D.T.; Bahri, S.; Szardenings, A.K.; Walsh, J.C.; Mu, F.; Su, M.Y.; Shankle, W.R.; Elizarov, A.; Kolb, H.C. Early clinical PET imaging results with the novel PHF-tau radioligand F-18-T807. J. Alzheimers Dis., 2013, 34(2), 457-468. doi: 10.3233/JAD-122059 PMID: 23234879
  260. Xia, C.F.; Arteaga, J.; Chen, G.; Gangadharmath, U.; Gomez, L.F.; Kasi, D.; Lam, C.; Liang, Q.; Liu, C.; Mocharla, V.P.; Mu, F.; Sinha, A.; Su, H.; Szardenings, A.K.; Walsh, J.C.; Wang, E.; Yu, C.; Zhang, W.; Zhao, T.; Kolb, H.C. 18 FT807, a novel tau positron emission tomography imaging agent for Alzheimer’s disease. Alzheimers Dement., 2013, 9(6), 666-676. doi: 10.1016/j.jalz.2012.11.008 PMID: 23411393
  261. Jie, C.; Treyer, V.; Schibli, R.; Mu, L. Tauvid™: The first FDA-approved PET tracer for imaging tau pathology in Alzheimer’s disease. Pharmaceuticals., 2021, 14(2), 110. doi: 10.3390/ph14020110 PMID: 33573211
  262. Hashimoto, H.; Kawamura, K.; Igarashi, N.; Takei, M.; Fujishiro, T.; Aihara, Y.; Shiomi, S.; Muto, M.; Ito, T.; Furutsuka, K.; Yamasaki, T.; Yui, J.; Xie, L.; Ono, M.; Hatori, A.; Nemoto, K.; Suhara, T.; Higuchi, M.; Zhang, M.R. Radiosynthesis, photoisomerization, biodistribution, and metabolite analysis of 11C-PBB3 as a clinically useful PET probe for imaging of tau pathology. J. Nucl. Med., 2014, 55(9), 1532-1538. doi: 10.2967/jnumed.114.139550 PMID: 24963128
  263. Maruyama, M.; Shimada, H.; Suhara, T.; Shinotoh, H.; Ji, B.; Maeda, J.; Zhang, M.R.; Trojanowski, J.Q.; Lee, V.M.Y.; Ono, M.; Masamoto, K.; Takano, H.; Sahara, N.; Iwata, N.; Okamura, N.; Furumoto, S.; Kudo, Y.; Chang, Q.; Saido, T.C.; Takashima, A.; Lewis, J.; Jang, M.K.; Aoki, I.; Ito, H.; Higuchi, M. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls. Neuron, 2013, 79(6), 1094-1108. doi: 10.1016/j.neuron.2013.07.037 PMID: 24050400
  264. World Health Organization. The top 10 causes of death. Available from: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (Accessed on: May 12, 2022).
  265. Go, A.S.; Chertow, G.M.; Fan, D.; McCulloch, C.E.; Hsu, C. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N. Engl. J. Med., 2004, 351(13), 1296-1305. doi: 10.1056/NEJMoa041031 PMID: 15385656
  266. Sarnak, M.J. Cardiovascular complications in chronic kidney disease. Am. J. Kidney Dis., 2003, 41(S5), 11-17. doi: 10.1016/S0272-6386(03)00372-X PMID: 12776309
  267. Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; Guan, L.; Wei, Y.; Li, H.; Wu, X.; Xu, J.; Tu, S.; Zhang, Y.; Chen, H.; Cao, B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet., 2020, 395(10229), 1054-1062. doi: 10.1016/S0140-6736(20)30566-3 PMID: 32171076
  268. Shi, S.; Qin, M.; Shen, B.; Cai, Y.; Liu, T.; Yang, F.; Gong, W.; Liu, X.; Liang, J.; Zhao, Q.; Huang, H.; Yang, B.; Huang, C. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol., 2020, 5(7), 802-810. doi: 10.1001/jamacardio.2020.0950 PMID: 32211816
  269. Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; Zhao, Y.; Li, Y.; Wang, X.; Peng, Z. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. JAMA, 2020, 323(11), 1061-1069. doi: 10.1001/jama.2020.1585 PMID: 32031570
  270. Kotecha, T.; Knight, D.S.; Razvi, Y.; Kumar, K.; Vimalesvaran, K.; Thornton, G.; Patel, R.; Chacko, L.; Brown, J.T.; Coyle, C.; Leith, D.; Shetye, A.; Ariff, B.; Bell, R.; Captur, G.; Coleman, M.; Goldring, J.; Gopalan, D.; Heightman, M.; Hillman, T.; Howard, L.; Jacobs, M.; Jeetley, P.S.; Kanagaratnam, P.; Kon, O.M.; Lamb, L.E.; Manisty, C.H.; Mathurdas, P.; Mayet, J.; Negus, R.; Patel, N.; Pierce, I.; Russell, G.; Wolff, A.; Xue, H.; Kellman, P.; Moon, J.C.; Treibel, T.A.; Cole, G.D.; Fontana, M. Patterns of myocardial injury in recovered troponin-positive COVID-19 patients assessed by cardiovascular magnetic resonance. Eur. Heart J., 2021, 42(19), 1866-1878. doi: 10.1093/eurheartj/ehab075 PMID: 33596594
  271. Fyhrquist, F.; Saijonmaa, O. Renin-angiotensin system revisited. J. Intern. Med., 2008, 264(3), 224-236. doi: 10.1111/j.1365-2796.2008.01981.x PMID: 18793332
  272. Crowley, S.D.; Coffman, T.M. Recent advances involving the renin–angiotensin system. Exp. Cell Res., 2012, 318(9), 1049-1056. doi: 10.1016/j.yexcr.2012.02.023 PMID: 22410251
  273. de Gasparo, M.; Catt, K.J.; Inagami, T.; Wright, J.W.; Unger, T. International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol. Rev., 2000, 52(3), 415-472. PMID: 10977869
  274. Karnik, S.S.; Unal, H.; Kemp, J.R.; Tirupula, K.C.; Eguchi, S.; Vanderheyden, P.M.L.; Thomas, W.G. International union of basic and clinical pharmacology. XCIX. Angiotensin receptors: Interpreters of pathophysiological angiotensinergic stimuli. Pharmacol. Rev., 2015, 67(4), 754-819. doi: 10.1124/pr.114.010454 PMID: 26315714
  275. Miyata, N.; Park, F.; Li, X.F.; Cowley, A.W., Jr Distribution of angiotensin AT1 and AT2 receptor subtypes in the rat kidney. Am. J. Physiol., 1999, 277(3), F437-F446. PMID: 10484527
  276. Allen, A.; Zhuo, J.; Mendelsohn, F.A.O. Localization and function of angiotensin AT1 receptors. Am. J. Hypertens., 2000, 13(1), S31-S38. doi: 10.1016/S0895-7061(99)00249-6 PMID: 10678286
  277. Smith, R.D.; Chiu, A.T.; Wong, P.C.; Herblin, W.F.; Timmermans, P.B.M.W.M. Pharmacology of nonpeptide angiotensin II receptor antagonists. Annu. Rev. Pharmacol. Toxicol., 1992, 32(1), 135-165. doi: 10.1146/annurev.pa.32.040192.001031 PMID: 1605566
  278. Timmermans, P.B.; Wong, P.C.; Chiu, A.T.; Herblin, W.F.; Benfield, P.; Carini, D.J.; Lee, R.J.; Wexler, R.R.; Saye, J.A.; Smith, R.D. Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol. Rev., 1993, 45(2), 205-251. PMID: 8372104
  279. Chang, R.S.L.; Lotti, V.J. Angiotensin receptor subtypes in rat, rabbit and monkey tissues: Relative distribution and species dependency. Life Sci., 1991, 49(20), 1485-1490. doi: 10.1016/0024-3205(91)90048-G PMID: 1943452
  280. Zhu, Y.; Cui, H.; Lv, J.; Liang, H.; Zheng, Y.; Wang, S.; Wang, M.; Wang, H.; Ye, F. AT1 and AT2 receptors modulate renal tubular cell necroptosis in angiotensin II-infused renal injury mice. Sci. Rep., 2019, 9(1), 19450. doi: 10.1038/s41598-019-55550-8 PMID: 31857626
  281. Unger, T. The role of the renin-angiotensin system in the development of cardiovascular disease. Am. J. Cardiol., 2002, 89(2), 3-9. doi: 10.1016/S0002-9149(01)02321-9 PMID: 11835903
  282. Jazmín, F.M.; Diego, L.M.; Luisa, M.A. Function of renin angiotensin system on heart failure. J. Integr. Cardiol., 2016, 2(5), 380-386. doi: 10.15761/JIC.1000180
  283. Kim, S.; Iwao, H. Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol. Rev., 2000, 52(1), 11-34. PMID: 10699153
  284. Billet, S.; Aguilar, F.; Baudry, C.; Clauser, E. Role of angiotensin II AT1 receptor activation in cardiovascular diseases. Kidney Int., 2008, 74(11), 1379-1384. doi: 10.1038/ki.2008.358 PMID: 18650793
  285. Cong, H.; Li, X.; Ma, L.; Jiang, H.; Mao, Y.; Xu, M.; Angiotensin, I.I. Angiotensin II receptor type 1 is upregulated in atrial tissue of patients with rheumatic valvular disease with atrial fibrillation. J. Thorac. Cardiovasc. Surg., 2010, 140(2), 298-304. doi: 10.1016/j.jtcvs.2009.10.035 PMID: 20080265
  286. Carey, R.M.; Siragy, H.M. The intrarenal renin–angiotensin system and diabetic nephropathy. Trends Endocrinol. Metab., 2003, 14(6), 274-281. doi: 10.1016/S1043-2760(03)00111-5 PMID: 12890592
  287. Hisamichi, M.; Kamijo-Ikemori, A.; Sugaya, T.; Ichikawa, D.; Natsuki, T.; Hoshino, S.; Kimura, K.; Shibagaki, Y. Role of angiotensin II type 1a receptor in renal injury induced by deoxycorticosterone acetate–salt hypertension. FASEB J., 2017, 31(1), 72-84. doi: 10.1096/fj.201600684rr PMID: 27663860
  288. Pfeffer, M.A.; Swedberg, K.; Granger, C.B.; Held, P.; McMurray, J.J.V.; Michelson, E.L.; Olofsson, B.; Östergren, J.; Yusuf, S.; Pocock, S. Effects of candesartan on mortality and morbidity in patients with chronic heart failure: The CHARM-Overall programme. Lancet., 2003, 362(9386), 759-766. doi: 10.1016/S0140-6736(03)14282-1 PMID: 13678868
  289. Brenner, B.M.; Cooper, M.E.; de Zeeuw, D.; Keane, W.F.; Mitch, W.E.; Parving, H-H.; Remuzzi, G.; Snapinn, S.M.; Zhang, Z.; Shahinfar, S. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N. Engl. J. Med., 2001, 345(12), 861-869. doi: 10.1056/NEJMoa011161
  290. Fonarow, G.C.; Yancy, C.W.; Hernandez, A.F.; Peterson, E.D.; Spertus, J.A.; Heidenreich, P.A. Potential impact of optimal implementation of evidence-based heart failure therapies on mortality. Am. Heart J., 2011, 161(6), 1024-1030.e3. doi: 10.1016/j.ahj.2011.01.027 PMID: 21641346
  291. Tsoi, B.; Akioyamen, L.E.; Bonner, A.; Frankfurter, C.; Levine, M.; Pullenayegum, E.; Goeree, R.; O’Reilly, D. Comparative efficacy of angiotensin II antagonists in essential hypertension: Systematic review and network meta-analysis of randomised controlled trials. Heart Lung Circ., 2018, 27(6), 666-682. doi: 10.1016/j.hlc.2017.06.721 PMID: 28807582
  292. Dézsi, C.A. The different therapeutic choices with ARBs. Which one to give? when? why? Am. J. Cardiovasc. Drugs, 2016, 16(4), 255-266. doi: 10.1007/s40256-016-0165-4 PMID: 26940560
  293. Muneer, K.; Nair, A. Angiotensin-converting enzyme inhibitors and receptor blockers in heart failure and chronic kidney disease – Demystifying controversies. Indian Heart J., 2017, 69(3), 371-374. doi: 10.1016/j.ihj.2016.08.007 PMID: 28648436
  294. Goldberg, A.I.; Dunlay, M.C.; Sweet, C.S. Safety and tolerability of losartan potassium, an angiotensin II receptor antagonist, compared with hydrochlorothiazide, atenolol, felodipne ER, and angiotensin-converting enzyme inhibitors for the treatment of systemic hypertension. Am. J. Cardiol., 1995, 75(12), 793-795. doi: 10.1016/S0002-9149(99)80413-5 PMID: 7717281
  295. Sidorenkov, G.; Navis, G. Safety of ACE inhibitor therapies in patients with chronic kidney disease. Expert Opin. Drug Saf., 2014, 13(10), 1383-1395. doi: 10.1517/14740338.2014.951328 PMID: 25148900
  296. Naik, P.; Murumkar, P.; Giridhar, R.; Yadav, M.R.; Angiotensin, I.I. Angiotensin II receptor type 1 (AT1) selective nonpeptidic antagonists—A perspective. Bioorg. Med. Chem., 2010, 18(24), 8418-8456. doi: 10.1016/j.bmc.2010.10.043 PMID: 21071232
  297. Fierens, F.; Vanderheyden, P.M.L.; De Backer, J.P.; Vauquelin, G. Binding of the antagonist candesartan to angiotensin II AT1 receptor-tranfected Chinese hamster ovary cells. Eur. J. Pharmacol., 1999, 367(2-3), 413-422. doi: 10.1016/S0014-2999(98)00965-0 PMID: 10079018
  298. Vanderheyden, P.M.L.; Fierens, F.L.P.; De Backer, J.P.; Fraeyman, N.; Vauquelin, G. Distinction between surmountable and insurmountable selective AT 1 receptor antagonists by use of CHO-K1 cells expressing human angiotensin II AT 1 receptors. Br. J. Pharmacol., 1999, 126(4), 1057-1065. doi: 10.1038/sj.bjp.0702398 PMID: 10193788
  299. Gibson, R.E.; Beauchamp, H.T.; Fioravanti, C.; Brenner, N.; Burns, H.D. Receptor binding radiotracers for the angiotensin II receptor: Radioiodinated Sar13,Ile8 angiotensin II. Nucl. Med. Biol., 1994, 21(4), 593-600. doi: 10.1016/0969-8051(94)90024-8 PMID: 9234316
  300. Verjans, J.W.H.; Lovhaug, D.; Narula, N.; Petrov, A.D.; Indrevoll, B.; Bjurgert, E.; Krasieva, T.B.; Petersen, L.B.; Kindberg, G.M.; Solbakken, M.; Cuthbertson, A.; Vannan, M.A.; Reutelingsperger, C.P.M.; Tromberg, B.J.; Hofstra, L.; Narula, J. Noninvasive imaging of angiotensin receptors after myocardial infarction. JACC Cardiovasc. Imaging, 2008, 1(3), 354-362. doi: 10.1016/j.jcmg.2007.11.007 PMID: 19356449
  301. Amin, A.M.; El-bary, A.A.; El-Mohty, A.A.; Saad, S.M.; El-Sharawy, D.M. Radioiodination and biological evaluation of valsartan as a tracer for cardiovascular disorder detection. Nat. Sci., 2013, 5(4), 526-531. doi: 10.4236/ns.2013.54066
  302. Sanad, M.H.; Sallam, K.M.; Marzook, F.A.; Abd-Elhaliem, S.M. Radioiodination and biological evaluation of candesartan as a tracer for cardiovascular disorder detection. J. Labelled Comp. Radiopharm., 2016, 59(12), 484-491. doi: 10.1002/jlcr.3435 PMID: 27634455
  303. Sanad, H.M.; Ibrahim, A.A. Radioiodination, diagnostic nuclear imaging and bioevaluation of olmesartan as a tracer for cardiac imaging. Radiochim. Acta, 2018, 106(10), 843-850. doi: 10.1515/ract-2018-2960
  304. Sanad, M.H.; Marzook, E.A.; Challan, S.B. Radioiodination of olmesartan medoxomil and biological evaluation of the product as a tracer for cardiac imaging. Radiochim. Acta, 2018, 106(4), 329-336. doi: 10.1515/ract-2017-2830
  305. Sanad, M.H.; Marzook, F.A.; Abd-Elhaliem, S.M. Radioiodination and biological evaluation of irbesartan as a tracer for cardiac imaging. Radiochim. Acta, 2021, 109(1), 41-46. doi: 10.1515/ract-2020-0025
  306. Santella, J.B., III; Duncia, J.V.; Ensinger, C.L.; VanAtten, M.K.; Carini, D.J.; Wexler, R.R.; Chiu, A.T.; Wong, P.C.; Timmermans, P.B.M.W.M. Balanced angiotensin II receptor antagonists. III. The effects of substitution at the imidazole 5-position. Bioorg. Med. Chem. Lett., 1994, 4(18), 2235-2240. doi: 10.1016/S0960-894X(00)80077-3
  307. Mathews, W.B.; Burns, H.D.; Dannals, R.F.; Ravert, H.T.; Naylor, E.M. Carbon-11 labeling of a potent, nonpeptide, at1-selective angiotensin-II receptor antagonist: MK-996. J. Labelled Comp. Radiopharm., 1995, 36(8), 729-737. doi: 10.1002/jlcr.2580360804
  308. Hamill, T.G.; Donald Burns, H.; Dannals, R.F.; Mathews, W.B.; Musachio, J.L.; Ravert, H.T.; Naylor, E.M. Development of 11CL-159,884: A radiolabelled, nonpeptide angiotensin II antagonist that is useful for angiotensin II, AT1 receptor imaging. Appl. Radiat. Isot., 1996, 47(2), 211-218. doi: 10.1016/0969-8043(95)00273-1 PMID: 8852629
  309. Kim, S.E.; Scheffel, U.; Szabo, Z.; Burns, H.D.; Gibson, R.E.; Ravert, H.T.; Mathews, W.B.; Hamill, T.G.; Dannals, R.F. In vivo labeling of angiotensin II receptors with a carbon-11-labeled selective nonpeptide antagonist. J. Nucl. Med., 1996, 37(2), 307-311. PMID: 8667067
  310. Szabo, Z.; Kao, P.F.; Burns, H.D.; Gibson, R.E.; Hamill, T.G.; Ravert, H.T.; Kim, S.E.; Mathews, W.B.; Musachio, J.L.; Scheffel, U.; Dannals, R.F. Investigation of angiotensin II/AT1 receptors with carbon-11-L-159,884: A selective AT1 antagonist. J. Nucl. Med., 1998, 39(7), 1209-1213. PMID: 9669396
  311. Zober, T.G.; Mathews, W.B.; Seckin, E.; Yoo, S.; Hilton, J.; Xia, J.; Sandberg, K.; Ravert, H.T.; Dannals, R.F.; Szabo, Z. PET Imaging of the AT1 receptor with 11CKR31173. Nucl. Med. Biol., 2006, 33(1), 5-13. doi: 10.1016/j.nucmedbio.2005.08.005 PMID: 16459253
  312. Szabo, Z.; Speth, R.C.; Brown, P.R.; Kerenyi, L.; Kao, P.F.; Mathews, W.B.; Ravert, H.T.; Hilton, J.; Rauseo, P.; Dannals, R.F.; Zheng, W.; Lee, S.; Sandberg, K. Use of positron emission tomography to study AT1 receptor regulation in vivo. J. Am. Soc. Nephrol., 2001, 12(7), 1350-1358. doi: 10.1681/ASN.V1271350 PMID: 11423564
  313. Owonikoko, T.K.; Fabucci, M.E.; Brown, P.R.; Nisar, N.; Hilton, J.; Mathews, W.B.; Ravert, H.T.; Rauseo, P.; Sandberg, K.; Dannals, R.F.; Szabo, Z. In vivo investigation of estrogen regulation of adrenal and renal angiotensin (AT1) receptor expression by PET. J. Nucl. Med., 2004, 45(1), 94-100. PMID: 14734680
  314. Mathews, W.B.; Yoo, S.E.; Lee, S.H.; Scheffel, U.; Rauseo, P.A.; Zober, T.G.; Gocco, G.; Sandberg, K.; Ravert, H.T.; Dannals, R.F.; Szabo, Z. A novel radioligand for imaging the AT1 angiotensin receptor with PET. Nucl. Med. Biol., 2004, 31(5), 571-574. doi: 10.1016/j.nucmedbio.2003.10.014 PMID: 15219274
  315. Ponchant, M.; Demphel, S.; Hinnen, F.; Crouzel, C. Radiosynthesis of tetrazoyl-11Cirbesartan, a non-peptidic angiotensin II antagonist. Eur. J. Med. Chem., 1997, 32(9), 747-752. doi: 10.1016/S0223-5234(97)88917-9
  316. Mathews, W.B.; Kim, N.J.; Yoo, S.E.; Hilton, J.; Xia, J.; Scheffel, U.; Ravert, H.T.; Dannals, R.F.; Szabo, Z. Synthesis and biodistribution of a radiofluorinated ligand for imaging the AT1 angiotensin receptor with PET. J. Labelled Comp. Radiopharm., 2007, 50, S308.
  317. Feng, T.; Tsui, B.M.W.; Li, X.; Vranesic, M.; Lodge, M.A.; Gulaldi, N.C.M.; Szabo, Z. Image-derived and arterial blood sampled input functions for quantitative PET imaging of the angiotensin II subtype 1 receptor in the kidney. Med. Phys., 2015, 42(11), 6736-6744. doi: 10.1118/1.4934375 PMID: 26520763
  318. Gulaldi, N.C.M.; Xia, J.; Feng, T.; Hong, K.; Mathews, W.B.; Ruben, D.; Kamel, I.R.; Tsui, B.M.W.; Szabo, Z. Modeling of the renal kinetics of the AT1 receptor specific PET radioligand 11CKR31173. BioMed Res. Int., 2013, 2013, 1-12. doi: 10.1155/2013/835859 PMID: 24083243
  319. Xia, J.; Seckin, E.; Xiang, Y.; Vranesic, M.; Mathews, W.B.; Hong, K.; Bluemke, D.A.; Lerman, L.O.; Szabo, Z. Positron-emission tomography imaging of the angiotensin II subtype 1 receptor in swine renal artery stenosis. Hypertension, 2008, 51(2), 466-473. doi: 10.1161/HYPERTENSIONAHA.107.102715 PMID: 18172054
  320. Zober, T.G.; Fabucci, M.E.; Zheng, W.; Brown, P.R.; Seckin, E.; Mathews, W.B.; Sandberg, K.; Szabo, Z. Chronic ACE inhibitor treatment increases angiotensin type 1 receptor binding in vivo in the dog kidney. Eur. J. Nucl. Med. Mol. Imaging, 2008, 35(6), 1109-1116. doi: 10.1007/s00259-007-0667-z PMID: 18180920
  321. Szabo, Z.; Alachkar, N.; Gulaldi, N.; Vranesic, M.; Chalian, M.; Mathews, W.; Xia, J.; Rabb, H. PET imaging of the angiotensin subtype 1 receptor (AT1R) in human kidney transplants. J. Nucl. Med., 2010, 51, 427.
  322. Higuchi, T.; Fukushima, K.; Xia, J.; Mathews, W.B.; Lautamäki, R.; Bravo, P.E.; Javadi, M.S.; Dannals, R.F.; Szabo, Z.; Bengel, F.M. Radionuclide imaging of angiotensin II type 1 receptor upregulation after myocardial ischemia-reperfusion injury. J. Nucl. Med., 2010, 51(12), 1956-1961. doi: 10.2967/jnumed.110.079855 PMID: 21078800
  323. Fukushima, K.; Bravo, P.E.; Higuchi, T.; Schuleri, K.H.; Lin, X.; Abraham, M.R.; Xia, J.; Mathews, W.B.; Dannals, R.F.; Lardo, A.C.; Szabo, Z.; Bengel, F.M. Molecular hybrid positron emission tomography/computed tomography imaging of cardiac angiotensin II type 1 receptors. J. Am. Coll. Cardiol., 2012, 60(24), 2527-2534. doi: 10.1016/j.jacc.2012.09.023 PMID: 23158533
  324. Valenta, I.; Szabo, Z.; Mathews, W.B.; Abraham, T.P.; Abraham, M.R.; Schindler, T.H. PET/CT imaging of cardiac angiotensin II Type 1 receptors in nonobstructive hypertrophic cardiomyopathy. JACC Cardiovasc. Imaging, 2019, 12(9), 1895-1896. doi: 10.1016/j.jcmg.2019.03.022 PMID: 31103588
  325. Hadizad, T.; Collins, J.; Antoun, R.E.; Beanlands, R.S.; Dasilva, J.N. 11CMethyl-losartan as a potential ligand for pet imaging angiotensin II AT1 receptors. J. Labelled Comp. Radiopharm., 2011, 54, 754-757. doi: 10.1002/jlcr.1917
  326. Ismail, B.; Hadizad, T.; Antoun, R.; Lortie, M.; deKemp, R.A.; Beanlands, R.S.B.; DaSilva, J.N. Evaluation of 11Cmethyl-losartan and 11Cmethyl-EXP3174 for PET imaging of renal AT1receptor in rats. Nucl. Med. Biol., 2015, 42(11), 850-857. doi: 10.1016/j.nucmedbio.2015.06.012 PMID: 26300209
  327. Hadizad, T.; Kirkpatrick, S.A.; Mason, S.; Burns, K.; Beanlands, R.S.; DaSilva, J.N. Novel O-11Cmethylated derivatives of candesartan as angiotensin II AT1 receptor imaging ligands: Radiosynthesis and ex vivo evaluation in rats. Bioorg. Med. Chem., 2009, 17(23), 7971-7977. doi: 10.1016/j.bmc.2009.10.016 PMID: 19879152
  328. Lortie, M.; DaSilva, J.N.; Kirkpatrick, S.A.; Hadizad, T.; Ismail, B.A.; Beanlands, R.S.B.; deKemp, R.A. Analysis of 11Cmethyl-candesartan kinetics in the rat kidney for the assessment of angiotensin II type 1 receptor density in vivo with PET. Nucl. Med. Biol., 2013, 40(2), 252-261. doi: 10.1016/j.nucmedbio.2012.10.013 PMID: 23352346
  329. Arksey, N.; Hadizad, T.; Ismail, B.; Hachem, M.; Valdivia, A.C.; Beanlands, R.S.; deKemp, R.A.; DaSilva, J.N. Synthesis and evaluation of the novel 2-18Ffluoro-3-propoxy-triazole-pyridine-substituted losartan for imaging AT1 receptors. Bioorg. Med. Chem., 2014, 22(15), 3931-3937. doi: 10.1016/j.bmc.2014.06.011 PMID: 25023539
  330. Hachem, M.; Tiberi, M.; Ismail, B.; Hunter, C.R.; Arksey, N.; Hadizad, T.; Beanlands, R.S.; deKemp, R.A.; DaSilva, J.N. Characterization of 18 F-FPyKYNE-Losartan for Imaging AT1 Receptors. J. Nucl. Med., 2016, 57(10), 1612-1617. doi: 10.2967/jnumed.115.170951 PMID: 27199365
  331. Ismail, B.; deKemp, R.A.; Hadizad, T.; Mackasey, K.; Beanlands, R.S.; DaSilva, J.N. Decreased renal AT1 receptor binding in rats after subtotal nephrectomy: PET study with 18FFPyKYNE-losartan. EJNMMI Res., 2016, 6(1), 55. doi: 10.1186/s13550-016-0209-4 PMID: 27339045
  332. Ismail, B.; deKemp, R.A.; Croteau, E.; Hadizad, T.; Burns, K.D.; Beanlands, R.S.; DaSilva, J.N. Treatment with enalapril and not diltiazem ameliorated progression of chronic kidney disease in rats, and normalized renal AT1 receptor expression as measured with PET imaging. PLoS One, 2017, 12(5), e0177451. doi: 10.1371/journal.pone.0177451 PMID: 28542215
  333. Abreu Diaz, A.M.; Rodriguez Riera, Z.; Lee, Y.; Esteves, L.M.; Normandeau, C.O.; Fezas, B.; Hernandez Saiz, A.; Tournoux, F.; Juneau, D.; DaSilva, J.N. 18 FFluoropyridine-losartan: A new approach toward human Positron Emission Tomography imaging of Angiotensin II Type 1 receptors. J. Labelled Comp. Radiopharm., 2023, 66(3), 73-85. doi: 10.1002/jlcr.4014 PMID: 36656923
  334. Chen, X.; Hirano, M.; Werner, R.A.; Decker, M.; Higuchi, T. Novel 18 F-Labeled PET imaging agent FV45 targeting the renin–angiotensin system. ACS Omega, 2018, 3(9), 10460-10470. doi: 10.1021/acsomega.8b01885 PMID: 30288456
  335. Hoffmann, M.; Chen, X.; Hirano, M.; Arimitsu, K.; Kimura, H.; Higuchi, T.; Decker, M. 18 F-labeled derivatives of irbesartan for angiotensin II receptor PET imaging. ChemMedChem., 2018, 13(23), 2546-2557. doi: 10.1002/cmdc.201800638 PMID: 30430750
  336. Ortega Pijeira, M.S.; Gonçalves Nunes, P.S.; Dos Santos, S.N.; Zhang, Z.; Nario, A.P.; Perini, E.A.; Turato, W.M.; Riera, Z.R.; Chammas, R.; Elsinga, P.H.; Lin, K.S.; Carvalho, I.; Bernardes, E.S. Synthesis and evaluation of 18FFETLOs and 18FAMBF3LOS as novel 18F-labelled losartan derivatives for molecular imaging of angiotensin II type 1 receptors. Molecules., 2020, 25, 1-21. doi: 10.3390/molecules25081872
  337. Alonso Martinez, L.M.; DaSilva, J.N. Development of a novel 18 Ffluorobenzyl derivative of the AT 1 receptor antagonist Candesartan. J. Labelled Comp. Radiopharm., 2021, 64(3), 120-128. doi: 10.1002/jlcr.3892 PMID: 33084079
  338. Abreu Diaz, A.M.; Drumeva, G.O.; Laporte, P.; Alonso Martinez, L.M.; Petrenyov, D.R.; Carrier, J.F.; DaSilva, J.N. Evaluation of the high affinity 18Ffluoropyridine-candesartan in rats for PET imaging of renal AT1 receptors. Nucl. Med. Biol., 2021, 96-97, 41-49. doi: 10.1016/j.nucmedbio.2021.03.003 PMID: 33798796
  339. Abreu Diaz, A.M.; Drumeva, G.O.; Petrenyov, D.R.; Carrier, J.F.; DaSilva, J.N. Synthesis of the novel AT 1 Receptor Tracer 18 FFluoropyridine–candesartan via click chemistry. ACS Omega, 2020, 5(32), 20353-20362. doi: 10.1021/acsomega.0c02310 PMID: 32832788
  340. Carini, D.J.; Duncia, J.V.; Aldrich, P.E.; Chiu, A.T.; Johnson, A.L.; Pierce, M.E.; Price, W.A.; Santella, J.B., III; Wells, G.J.; Wexler, R.R.; Wong, P.C.; Yoo, S.E.; Timmermans, P.B.M.W.M. Nonpeptide angiotensin II receptor antagonists: the discovery of a series of N-(biphenylylmethyl)imidazoles as potent, orally active antihypertensives. J. Med. Chem., 1991, 34(8), 2525-2547. doi: 10.1021/jm00112a031 PMID: 1875348
  341. Kubo, K.; Kohara, Y.; Imamiya, E.; Sugiura, Y.; Inada, Y.; Furukawa, Y.; Nishikawa, K.; Naka, T. Nonpeptide angiotensin II receptor antagonists. Synthesis and biological activity of benzimidazolecarboxylic acids. J. Med. Chem., 1993, 36(15), 2182-2195. doi: 10.1021/jm00067a016 PMID: 8340921
  342. Kubo, K.; Inada, Y.; Kohara, Y.; Sugiura, Y.; Ojima, M.; Itoh, K.; Furukawa, Y.; Nishikawa, K.; Naka, T. Nonpeptide angiotensin II receptor antagonists. Synthesis and biological activity of benzimidazoles. J. Med. Chem., 1993, 36(12), 1772-1784. doi: 10.1021/jm00064a011 PMID: 8510105
  343. Ermert, J.; Neumaier, B. The radiopharmaceutical chemistry of fluorine-18: Nucleophilic fluorinations. In: Radiopharmaceutical Chemistry; Lewis, J.; Windhorst, A.; Zeglis, B., Eds.; Springer: Cham, 2019; pp. 273-283. doi: 10.1007/978-3-319-98947-1_15
  344. Chatal, J.F.; Rouzet, F.; Haddad, F.; Bourdeau, C.; Mathieu, C.; Le Guludec, D. Story of rubidium-82 and advantages for myocardial perfusion PET imaging. Front. Med., 2015, 2, 65. doi: 10.3389/fmed.2015.00065 PMID: 26442267
  345. Brito, A.E.; Etchebehere, E. Radium-223 as an approved modality for treatment of bone metastases. Semin. Nucl. Med., 2020, 50(2), 177-192. doi: 10.1053/j.semnuclmed.2019.11.005 PMID: 32172803
  346. Sowa, A.R.; Jackson, I.M.; Desmond, T.J.; Alicea, J.; Mufarreh, A.J.; Pham, J.M.; Stauff, J.; Winton, W.P.; Fawaz, M.V.; Henderson, B.D.; Hockley, B.G.; Rogers, V.E.; Koeppe, R.A.; Scott, P.J.H. Futureproofing 18FFludeoxyglucose manufacture at an academic medical center. EJNMMI Radiopharm. Chem., 2018, 3(1), 12. doi: 10.1186/s41181-018-0048-x PMID: 30363401
  347. Miladinova, D. Molecular imaging in breast cancer. Nucl. Med. Mol. Imaging, 2019, 53(5), 313-319. doi: 10.1007/s13139-019-00614-w PMID: 31723360
  348. Lu, F.M.; Yuan, Z. PET/SPECT molecular imaging in clinical neuroscience: Recent advances in the investigation of CNS diseases. Quant. Imaging Med. Surg., 2015, 5(3), 433-447. PMID: 26029646
  349. Gomez, J.; Doukky, R.; Germano, G.; Slomka, P. New trends in quantitative nuclear cardiology methods. Curr. Cardiovasc. Imaging Rep., 2018, 11(1), 1-10. doi: 10.1007/s12410-018-9443-7 PMID: 30294409
  350. Barca, C.; Griessinger, C.; Faust, A.; Depke, D.; Essler, M.; Windhorst, A.; Devoogdt, N.; Brindle, K.; Schäfers, M.; Zinnhardt, B.; Jacobs, A. Expanding theranostic radiopharmaceuticals for tumor diagnosis and therapy. Pharmaceuticals., 2021, 15(1), 13. doi: 10.3390/ph15010013 PMID: 35056071
  351. Hennrich, U.; Kopka, K. Lutathera®: The first FDA- and EMA-approved radiopharmaceutical for peptide receptor radionuclide therapy. Pharmaceuticals., 2019, 12(3), 114. doi: 10.3390/ph12030114 PMID: 31362406
  352. Hennrich, U.; Benešová, M. 68GaGa-DOTA-TOC: The first FDA-Approved 68Ga-Radiopharmaceutical for PET imaging. Pharmaceuticals., 2020, 13(3), 38. doi: 10.3390/ph13030038 PMID: 32138377
  353. Kozempel, J.; Mokhodoeva, O.; Vlk, M. Progress in targeted alpha-particle therapy. What we learned about recoils release from in vivo generators. Molecules, 2018, 23(3), 581. doi: 10.3390/molecules23030581 PMID: 29510568
  354. Holzwarth, U.; Ojea Jimenez, I.; Calzolai, L. A random walk approach to estimate the confinement of α-particle emitters in nanoparticles for targeted radionuclide therapy. EJNMMI Radiopharm. Chem., 2018, 3(1), 9. doi: 10.1186/s41181-018-0042-3 PMID: 29888318
  355. Mease, R.C.; Kang, C.M.; Kumar, V.; Banerjee, S.R.; Minn, I.; Brummet, M.; Gabrielson, K.L.; Feng, Y.; Park, A.; Kiess, A.P.; Sgouros, G.; Vaidyanathan, G.; Zalutsky, M.R.; Pomper, M.G. An improved 211 At-labeled agent for PSMA-targeted α-therapy. J. Nucl. Med., 2022, 63(2), 259-267. doi: 10.2967/jnumed.121.262098 PMID: 34088772
  356. Banerjee, S.R.; Minn, I.; Kumar, V.; Josefsson, A.; Lisok, A.; Brummet, M.; Chen, J.; Kiess, A.P.; Baidoo, K.; Brayton, C.; Mease, R.C.; Brechbiel, M.; Sgouros, G.; Hobbs, R.F.; Pomper, M.G. Preclinical evaluation of 203/212 Pb-labeled low-molecular-weight compounds for targeted radiopharmaceutical therapy of prostate cancer. J. Nucl. Med., 2020, 61(1), 80-88. doi: 10.2967/jnumed.119.229393 PMID: 31253744
  357. Ionetix Produces First Alpha-Emitting Radionuclide at New Isotope Production Facility. Available from: https://www.prnewswire.com/news-releases/ionetix-produces-first-alpha-emitting-radionuclide-at-new-isotope-production-facility-301799601.html
  358. Donnelly, D.J. PET imaging in drug discovery and development. In: Handbook of Radiopharmaceuticals; Wiley, 2020; pp. 703-725. doi: 10.1002/9781119500575.ch22
  359. Campbell, M.G.; Mercier, J.; Genicot, C.; Gouverneur, V.; Hooker, J.M.; Ritter, T. Bridging the gaps in 18F PET tracer development. Nat. Chem., 2017, 9(1), 1-3. doi: 10.1038/nchem.2693 PMID: 27995923
  360. Santangelo, P.J.; Rogers, K.A.; Zurla, C.; Blanchard, E.L.; Gumber, S.; Strait, K.; Connor-Stroud, F.; Schuster, D.M.; Amancha, P.K.; Hong, J.J.; Byrareddy, S.N.; Hoxie, J.A.; Vidakovic, B.; Ansari, A.A.; Hunter, E.; Villinger, F. Whole-body immunoPET reveals active SIV dynamics in viremic and antiretroviral therapy–treated macaques. Nat. Methods, 2015, 12(5), 427-432. doi: 10.1038/nmeth.3320 PMID: 25751144
  361. Gordon, O.; Ruiz-Bedoya, C.A.; Ordonez, A.A.; Tucker, E.W.; Jain, S.K. Molecular imaging: A novel tool to visualize pathogenesis of infections in situ. MBio, 2019, 10(5), e00317-19. doi: 10.1128/mBio.00317-19 PMID: 31662452
  362. Zhu, A.; Lee, D.; Shim, H. Metabolic positron emission tomography imaging in cancer detection and therapy response. Semin. Oncol., 2011, 38(1), 55-69. doi: 10.1053/j.seminoncol.2010.11.012 PMID: 21362516
  363. Yang, M.; Sun, J.; Bai, H.X.; Tao, Y.; Tang, X.; States, L.J.; Zhang, Z.; Zhou, J.; Farwell, M.D.; Zhang, P.; Xiao, B.; Yang, L. Diagnostic accuracy of SPECT, PET, and MRS for primary central nervous system lymphoma in HIV patients. Medicine (Baltimore), 2017, 96(19), e6676. doi: 10.1097/MD.0000000000006676 PMID: 28489744
  364. Finnema, S.J.; Nabulsi, N.B.; Eid, T.; Detyniecki, K.; Lin, S.F.; Chen, M.K.; Dhaher, R.; Matuskey, D.; Baum, E.; Holden, D.; Spencer, D.D.; Mercier, J.; Hannestad, J.; Huang, Y.; Carson, R.E. Imaging synaptic density in the living human brain. Sci. Transl. Med., 2016, 8, 348ra96-348ra96. doi: 10.1126/scitranslmed.aaf6667
  365. Onwordi, E.C.; Halff, E.F.; Whitehurst, T.; Mansur, A.; Cotel, M.C.; Wells, L.; Creeney, H.; Bonsall, D.; Rogdaki, M.; Shatalina, E.; Reis Marques, T.; Rabiner, E.A.; Gunn, R.N.; Natesan, S.; Vernon, A.C.; Howes, O.D. Synaptic density marker SV2A is reduced in schizophrenia patients and unaffected by antipsychotics in rats. Nat. Commun., 2020, 11(1), 246. doi: 10.1038/s41467-019-14122-0 PMID: 31937764
  366. Matthews, P.M.; Rabiner, E.A.; Passchier, J.; Gunn, R.N. Positron emission tomography molecular imaging for drug development. Br. J. Clin. Pharmacol., 2012, 73(2), 175-186. doi: 10.1111/j.1365-2125.2011.04085.x PMID: 21838787
  367. Langer, O. Use of PET imaging to evaluate transporter-mediated drug-drug interactions. J. Clin. Pharmacol., 2016, 56(S7), S143-S156. doi: 10.1002/jcph.722 PMID: 27385172

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers