Human Umbilical Cord Mesenchymal Stem Cell Exosome-derived miR-335-5p Alleviated Lipopolysaccharide-induced Acute Lung Injury by Regulating the m6A Level of ITGβ4 Gene


Cite item

Full Text

Abstract

Background:Acute lung injury (ALI) is a serious complication that may accompany severe pneumonia in children. Derived from exosomes of human umbilical cord mesenchymal stem cell exosome (HucMSC-Exo) can contribute to the regeneration of damaged lung tissue. This study aims to investigate the impact of HucMSC-Exo on ALI and its potential mechanisms.

Methods:Firstly, RT-qPCR was performed to assess the expression of miR-335-5p. Subsequently, Pearson correlation analysis was performed to examine the correlation between METTL14 and miR-335-5p, as well as the correlation between METTL14 and ITGB4., while RNA immunoprecipitation (RIP) was used to determine the m6A modification level of ITGβ4. Additionally, molecular biology techniques were employed to evaluate the expression of glycolysis-related factors. Definitively, an LPS-induced ALI model was established to investigate the effect of miR-335-5p on mice lung tissue.

Results:miR-335-5p was found to be highly expressed in HucMSC-Exo. Transfection with miR-335-5p mimics resulted in increased glucose uptake. Pearson correlation analysis revealed a negative correlation between METTL14 and miR-335-5p, as well as between METTL14 and ITGβ4. The m6A level of ITGβ4 was elevated in ALI. Overexpression of METTL14 was found to reduce the expression and glucose uptake of ITGβ4, while overexpression of ITGβ4 reversed the effects of METTL14 overexpression. in vivo, results demonstrated that miR-335-5p can improve the extent of lung tissue lesions and reduce glycolytic levels.

method:HucMSC-Exos were successfully cultured and identified. The LPS-induced ALI model was established using A549 cells and BALB/c mice. Pearson correlation coefficient analyzed the association between METTL14 and miR-335-5p or ITGβ4 in clinical specimens. The modification level of m6A was detected using RNA m6A colorimetry and RNA immunoprecipitation. The cell damage, apoptosis, expression of inflammatory factors, and glycolytic-related factors were determined molecularly and immunohistochemically in various groups.

Conclusion:This study reveals the mechanism by which miR-335-5p derived from HucMSC-Exo could alleviate LPS-induced ALI by regulating the m6A modification of ITGβ4, providing a new direction for the treatment of ALI.

About the authors

Linrui Li

Department of Respiratory Medicine, Hunan Children's Hospital

Email: info@benthamscience.net

Xi Zhang

Department of Respiratory Medicine, Hunan Children's Hospital

Email: info@benthamscience.net

Yanping Chen

Department of Respiratory Medicine,, Hunan Children's Hospital

Author for correspondence.
Email: info@benthamscience.net

References

  1. Omran, A.; Ali, Y.; Abdalla, M.O.; El-Sharkawy, S.; Rezk, A.R.; Khashana, A. Salivary interleukin-6 and C-reactive protein/mean platelet volume ratio in the diagnosis of late-onset neonatal pneumonia. J. Immunol. Res., 2021, 2021, 1-7. doi: 10.1155/2021/8495889 PMID: 34708133
  2. Panico, F.F.; Troster, E.J.; Oliveira, C.S.; Faria, A.; Lucena, M.; João, P.R.D.; Saad, E.D.; Foronda, F.A.K.; Delgado, A.F.; de Carvalho, W.B. Risk factors for mortality and outcomes in pediatric acute lung injury/acute respiratory distress syndrome. Pediatr. Crit. Care Med., 2015, 16(7), e194-e200. doi: 10.1097/PCC.0000000000000490 PMID: 26181296
  3. Kellner, M.; Noonepalle, S.; Lu, Q.; Srivastava, A.; Zemskov, E.; Black, S.M. ROS signaling in the pathogenesis of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Adv. Exp. Med. Biol., 2017, 967, 105-137. doi: 10.1007/978-3-319-63245-2_8 PMID: 29047084
  4. Liang, D.; Liu, C.; Yang, M. Mesenchymal stem cells and their derived exosomes for ALI/ARDS: A promising therapy. Heliyon, 2023, 9(10), e20387. doi: 10.1016/j.heliyon.2023.e20387 PMID: 37842582
  5. Matthay, M.A.; Ware, L.B.; Zimmerman, G.A. The acute respiratory distress syndrome. J. Clin. Invest., 2012, 122(8), 2731-2740. doi: 10.1172/JCI60331 PMID: 22850883
  6. He, Y.Q.; Zhou, C.C.; Yu, L.Y.; Wang, L.; Deng, J.; Tao, Y.L.; Zhang, F.; Chen, W.S. Natural product derived phytochemicals in managing acute lung injury by multiple mechanisms. Pharmacol. Res., 2021, 163, 105224. doi: 10.1016/j.phrs.2020.105224 PMID: 33007416
  7. Zhang, H.; Liu, J.; Zhou, Y.; Qu, M.; Wang, Y.; Guo, K.; Shen, R.; Sun, Z.; Cata, J.P.; Yang, S.; Chen, W.; Miao, C. Neutrophil extracellular traps mediate m6 A modification and regulates sepsis-associated acute lung injury by activating ferroptosis in alveolar epithelial cells. Int. J. Biol. Sci., 2022, 18(8), 3337-3357. doi: 10.7150/ijbs.69141 PMID: 35637949
  8. Yuan, Y.; Wang, W.; Zhang, Y.; Hong, Q.; Huang, W.; Li, L.; Xie, Z.; Chen, Y.; Li, X.; Meng, Y. Apelin-13 attenuates lipopolysaccharide-induced inflammatory responses and acute lung injury by regulating PFKFB3-driven glycolysis induced by NOX4-dependent ROS. J. Inflamm. Res., 2022, 15, 2121-2139. doi: 10.2147/JIR.S348850 PMID: 35386222
  9. Kolomaznik, M.; Nova, Z.; Calkovska, A. Pulmonary surfactant and bacterial lipopolysaccharide: the interaction and its functional consequences. Physiol. Res., 2017, 66(S2), S147-S157. doi: 10.33549/physiolres.933672 PMID: 28937231
  10. Xiao, K.; He, W.; Guan, W.; Hou, F.; Yan, P.; Xu, J.; Zhou, T.; Liu, Y.; Xie, L. Mesenchymal stem cells reverse EMT process through blocking the activation of NF-κB and Hedgehog pathways in LPS-induced acute lung injury. Cell Death Dis., 2020, 11(10), 863. doi: 10.1038/s41419-020-03034-3 PMID: 33060560
  11. Hsieh, Y.H.; Deng, J.S.; Pan, H.P.; Liao, J.C.; Huang, S.S.; Huang, G.J. Sclareol ameliorate lipopolysaccharide-induced acute lung injury through inhibition of MAPK and induction of HO-1 signaling. Int. Immunopharmacol., 2017, 44, 16-25. doi: 10.1016/j.intimp.2016.12.026 PMID: 28068646
  12. Yang, Y.; Yang, F.; Yu, X.; Wang, B.; Yang, Y.; Zhou, X.; Cheng, R.; Xia, S.; Zhou, X. miR-16 inhibits NLRP3 inflammasome activation by directly targeting TLR4 in acute lung injury. Biomed. Pharmacother., 2019, 112, 108664. doi: 10.1016/j.biopha.2019.108664 PMID: 30784935
  13. Bae, H.B.; Li, M.; Kim, J.P.; Kim, S.J.; Jeong, C.W.; Lee, H.G.; Kim, W.M.; Kim, H.S.; Kwak, S.H. The effect of epigallocatechin gallate on lipopolysaccharide-induced acute lung injury in a murine model. Inflammation, 2010, 33(2), 82-91. doi: 10.1007/s10753-009-9161-z PMID: 19838780
  14. Wang, T.; Hou, W.; Fu, Z. Preventative effect of OMZ-SPT on lipopolysaccharide-induced acute lung injury and inflammation via nuclear factor-kappa B signaling in mice. Biochem. Biophys. Res. Commun., 2017, 485(2), 284-289. doi: 10.1016/j.bbrc.2017.02.090 PMID: 28223218
  15. Li, J.; Lu, K.; Sun, F.; Tan, S.; Zhang, X.; Sheng, W.; Hao, W.; Liu, M.; Lv, W.; Han, W. Panaxydol attenuates ferroptosis against LPS-induced acute lung injury in mice by Keap1-Nrf2/HO-1 pathway. J. Transl. Med., 2021, 19(1), 96. doi: 10.1186/s12967-021-02745-1 PMID: 33653364
  16. Nguyen, N.; Xu, S.; Lam, T.Y.W.; Liao, W.; Wong, W.S.F.; Ge, R. ISM1 suppresses LPS-induced acute lung injury and post-injury lung fibrosis in mice. Mol. Med., 2022, 28(1), 72. doi: 10.1186/s10020-022-00500-w PMID: 35752760
  17. Lou, L.; Wang, M.; He, J.; Yang, S.; Meng, F.; Wang, S.; Jin, X.; Cai, J.; Cai, C.; Urolithin, A. Urolithin A (UA) attenuates ferroptosis in LPS-induced acute lung injury in mice by upregulating Keap1-Nrf2/HO-1 signaling pathway. Front. Pharmacol., 2023, 14, 1067402. doi: 10.3389/fphar.2023.1067402 PMID: 36969874
  18. Songyang, Y.; Li, W.; Li, W.; Yang, J.; Song, T. The inhibition of GLUT1-induced glycolysis in macrophage by phloretin participates in the protection during acute lung injury. Int. Immunopharmacol., 2022, 110, 109049. doi: 10.1016/j.intimp.2022.109049 PMID: 35853279
  19. Zhong, W.J.; Yang, H.H.; Guan, X.X.; Xiong, J.B.; Sun, C.C.; Zhang, C.Y.; Luo, X.Q.; Zhang, Y.F.; Zhang, J.; Duan, J.X.; Zhou, Y.; Guan, C.X. Inhibition of glycolysis alleviates lipopolysaccharide-induced acute lung injury in a mouse model. J. Cell. Physiol., 2019, 234(4), 4641-4654. doi: 10.1002/jcp.27261 PMID: 30256406
  20. Nakamura, Y.; Kita, S.; Tanaka, Y.; Fukuda, S.; Obata, Y.; Okita, T.; Nishida, H.; Takahashi, Y.; Kawachi, Y.; Tsugawa-Shimizu, Y.; Fujishima, Y.; Nishizawa, H.; Takakura, Y.; Miyagawa, S.; Sawa, Y.; Maeda, N.; Shimomura, I. Adiponectin stimulates exosome release to enhance mesenchymal stem-cell-driven therapy of heart failure in mice. Mol. Ther., 2020, 28(10), 2203-2219. doi: 10.1016/j.ymthe.2020.06.026 PMID: 32652045
  21. Yaghoubi, Y.; Movassaghpour, A.; Zamani, M.; Talebi, M.; Mehdizadeh, A.; Yousefi, M. Human umbilical cord mesenchymal stem cells derived-exosomes in diseases treatment. Life Sci., 2019, 233, 116733. doi: 10.1016/j.lfs.2019.116733 PMID: 31394127
  22. Ding, D.C.; Chang, Y.H.; Shyu, W.C.; Lin, S.Z. Human umbilical cord mesenchymal stem cells: A new era for stem cell therapy. Cell Transplant., 2015, 24(3), 339-347. doi: 10.3727/096368915X686841 PMID: 25622293
  23. Lan, T.; Luo, M.; Wei, X. Mesenchymal stem/stromal cells in cancer therapy. J. Hematol. Oncol., 2021, 14(1), 195. doi: 10.1186/s13045-021-01208-w PMID: 34789315
  24. Zhou, J.; Feng, X.; Zhu, J.; Feng, B.; Yao, Q.; Pan, Q.; Yu, J.; Yang, J.; Li, L.; Cao, H. Mesenchymal stem cell treatment restores liver macrophages homeostasis to alleviate mouse acute liver injury revealed by single-cell analysis. Pharmacol. Res., 2022, 179, 106229. doi: 10.1016/j.phrs.2022.106229 PMID: 35470065
  25. Jo, H.; Brito, S.; Kwak, B.M.; Park, S.; Lee, M.G.; Bin, B.H. Applications of mesenchymal stem cells in skin regeneration and rejuvenation. Int. J. Mol. Sci., 2021, 22(5), 2410. doi: 10.3390/ijms22052410 PMID: 33673711
  26. Saito, S.; Nakayama, T.; Hashimoto, N.; Miyata, Y.; Egashira, K.; Nakao, N.; Nishiwaki, S.; Hasegawa, M.; Hasegawa, Y.; Naoe, T. Mesenchymal stem cells stably transduced with a dominant-negative inhibitor of CCL2 greatly attenuate bleomycin-induced lung damage. Am. J. Pathol., 2011, 179(3), 1088-1094. doi: 10.1016/j.ajpath.2011.05.027 PMID: 21741938
  27. Monsel, A.; Zhu, Y.; Gennai, S.; Hao, Q.; Hu, S.; Rouby, J.J.; Rosenzwajg, M.; Matthay, M.A.; Lee, J.W. Therapeutic effects of human mesenchymal stem cell–derived microvesicles in severe pneumonia in mice. Am. J. Respir. Crit. Care Med., 2015, 192(3), 324-336. doi: 10.1164/rccm.201410-1765OC PMID: 26067592
  28. Monsel, A.; Zhu, Y.; Gudapati, V.; Lim, H.; Lee, J.W. Mesenchymal stem cell derived secretome and extracellular vesicles for acute lung injury and other inflammatory lung diseases. Expert Opin. Biol. Ther., 2016, 16(7), 859-871. doi: 10.1517/14712598.2016.1170804 PMID: 27011289
  29. Islam, D.; Huang, Y.; Fanelli, V.; Delsedime, L.; Wu, S.; Khang, J.; Han, B.; Grassi, A.; Li, M.; Xu, Y.; Luo, A.; Wu, J.; Liu, X.; McKillop, M.; Medin, J.; Qiu, H.; Zhong, N.; Liu, M.; Laffey, J.; Li, Y.; Zhang, H. Identification and modulation of microenvironment is crucial for effective mesenchymal stromal cell therapy in acute lung injury. Am. J. Respir. Crit. Care Med., 2019, 199(10), 1214-1224. doi: 10.1164/rccm.201802-0356OC PMID: 30521764
  30. Mansouri, N.; Willis, G.R.; Fernandez-Gonzalez, A.; Reis, M.; Nassiri, S.; Mitsialis, S.A.; Kourembanas, S. Mesenchymal stromal cell exosomes prevent and revert experimental pulmonary fibrosis through modulation of monocyte phenotypes. JCI Insight, 2019, 4(21), e128060. doi: 10.1172/jci.insight.128060 PMID: 31581150
  31. He, H.; Liu, L.; Chen, Q.; Liu, A.; Cai, S.; Yang, Y.; Lu, X.; Qiu, H. Mesenchymal stem cells overexpressing angiotensin-converting enzyme 2 rescue lipopolysaccharide-induced lung injury. Cell Transplant., 2015, 24(9), 1699-1715. doi: 10.3727/096368914X685087 PMID: 25291359
  32. Zeringer, E.; Barta, T.; Li, M.; Vlassov, A.V. Strategies for isolation of exosomes. Cold Spring Harb. Protoc., 2015, 2015(4), pdb.top074476. doi: 10.1101/pdb.top074476 PMID: 25834266
  33. Zhang, Z.; Chen, L.; Chen, X.; Qin, Y.; Tian, C.; Dai, X.; Meng, R.; Zhong, Y.; Liang, W.; Shen, C.; Zhang, J.; Zhang, B.; Wei, X. Exosomes derived from human umbilical cord mesenchymal stem cells (HUCMSC-EXO) regulate autophagy through AMPK-ULK1 signaling pathway to ameliorate diabetic cardiomyopathy. Biochem. Biophys. Res. Commun., 2022, 632, 195-203. doi: 10.1016/j.bbrc.2022.10.001 PMID: 36240643
  34. Wang, Z.; Yu, Y.; Jin, L.; Tan, X.; Liu, B.; Zhang, Z.; Wang, Z.; Long, C.; Shen, L.; Wei, G.; He, D. HucMSC exosomes attenuate partial bladder outlet obstruction-induced renal injury and cell proliferation via the Wnt/β- catenin pathway. Eur. J. Pharmacol., 2023, 952, 175523. doi: 10.1016/j.ejphar.2023.175523 PMID: 36736526
  35. Pegtel, D.M.; Gould, S.J. Exosomes. Annu. Rev. Biochem., 2019, 88(1), 487-514. doi: 10.1146/annurev-biochem-013118-111902 PMID: 31220978
  36. Krishnan, A.; Muthusamy, S.; Fernandez, F.B.; Kasoju, N. Mesenchymal stem cell-derived extracellular vesicles in the management of COVID19-associated lung injury: A review on publications, clinical trials and patent landscape. Tissue Eng. Regen. Med., 2022, 19(4), 659-673. doi: 10.1007/s13770-022-00441-9 PMID: 35384633
  37. Liu, J.S.; Du, J.; Cheng, X.; Zhang, X.Z.; Li, Y.; Chen, X.L. Exosomal miR-451 from human umbilical cord mesenchymal stem cells attenuates burn-induced acute lung injury. J. Chin. Med. Assoc., 2019, 82(12), 895-901. doi: 10.1097/JCMA.0000000000000189 PMID: 31800531
  38. Nasibova, A. Generation of nanoparticles in biological systems and their application prospects. ABES, 2023, 8(2), 140-146. http://jomardpublishing.com/UploadFiles/Files/journals/ABES/v8n2/NasibovaA.pdf
  39. Khalilov, R. A comprehensive review of advanced nano-biomaterials in regenerative medicine and drug delivery. ABES, 2023, 8(1), 5-18. http://jomardpublishing.com/UploadFiles/Files/journals/ABES/V8N1/Khalilov.pdf
  40. Yang, J.; Chen, Y.; Jiang, K.; Yang, Y.; Zhao, G.; Guo, S.; Deng, G. MicroRNA-106a provides negative feedback regulation in lipopolysaccharide-induced inflammation by targeting TLR4. Int. J. Biol. Sci., 2019, 15(11), 2308-2319. doi: 10.7150/ijbs.33432 PMID: 31595149
  41. Li, P.; Yao, Y.; Ma, Y.; Chen, Y. MiR-150 attenuates LPS-induced acute lung injury via targeting AKT3. Int. Immunopharmacol., 2019, 75, 105794. doi: 10.1016/j.intimp.2019.105794 PMID: 31398659
  42. Liang, Q.; He, J.; Yang, Q.; Zhang, Q.; Xu, Y. MicroRNA-335-5p alleviates inflammatory response, airway fibrosis, and autophagy in childhood asthma through targeted regulation of autophagy related 5. Bioengineered, 2022, 13(1), 1791-1801. doi: 10.1080/21655979.2021.1996315 PMID: 34699311
  43. Yang, H.; Xu, Z.; Peng, Y.; Wang, J.; Xiang, Y. Integrin β4 as a potential diagnostic and therapeutic tumor marker. Biomolecules, 2021, 11(8), 1197. doi: 10.3390/biom11081197 PMID: 34439865
  44. Lu, S.; Simin, K.; Khan, A.; Mercurio, A.M. Analysis of integrin beta4 expression in human breast cancer: association with basal-like tumors and prognostic significance. Clin. Cancer Res., 2008, 14(4), 1050-1058. doi: 10.1158/1078-0432.CCR-07-4116 PMID: 18281537
  45. Tang, K.; Cai, Y.; Joshi, S.; Tovar, E.; Tucker, S.C.; Maddipati, K.R.; Crissman, J.D.; Repaskey, W.T.; Honn, K.V. Convergence of eicosanoid and integrin biology: 12-lipoxygenase seeks a partner. Mol. Cancer, 2015, 14(1), 111. doi: 10.1186/s12943-015-0382-5 PMID: 26037302
  46. Basora, N.; Herring-Gillam, F.E.; Boudreau, F.; Perreault, N.; Pageot, L.P.; Simoneau, M.; Bouatrouss, Y.; Beaulieu, J.F. Expression of functionally distinct variants of the beta(4)A integrin subunit in relation to the differentiation state in human intestinal cells. J. Biol. Chem., 1999, 274(42), 29819-29825. doi: 10.1074/jbc.274.42.29819 PMID: 10514460
  47. Bierie, B.; Pierce, S.E.; Kroeger, C.; Stover, D.G.; Pattabiraman, D.R.; Thiru, P.; Liu Donaher, J.; Reinhardt, F.; Chaffer, C.L.; Keckesova, Z.; Weinberg, R.A. Integrin-β4 identifies cancer stem cell-enriched populations of partially mesenchymal carcinoma cells. Proc. Natl. Acad. Sci., 2017, 114(12), E2337-E2346. doi: 10.1073/pnas.1618298114 PMID: 28270621
  48. Chen, W.; Gard, J.M.C.; Epshtein, Y.; Camp, S.M.; Garcia, J.G.N.; Jacobson, J.R.; Cress, A.E. Integrin beta 4E promotes endothelial phenotypic changes and attenuates lung endothelial cell inflammatory responses. Front. Physiol., 2022, 13, 769325. doi: 10.3389/fphys.2022.769325 PMID: 35250607
  49. Jiang, W.; Wang, J.M.; Luo, J.H.; Chen, Y.; Pi, J.; Ma, X.D.; Liu, C.X.; Zhou, Y.; Qu, X.P.; Liu, C.; Liu, H.J.; Qin, X.Q.; Xiang, Y. Airway epithelial integrin β4-deficiency exacerbates lipopolysaccharide-induced acute lung injury. J. Cell. Physiol., 2021, 236(11), 7711-7724. doi: 10.1002/jcp.30422 PMID: 34018612
  50. Yang, L.; Ren, Z.; Yan, S.; Zhao, L.; Liu, J.; Zhao, L.; Li, Z.; Ye, S.; Liu, A.; Li, X.; Guo, J.; Zhao, W.; Kuang, W.; Liu, H.; Chen, D. Nsun4 and Mettl3 mediated translational reprogramming of Sox9 promotes BMSC chondrogenic differentiation. Commun. Biol., 2022, 5(1), 495. doi: 10.1038/s42003-022-03420-x PMID: 35614315
  51. Shi, B.; Liu, W.W.; Yang, K.; Jiang, G.M.; Wang, H. The role, mechanism, and application of RNA methyltransferase METTL14 in gastrointestinal cancer. Mol. Cancer, 2022, 21(1), 163. doi: 10.1186/s12943-022-01634-5 PMID: 35974338
  52. Agarwala, R.; Barrett, T.; Beck, J.; Benson, D.A.; Bollin, C.; Bolton, E.; Bourexis, D.; Brister, J.R.; Bryant, S.H.; Canese, K.; Cavanaugh, M.; Charowhas, C.; Clark, K.; Dondoshansky, I.; Feolo, M.; Fitzpatrick, L.; Funk, K.; Geer, L.Y.; Gorelenkov, V.; Graeff, A.; Hlavina, W.; Holmes, B.; Johnson, M.; Kattman, B.; Khotomlianski, V.; Kimchi, A.; Kimelman, M.; Kimura, M.; Kitts, P.; Klimke, W.; Kotliarov, A.; Krasnov, S.; Kuznetsov, A.; Landrum, M.J.; Landsman, D.; Lathrop, S.; Lee, J.M.; Leubsdorf, C.; Lu, Z.; Madden, T.L.; Marchler-Bauer, A.; Malheiro, A.; Meric, P.; Karsch-Mizrachi, I.; Mnev, A.; Murphy, T.; Orris, R.; Ostell, J.; O’Sullivan, C.; Palanigobu, V.; Panchenko, A.R.; Phan, L.; Pierov, B.; Pruitt, K.D.; Rodarmer, K.; Sayers, E.W.; Schneider, V.; Schoch, C.L.; Schuler, G.D.; Sherry, S.T.; Siyan, K.; Soboleva, A.; Soussov, V.; Starchenko, G.; Tatusova, T.A.; Thibaud-Nissen, F.; Todorov, K.; Trawick, B.W.; Vakatov, D.; Ward, M.; Yaschenko, E.; Zasypkin, A.; Zbicz, K. Database resources of the national center for biotechnology information. Nucleic Acids Res., 2018, 46(D1), D8-D13. doi: 10.1093/nar/gkx1095 PMID: 29140470
  53. Hammad, M.H.R.; Hamed, D.H.E.D.; Eldosoky, M.A.E.L.R.; Ahmad, A.A.E.S.; Osman, H.M.; Abd Elgalil, H.M.; Mahmoud, H.M.M. Plasma microRNA-21, microRNA-146a and IL-13 expression in asthmatic children. Innate Immun., 2018, 24(3), 171-179. doi: 10.1177/1753425918763521 PMID: 29635981
  54. Achard, V.; Putora, P.M.; Omlin, A.; Zilli, T.; Fischer, S. Metastatic prostate cancer: Treatment options. Oncology, 2022, 100(1), 48-59. doi: 10.1159/000519861 PMID: 34781285
  55. Liu, X.; Gao, C.; Wang, Y.; Niu, L.; Jiang, S.; Pan, S. BMSC-derived exosomes ameliorate LPS-induced acute lung injury by miR-384-5p-controlled alveolar macrophage autophagy. Oxid. Med. Cell. Longev., 2021, 2021, 1-23. doi: 10.1155/2021/9973457 PMID: 34234888
  56. Wei, X.; Yi, X.; Lv, H.; Sui, X.; Lu, P.; Li, L.; An, Y.; Yang, Y.; Yi, H.; Chen, G. MicroRNA-377-3p released by mesenchymal stem cell exosomes ameliorates lipopolysaccharide-induced acute lung injury by targeting RPTOR to induce autophagy. Cell Death Dis., 2020, 11(8), 657. doi: 10.1038/s41419-020-02857-4 PMID: 32814765
  57. Cui, Y.; Wang, X.; Lin, F.; Li, W.; Zhao, Y.; Zhu, F.; Yang, H.; Rao, M.; li, Y.; Liang, H.; Dai, M.; Liu, B.; Chen, L.; Han, D.; Lu, R.; Peng, W.; Zhang, Y.; Song, C.; Luo, Y.; Pan, P. MiR-29a-3p improves acute lung injury by reducing alveolar epithelial cell PANoptosis. Aging Dis., 2022, 13(3), 899-909. doi: 10.14336/AD.2021.1023 PMID: 35656115
  58. Jiang, J.; Huang, K.; Xu, S.; Garcia, J.G.N.; Wang, C.; Cai, H. Targeting NOX4 alleviates sepsis-induced acute lung injury via attenuation of redox-sensitive activation of CaMKII/ERK1/2/MLCK and endothelial cell barrier dysfunction. Redox Biol., 2020, 36, 101638. doi: 10.1016/j.redox.2020.101638 PMID: 32863203
  59. Cheng, N.; Liang, Y.; Du, X.; Ye, R.D. Serum amyloid A promotes LPS clearance and suppresses LPS -induced inflammation and tissue injury. EMBO Rep., 2018, 19(10), e45517. doi: 10.15252/embr.201745517 PMID: 30126923
  60. Li, Y.; Huang, J.; Foley, N.M.; Xu, Y.; Li, Y.P.; Pan, J.; Redmond, H.P.; Wang, J.H.; Wang, J. B7H3 ameliorates LPS-induced acute lung injury via attenuation of neutrophil migration and infiltration. Sci. Rep., 2016, 6(1), 31284. doi: 10.1038/srep31284 PMID: 27515382
  61. Bellani, G.; Laffey, J.G.; Pham, T.; Fan, E.; Brochard, L.; Esteban, A.; Gattinoni, L.; van Haren, F.; Larsson, A.; McAuley, D.F.; Ranieri, M.; Rubenfeld, G.; Thompson, B.T.; Wrigge, H.; Slutsky, A.S.; Pesenti, A. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA, 2016, 315(8), 788-800. doi: 10.1001/jama.2016.0291 PMID: 26903337
  62. Willis, G.R.; Fernandez-Gonzalez, A.; Anastas, J.; Vitali, S.H.; Liu, X.; Ericsson, M.; Kwong, A.; Mitsialis, S.A.; Kourembanas, S. Mesenchymal stromal cell exosomes ameliorate experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation. Am. J. Respir. Crit. Care Med., 2018, 197(1), 104-116. doi: 10.1164/rccm.201705-0925OC PMID: 28853608
  63. Xu, N.; Shao, Y.; Ye, K.; Qu, Y.; Memet, O.; He, D.; Shen, J. Mesenchymal stem cell-derived exosomes attenuate phosgene-induced acute lung injury in rats. Inhal. Toxicol., 2019, 31(2), 52-60. doi: 10.1080/08958378.2019.1597220 PMID: 31068039
  64. Wang, X.; Xiao, H.; Wu, D.; Zhang, D.; Zhang, Z. miR-335-5p regulates cell cycle and metastasis in lung adenocarcinoma by targeting CCNB2. OncoTargets Ther., 2020, 13, 6255-6263. doi: 10.2147/OTT.S245136 PMID: 32636645
  65. Wang, F.; Li, L.; Piontek, K.; Sakaguchi, M.; Selaru, F.M. Exosome miR-335 as a novel therapeutic strategy in hepatocellular carcinoma. Hepatology, 2018, 67(3), 940-954. doi: 10.1002/hep.29586 PMID: 29023935
  66. Suyal, G.; Pandey, P.; Saraya, A.; Sharma, R. Tumour suppressor role of microRNA-335-5p in esophageal squamous cell carcinoma by targeting TTK (Mps1). Exp. Mol. Pathol., 2022, 124, 104738. doi: 10.1016/j.yexmp.2021.104738 PMID: 34953918
  67. Cao, J.; Zhang, Y.; Yang, J.; He, S.; Li, M.; Yan, S.; Chen, Y.; Qu, C.; Xu, L. NEAT1 regulates pancreatic cancer cell growth, invasion and migration though mircroRNA-335-5p/c-met axis. Am. J. Cancer Res., 2016, 6(10), 2361-2374. PMID: 27822425
  68. Aghapour, M.; Raee, P.; Moghaddam, S.J.; Hiemstra, P.S.; Heijink, I.H. Airway epithelial barrier dysfunction in chronic obstructive pulmonary disease: Role of cigarette smoke exposure. Am. J. Respir. Cell Mol. Biol., 2018, 58(2), 157-169. doi: 10.1165/rcmb.2017-0200TR PMID: 28933915
  69. Luo, K.; Liu, A.; Wu, H.; Liu, Q.; Dai, J.; Liu, Y.; Wang, Z. CircKIF4A promotes glioma growth and temozolomide resistance by accelerating glycolysis. Cell Death Dis., 2022, 13(8), 740. doi: 10.1038/s41419-022-05175-z PMID: 36030248
  70. Hou, Y.; Zhang, X.; Yao, H.; Hou, L.; Zhang, Q.; Tao, E.; Zhu, X.; Jiang, S.; Ren, Y.; Hong, X.; Lu, S.; Leng, X.; Xie, Y.; Gao, Y.; Liang, Y.; Zhong, T.; Long, B.; Fang, J.Y.; Meng, X. METTL14 modulates glycolysis to inhibit colorectal tumorigenesis in p53-wild-type cells. EMBO Rep., 2023, 24(4), e56325. doi: 10.15252/embr.202256325 PMID: 36794620
  71. Chen, X.; Xu, M.; Xu, X.; Zeng, K.; Liu, X.; Pan, B.; Li, C.; Sun, L.; Qin, J.; Xu, T.; He, B.; Pan, Y.; Sun, H.; Wang, S. METTL14-mediated N6-methyladenosine modification of SOX4 mRNA inhibits tumor metastasis in colorectal cancer. Mol. Cancer, 2020, 19(1), 106. doi: 10.1186/s12943-020-01220-7 PMID: 32552762
  72. Liu, Z.; Sun, T.; Piao, C.; Zhang, Z.; Kong, C. METTL14- mediated N6-methyladenosine modification of ITGβ4 mRNA inhibits metastasis of clear cell renal cell carcinoma. Cell Commun. Signal., 2022, 20(1), 36. doi: 10.1186/s12964-022-00831-5 PMID: 35305660
  73. Zheng, Y.; Liu, J.; Chen, P.; Lin, L.; Luo, Y.; Ma, X.; Lin, J.; Shen, Y.; Zhang, L. RETRACTED: Exosomal miR-22-3p from human umbilical cord blood-derived mesenchymal stem cells protects against lipopolysaccharid-induced acute lung injury. Life Sci., 2021, 269, 119004. doi: 10.1016/j.lfs.2020.119004 PMID: 33417960
  74. Liu, J.; Xing, F.; Fu, Q.; He, B.; Jia, Z.; Du, J.; Li, Y.; Zhang, X.; Chen, X. hUC-MSCs exosomal miR-451 alleviated acute lung injury by modulating macrophage M2 polarization fpage regulating MIF-PI3K-AKT signaling pathway. Environ. Toxicol., 2022, 37(12), 2819-2831. doi: 10.1002/tox.23639 PMID: 35997581
  75. Song, S.; Qin, Y.; He, Y.; Huang, Q.; Fan, C.; Chen, H.Y. Functional nanoprobes for ultrasensitive detection of biomolecules. Chem. Soc. Rev., 2010, 39(11), 4234-4243. doi: 10.1039/c000682n PMID: 20871878
  76. Foreman-Ortiz, I.U.; Ma, T.F.; Hoover, B.M.; Wu, M.; Murphy, C.J.; Murphy, R.M.; Pedersen, J.A. Nanoparticle tracking analysis and statistical mixture distribution analysis to quantify nanoparticle–vesicle binding. J. Colloid Interface Sci., 2022, 615, 50-58. doi: 10.1016/j.jcis.2022.01.141 PMID: 35123359
  77. Lou, G.; Chen, Z.; Zheng, M.; Liu, Y. Mesenchymal stem cell-derived exosomes as a new therapeutic strategy for liver diseases. Exp. Mol. Med., 2017, 49(6), e346. doi: 10.1038/emm.2017.63 PMID: 28620221
  78. Console, L.; Scalise, M.; Indiveri, C. Exosomes in inflammation and role as biomarkers. Clin. Chim. Acta, 2019, 488, 165-171. doi: 10.1016/j.cca.2018.11.009 PMID: 30419221
  79. Li, T.; Xia, M.; Gao, Y.; Chen, Y.; Xu, Y. Human umbilical cord mesenchymal stem cells: An overview of their potential in cell-based therapy. Expert Opin. Biol. Ther., 2015, 15(9), 1293-1306. doi: 10.1517/14712598.2015.1051528 PMID: 26067213

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers