The Metformin Immunoregulatory Actions in Tumor Suppression and Normal Tissues Protection
- Authors: Gupta J.1, Jalil A.2, Abd Alzahraa Z.3, Aminov Z.4, Alsaikhan F.5, Ramírez-Coronel A.6, Ramaiah P.7, Najafi M.8
-
Affiliations:
- Institute of Pharmaceutical Research, GLA University
- Medical Laboratories Techniques Department, Al-Mustaqbal University College
- , National University of Science and Technology
- Department of Public Health and Healthcare management, Samarkand State Medical University
- College of Pharmacy, Prince Sattam Bin Abdulaziz University
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca
- Faculty of Nursing, Umm al-Qura University
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences
- Issue: Vol 31, No 33 (2024)
- Pages: 5370-5396
- Section: Anti-Infectives and Infectious Diseases
- URL: https://rjeid.com/0929-8673/article/view/645053
- DOI: https://doi.org/10.2174/0929867331666230703143907
- ID: 645053
Cite item
Full Text
Abstract
:The immune system is the key player in a wide range of responses in normal tissues and tumors to anticancer therapy. Inflammatory and fibrotic responses in normal tissues are the main limitations of chemotherapy, radiotherapy, and also some newer anticancer drugs such as immune checkpoint inhibitors (ICIs). Immune system responses within solid tumors including anti-tumor and tumor- promoting responses can suppress or help tumor growth. Thus, modulation of immune cells and their secretions such as cytokines, growth factors and epigenetic modulators, pro-apoptosis molecules, and some other molecules can be suggested to alleviate side effects in normal tissues and drug-resistance mechanisms in the tumor. Metformin as an anti-diabetes drug has shown intriguing properties such as anti-inflammation, anti-fibrosis, and anticancer effects. Some investigations have uncovered that metformin can ameliorate radiation/chemotherapy toxicity in normal cells and tissues through the modulation of several targets in cells and tissues. These effects of metformin may ameliorate severe inflammatory responses and fibrosis after exposure to ionizing radiation or following treatment with highly toxic chemotherapy drugs. Metformin can suppress the activity of immunosuppressive cells in the tumor through the phosphorylation of AMP-activated protein kinase (AMPK). In addition, metformin may stimulate antigen presentation and maturation of anticancer immune cells, which lead to the induction of anticancer immunity in the tumor. This review aims to explain the detailed mechanisms of normal tissue sparing and tumor suppression during cancer therapy using adjuvant metformin with an emphasis on immune system responses.
Keywords
About the authors
Jitendra Gupta
Institute of Pharmaceutical Research, GLA University
Email: info@benthamscience.net
Abduladheem Jalil
Medical Laboratories Techniques Department, Al-Mustaqbal University College
Author for correspondence.
Email: info@benthamscience.net
Zahraa Abd Alzahraa
, National University of Science and Technology
Email: info@benthamscience.net
Zafar Aminov
Department of Public Health and Healthcare management, Samarkand State Medical University
Email: info@benthamscience.net
Fahad Alsaikhan
College of Pharmacy, Prince Sattam Bin Abdulaziz University
Author for correspondence.
Email: info@benthamscience.net
Andrés Ramírez-Coronel
Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca
Email: info@benthamscience.net
Pushpamala Ramaiah
Faculty of Nursing, Umm al-Qura University
Email: info@benthamscience.net
Masoud Najafi
Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences
Author for correspondence.
Email: info@benthamscience.net
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
- Koene, R.J.; Prizment, A.E.; Blaes, A.; Konety, S.H. Shared risk factors in cardiovascular disease and cancer. Circulation, 2016, 133(11), 1104-1114. doi: 10.1161/CIRCULATIONAHA.115.020406 PMID: 26976915
- Das, S.; Dasari, A. Novel therapeutics for patients with well-differentiated gastroenteropancreatic neuroendocrine tumors. Ther. Adv. Med. Oncol., 2021, 13 doi: 10.1177/17588359211018047 PMID: 34093744
- Das, S.; Phillips, S.; Lee, C.L.; Agarwal, R.; Bergsland, E.; Strosberg, J.; Chan, J.A.; LaFerriere, H.; Ramirez, R.A.; Berlin, J.; Dasari, A. Efficacy and toxicity of anti-vascular endothelial growth receptor tyrosine kinase inhibitors in patients with neuroendocrine tumours A systematic review and meta-analysis. Eur. J. Cancer, 2023, 182, 43-52. doi: 10.1016/j.ejca.2022.12.031 PMID: 36738541
- Popp, I.; Grosu, A.L.; Niedermann, G.; Duda, D.G. Immune modulation by hypofractionated stereotactic radiation therapy: Therapeutic implications. Radiother. Oncol., 2016, 120(2), 185-194. doi: 10.1016/j.radonc.2016.07.013 PMID: 27495145
- Lubas, M.J.; Kumar, S.S. The combined use of SBRT and immunotherapya literature review. Curr. Oncol. Rep., 2020, 22(12), 117. doi: 10.1007/s11912-020-00986-9 PMID: 32929678
- Yang, F.; Li, A.; Liu, H.; Zhang, H. Gastric cancer combination therapy: synthesis of a hyaluronic acid and cisplatin containing lipid prodrug coloaded with sorafenib in a nanoparticulate system to exhibit enhanced anticancer efficacy and reduced toxicity. Drug Des. Devel. Ther., 2018, 12, 3321-3333. doi: 10.2147/DDDT.S176879 PMID: 30323564
- Bensadoun, R.J.; Schubert, M.M.; Lalla, R.V.; Keefe, D. Amifostine in the management of radiation-induced and chemo-induced mucositis. Support. Care Cancer, 2006, 14(6), 566-572. doi: 10.1007/s00520-006-0047-4 PMID: 16586122
- Rades, D.; Fehlauer, F.; Bajrovic, A.; Mahlmann, B.; Richter, E.; Alberti, W. Serious adverse effects of amifostine during radiotherapy in head and neck cancer patients. Radiother. Oncol., 2004, 70(3), 261-264. doi: 10.1016/j.radonc.2003.10.005 PMID: 15064010
- Kouvaris, J.R.; Kouloulias, V.E.; Vlahos, L.J. Amifostine: The first selective-target and broad-spectrum radioprotector. Oncologist, 2007, 12(6), 738-747. doi: 10.1634/theoncologist.12-6-738 PMID: 17602063
- Fernando, W.; Rupasinghe, H.P.V.; Hoskin, D.W. Dietary phytochemicals with anti-oxidant and pro-oxidant activities: A double-edged sword in relation to adjuvant chemotherapy and radiotherapy? Cancer Lett., 2019, 452, 168-177. doi: 10.1016/j.canlet.2019.03.022 PMID: 30910593
- Golchin, A.; Farahany, T.Z. Biological products: Cellular therapy and FDA approved products. Stem Cell Rev., 2019, 15(2), 166-175. doi: 10.1007/s12015-018-9866-1 PMID: 30623359
- Majolo, F.; de Oliveira Becker Delwing, L.K.; Marmitt, D.J.; Bustamante-Filho, I.C.; Goettert, M.I. Medicinal plants and bioactive natural compounds for cancer treatment: Important advances for drug discovery. Phytochem. Lett., 2019, 31, 196-207. doi: 10.1016/j.phytol.2019.04.003
- Zhao, S.; Tang, Y.; Wang, R.; Najafi, M. Mechanisms of cancer cell death induction by paclitaxel: An updated review. Apoptosis, 2022, 27(9-10), 647-667. doi: 10.1007/s10495-022-01750-z PMID: 35849264
- Ma, R.; Yi, B.; Riker, A.I.; Xi, Y. Metformin and cancer immunity. Acta Pharmacol. Sin., 2020, 41(11), 1403-1409. doi: 10.1038/s41401-020-00508-0 PMID: 32868904
- Tang, Z.; Tang, N.; Jiang, S.; Bai, Y.; Guan, C.; Zhang, W.; Fan, S.; Huang, Y.; Lin, H.; Ying, Y. The chemosensitizing role of metformin in anti-cancer therapy. Anticancer Agents Med Chem, 2021, 21(8), 949-962.
- Sutkowska, E.; Fortuna, P.; Wisniewski, J.; Sutkowska, K.; Hodurek, P.; Gamian, A.; Kaluza, B. Low metformin dose and its therapeutic serum concentration in prediabetes. Sci. Rep., 2021, 11(1), 11684. doi: 10.1038/s41598-021-91174-7 PMID: 34083618
- Ningrum, V.D.A.; Ikawati, Z.; Sadewa, A.H.; Ikhsan, M.R. Patient-factors associated with metformin steady-state levels in type 2 diabetes mellitus with therapeutic dosage. J. Clin. Transl. Endocrinol., 2018, 12, 42-47. doi: 10.1016/j.jcte.2018.05.001 PMID: 29892566
- Najafi, M.; Cheki, M.; Rezapoor, S.; Geraily, G.; Motevaseli, E.; Carnovale, C.; Clementi, E.; Shirazi, A. Metformin: Prevention of genomic instability and cancer: A review. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2018, 827, 1-8. doi: 10.1016/j.mrgentox.2018.01.007 PMID: 29502733
- Jeong, Y.S.; Jusko, W.J. Meta-assessment of metformin absorption and disposition pharmacokinetics in nine species. Pharmaceuticals, 2021, 14(6), 545. doi: 10.3390/ph14060545 PMID: 34200427
- Jalving, M.; Gietema, J.A.; Lefrandt, J.D.; Jong, S.; Reyners, A.K.L.; Gans, R.O.B.; Vries, E.G.E. Metformin: Taking away the candy for cancer? Eur. J. Cancer, 2010, 46(13), 2369-2380. doi: 10.1016/j.ejca.2010.06.012 PMID: 20656475
- Saraei, P.; Asadi, I.; Kakar, M.A.; Moradi-Kor, N. The beneficial effects of metformin on cancer prevention and therapy: A comprehensive review of recent advances. Cancer Manag. Res., 2019, 11, 3295-3313. doi: 10.2147/CMAR.S200059 PMID: 31114366
- DeCensi, A.; Puntoni, M.; Goodwin, P.; Cazzaniga, M.; Gennari, A.; Bonanni, B.; Gandini, S. Metformin and cancer risk in diabetic patients: A systematic review and meta-analysis. Cancer Prev. Res., 2010, 3(11), 1451-1461. doi: 10.1158/1940-6207.CAPR-10-0157 PMID: 20947488
- vial, G.; Detaille, D.; Guigas, B. Role of mitochondria in the mechanism(s) of action of metformin. Front. Endocrinol., 2019, 10, 294. doi: 10.3389/fendo.2019.00294 PMID: 31133988
- Fontaine, E. Metformin-induced mitochondrial complex I inhibition: Facts, uncertainties, and consequences. Front. Endocrinol., 2018, 9, 753. doi: 10.3389/fendo.2018.00753 PMID: 30619086
- Tosca, L.; Ramé, C.; Chabrolle, C.; Tesseraud, S.; Dupont, J. Metformin decreases IGF1-induced cell proliferation and protein synthesis through AMP-activated protein kinase in cultured bovine granulosa cells. Reproduction, 2010, 139(2), 409-418. doi: 10.1530/REP-09-0351 PMID: 19906888
- Farhood, B.; Ashrafizadeh, M.; khodamoradi, E.; Hoseini-Ghahfarokhi, M.; Afrashi, S.; Musa, A.E.; Najafi, M. Targeting of cellular redox metabolism for mitigation of radiation injury. Life Sci., 2020, 250, 117570. doi: 10.1016/j.lfs.2020.117570 PMID: 32205088
- Liu, Y.Q.; Wang, X.L.; He, D.H.; Cheng, Y.X. Protection against chemotherapy- and radiotherapy-induced side effects: A review based on the mechanisms and therapeutic opportunities of phytochemicals. Phytomedicine, 2021, 80, 153402. doi: 10.1016/j.phymed.2020.153402 PMID: 33203590
- Boopathi, E.; Thangavel, C. Dark side of cancer therapy: Cancer treatment-induced cardiopulmonary inflammation, fibrosis, and immune modulation. Int. J. Mol. Sci., 2021, 22(18), 10126. doi: 10.3390/ijms221810126 PMID: 34576287
- Ashrafizadeh, M.; Farhood, B.; Eleojo Musa, A.; Taeb, S.; Najafi, M. Damage-associated molecular patterns in tumor radiotherapy. Int. Immunopharmacol., 2020, 86, 106761. doi: 10.1016/j.intimp.2020.106761 PMID: 32629409
- Veiko, N.N. Oxidized extracellular DNA as a stress signal in human cells. Oxid Med Cell Longev, 2013, 2013, 649747.
- Wu, X.; Xu, W.W.; Huan, X.; Wu, G.; Li, G.; Zhou, Y.H.; Najafi, M. Mechanisms of cancer cell killing by metformin: a review on different cell death pathways. Mol. Cell. Biochem., 2023, 478(1), 197-214. doi: 10.1007/s11010-022-04502-4 PMID: 35771397
- Huang, J.; Chang, Z.; Lu, Q.; Chen, X.; Najafi, M. Nobiletin as an inducer of programmed cell death in cancer: A review. Apoptosis, 2022, 27(5-6), 297-310. doi: 10.1007/s10495-022-01721-4 PMID: 35312885
- Hochreiter-Hufford, A.; Ravichandran, K.S. Clearing the dead: Apoptotic cell sensing, recognition, engulfment, and digestion. Cold Spring Harb. Perspect. Biol., 2013, 5(1), a008748. doi: 10.1101/cshperspect.a008748 PMID: 23284042
- Prata, L.G.L.; Ovsyannikova, I.G.; Tchkonia, T.; Kirkland, J.L. In Semin Immunol; Elsevier, 2018, Vol. 40, p. 101275.
- Tominaga, K.; Suzuki, H.I. TGF-β signaling in cellular senescence and aging-related pathology. Int. J. Mol. Sci., 2019, 20(20), 5002. doi: 10.3390/ijms20205002 PMID: 31658594
- Marchi, S.; Guilbaud, E.; Tait, S.W.; Yamazaki, T.; Galluzzi, L. Mitochondrial control of inflammation. Nat. Rev. Immunol., 2022, 23(3), 159-173. PMID: 35879417
- Pandolfi, F.; Altamura, S.; Frosali, S.; Conti, P. Key role of DAMP in inflammation, cancer, and tissue repair. Clin. Ther., 2016, 38(5), 1017-1028. doi: 10.1016/j.clinthera.2016.02.028 PMID: 27021609
- Gong, T.; Liu, L.; Jiang, W.; Zhou, R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat. Rev. Immunol., 2020, 20(2), 95-112. doi: 10.1038/s41577-019-0215-7 PMID: 31558839
- Lai, X.; Najafi, M. Redox interactions in chemo/radiation therapy-induced lung toxicity; Mechanisms and therapy perspectives. Curr. Drug Targets, 2022, 23(13), 1261-1276. doi: 10.2174/1389450123666220705123315 PMID: 35792117
- khodamoradi, E.; Hoseini-Ghahfarokhi, M.; Amini, P.; Motevaseli, E.; Shabeeb, D.; Musa, A.E.; Najafi, M.; Farhood, B. Targets for protection and mitigation of radiation injury. Cell. Mol. Life Sci., 2020, 77(16), 3129-3159. doi: 10.1007/s00018-020-03479-x PMID: 32072238
- Yang, C.; Song, C.; Wang, Y.; Zhou, W.; Zheng, W.; Zhou, H.; Deng, G.; Li, H.; Xiao, W.; Yang, Z.; Kong, L.; Ge, H.; Song, Y.; Sun, Y. Re-Du-Ning injection ameliorates radiation-induced pneumonitis and fibrosis by inhibiting AIM2 inflammasome and epithelial-mesenchymal transition. Phytomedicine, 2022, 102, 154184. doi: 10.1016/j.phymed.2022.154184 PMID: 35665679
- Yu, D.; Li, S.; Wang, S.; Li, X.; Zhu, M.; Huang, S.; Sun, L.; Zhang, Y.; Liu, Y.; Wang, S. Development and characterization of VEGF165-chitosan nanoparticles for the treatment of radiation-induced skin injury in rats. Mar. Drugs, 2016, 14(10), 182. doi: 10.3390/md14100182 PMID: 27727163
- Borrelli, M.R.; Shen, A.H.; Lee, G.K.; Momeni, A.; Longaker, M.T.; Wan, D.C. Radiation-induced skin fibrosis: Pathogenesis, current treatment options, and emerging therapeutics. Ann. Plast. Surg., 2019, 83(4S)(Suppl. 1), S59-S64. doi: 10.1097/SAP.0000000000002098 PMID: 31513068
- Cohn, S.M.; Vidrich, A.; Bickston, S.J. Radiation injury in the gastrointestinal tract; Yamada's Textbook of Gastroenterology, 2015, pp. 2509-2520.
- Chen, C.C.; Wang, L.; Lin, J.C.; Jan, J.S. The prognostic factors for locally advanced cervical cancer patients treated by intensity-modulated radiation therapy with concurrent chemotherapy. J. Formos. Med. Assoc., 2015, 114(3), 231-237. doi: 10.1016/j.jfma.2012.10.021 PMID: 25777974
- Xu, C.; Najafi, M.; Shang, Z. lung pneumonitis and fibrosis in cancer therapy: A review on cellular and molecular mechanisms. Curr. Drug Targets, 2022, 23(16), 1505-1525. doi: 10.2174/1389450123666220907144131 PMID: 36082868
- Fu, X.; Tang, J.; Wen, P.; Huang, Z.; Najafi, M. Redox interactions-induced cardiac toxicity in cancer therapy. Arch. Biochem. Biophys., 2021, 708, 108952. doi: 10.1016/j.abb.2021.108952 PMID: 34097901
- Altan, M.; Toki, M.I.; Gettinger, S.N.; Carvajal-Hausdorf, D.E.; Zugazagoitia, J.; Sinard, J.H.; Herbst, R.S.; Rimm, D.L. Immune checkpoint inhibitorassociated pericarditis. J. Thorac. Oncol., 2019, 14(6), 1102-1108. doi: 10.1016/j.jtho.2019.02.026 PMID: 30851443
- Michel, L.; Rassaf, T.; Totzeck, M. Cardiotoxicity from immune checkpoint inhibitors. Int. J. Cardiol. Heart Vasc., 2019, 25, 100420. doi: 10.1016/j.ijcha.2019.100420 PMID: 31517036
- Klein, D.; Steens, J.; Wiesemann, A.; Schulz, F.; Kaschani, F.; Röck, K.; Yamaguchi, M.; Wirsdörfer, F.; Kaiser, M.; Fischer, J.W.; Stuschke, M.; Jendrossek, V. Mesenchymal stem cell therapy protects lungs from radiation-induced endothelial cell loss by restoring superoxide dismutase 1 expression. Antioxid. Redox Signal., 2017, 26(11), 563-582. doi: 10.1089/ars.2016.6748 PMID: 27572073
- Groves, A.M.; Johnston, C.J.; Williams, J.P.; Finkelstein, J.N. Role of infiltrating monocytes in the development of radiation-induced pulmonary fibrosis. Radiat. Res., 2018, 189(3), 300-311. doi: 10.1667/RR14874.1 PMID: 29332538
- Li, L.; Mok, H.; Jhaveri, P.; Bonnen, M.D.; Sikora, A.G.; Eissa, N.T.; Komaki, R.U.; Ghebre, Y.T. Anticancer therapy and lung injury: Molecular mechanisms. Expert Rev. Anticancer Ther., 2018, 18(10), 1041-1057. doi: 10.1080/14737140.2018.1500180 PMID: 29996062
- Leger, P.; Limper, A.H.; Maldonado, F. Pulmonary toxicities from conventional chemotherapy. Clin. Chest Med., 2017, 38(2), 209-222. doi: 10.1016/j.ccm.2017.01.002 PMID: 28477634
- Straub, J.M.; New, J.; Hamilton, C.D.; Lominska, C.; Shnayder, Y.; Thomas, S.M. Radiation-induced fibrosis: Mechanisms and implications for therapy. J. Cancer Res. Clin. Oncol., 2015, 141(11), 1985-1994. doi: 10.1007/s00432-015-1974-6 PMID: 25910988
- Farhood, B.; Aliasgharzadeh, A.; Amini, P.; Rezaeyan, A.; Tavassoli, A.; Motevaseli, E.; Shabeeb, D.; Eleojo Musa, A.; Najafi, M. Mitigation of radiation-induced lung pneumonitis and fibrosis using metformin and melatonin: A histopathological study. Medicina, 2019, 55(8), 417. doi: 10.3390/medicina55080417 PMID: 31366142
- Yahyapour, R.; Amini, P.; Saffar, H.; Motevaseli, E.; Farhood, B.; Pooladvand, V.; Shabeeb, D.; Musa, A.E.; Najafi, M. Protective effect of metformin, resveratrol and alpha-lipoic acid on radiation- induced pneumonitis and fibrosis: A histopathological study. Curr. Drug Res. Rev., 2019, 11(2), 111-117. doi: 10.2174/2589977511666191018180758 PMID: 31875783
- Azmoonfar, R.; Amini, P.; Saffar, H.; Rezapoor, S.; Motevaseli, E.; Cheki, M.; Yahyapour, R.; farhood, B.; Nouruzi, F.; Khodamoradi, E.; Shabeeb, D.; Eleojo Musa, A.; Najafi, M. Metformin protects against radiation-induced pneumonitis and fibrosis and attenuates upregulation of dual oxidase genes expression. Adv. Pharm. Bull., 2018, 8(4), 697-704. doi: 10.15171/apb.2018.078 PMID: 30607342
- Chung, S.I.; Horton, J.A.; Ramalingam, T.R.; White, A.O.; Chung, E.J.; Hudak, K.E.; Scroggins, B.T.; Arron, J.R.; Wynn, T.A.; Citrin, D.E. IL-13 is a therapeutic target in radiation lung injury. Sci. Rep., 2016, 6(1), 39714. doi: 10.1038/srep39714 PMID: 28004808
- Groves, A.M.; Johnston, C.J.; Misra, R.S.; Williams, J.P.; Finkelstein, J.N. Effects of IL-4 on pulmonary fibrosis and the accumulation and phenotype of macrophage subpopulations following thoracic irradiation. Int. J. Radiat. Biol., 2016, 92(12), 754-765. doi: 10.1080/09553002.2016.1222094 PMID: 27539247
- Büttner, C.; Skupin, A.; Reimann, T.; Rieber, E.P.; Unteregger, G.; Geyer, P.; Frank, K.H. Local production of interleukin-4 during radiation-induced pneumonitis and pulmonary fibrosis in rats: Macrophages as a prominent source of interleukin-4. Am. J. Respir. Cell Mol. Biol., 1997, 17(3), 315-325. doi: 10.1165/ajrcmb.17.3.2279 PMID: 9308918
- Park, H.R.; Jo, S.K.; Jung, U. Ionizing radiation promotes epithelialtomesenchymal transition in lung epithelial cells by TGF-β-producing M2 macrophages. In Vivo, 2019, 33(6), 1773-1784. doi: 10.21873/invivo.11668 PMID: 31662502
- Jakubzick, C.; Choi, E.S.; Joshi, B.H.; Keane, M.P.; Kunkel, S.L.; Puri, R.K.; Hogaboam, C.M. Therapeutic attenuation of pulmonary fibrosis via targeting of IL-4- and IL-13-responsive cells. J. Immunol., 2003, 171(5), 2684-2693. doi: 10.4049/jimmunol.171.5.2684 PMID: 12928422
- Karo-Atar, D.; Bordowitz, A.; Wand, O.; Pasmanik-Chor, M.; Fernandez, I.E.; Itan, M.; Frenkel, R.; Herbert, D.R.; Finkelman, F.D.; Eickelberg, O.; Munitz, A. A protective role for IL-13 receptor α 1 in bleomycin-induced pulmonary injury and repair. Mucosal Immunol., 2016, 9(1), 240-253. doi: 10.1038/mi.2015.56 PMID: 26153764
- Wang, J.; Wang, Y.; Han, J.; Mei, H.; Yu, D.; Ding, Q.; Zhang, T.; Wu, G.; Peng, G.; Lin, Z. Metformin attenuates radiation-induced pulmonary fibrosis in a murine model. Radiat. Res., 2017, 188(1), 105-113. doi: 10.1667/RR14708.1 PMID: 28437189
- Shahid, S. Review of hematological indices of cancer patients receiving combined chemotherapy & radiotherapy or receiving radiotherapy alone. Crit. Rev. Oncol. Hematol., 2016, 105, 145-155. doi: 10.1016/j.critrevonc.2016.06.001 PMID: 27423975
- Kumar, T.; Schernberg, A.; Busato, F.; Laurans, M.; Fumagalli, I.; Dumas, I.; Deutsch, E.; Haie-Meder, C.; Chargari, C. Correlation between pelvic bone marrow radiation dose and acute hematological toxicity in cervical cancer patients treated with concurrent chemoradiation. Cancer Manag. Res., 2019, 11, 6285-6297. doi: 10.2147/CMAR.S195989 PMID: 31372035
- Chang, J.; Feng, W.; Wang, Y.; Luo, Y.; Allen, A.R.; Koturbash, I.; Turner, J.; Stewart, B.; Raber, J.; Hauer-Jensen, M.; Zhou, D.; Shao, L. Whole-body proton irradiation causes long-term damage to hematopoietic stem cells in mice. Radiat. Res., 2015, 183(2), 240-248. doi: 10.1667/RR13887.1 PMID: 25635345
- Wang, Y.; Liu, L.; Pazhanisamy, S.K.; Li, H.; Meng, A.; Zhou, D. Total body irradiation causes residual bone marrow injury by induction of persistent oxidative stress in murine hematopoietic stem cells. Free Radic. Biol. Med., 2010, 48(2), 348-356. doi: 10.1016/j.freeradbiomed.2009.11.005 PMID: 19925862
- Zhang, H.; Zhai, Z.; Wang, Y.; Zhang, J.; Wu, H.; Wang, Y.; Li, C.; Li, D.; Lu, L.; Wang, X.; Chang, J.; Hou, Q.; Ju, Z.; Zhou, D.; Meng, A. Resveratrol ameliorates ionizing irradiation-induced long-term hematopoietic stem cell injury in mice. Free Radic. Biol. Med., 2013, 54, 40-50. doi: 10.1016/j.freeradbiomed.2012.10.530 PMID: 23124026
- Zhang, H.; Wang, Y.; Meng, A.; Yan, H.; Wang, X.; Niu, J.; Li, J.; Wang, H. Inhibiting TGFβ1 has a protective effect on mouse bone marrow suppression following ionizing radiation exposure in vitro. J. Radiat. Res., 2013, 54(4), 630-636. doi: 10.1093/jrr/rrs142 PMID: 23370919
- Cheki, M.; Shirazi, A.; Mahmoudzadeh, A.; Bazzaz, J.T.; Hosseinimehr, S.J. The radioprotective effect of metformin against cytotoxicity and genotoxicity induced by ionizing radiation in cultured human blood lymphocytes. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2016, 809, 24-32. doi: 10.1016/j.mrgentox.2016.09.001 PMID: 27692296
- Mortezaee, K.; Shabeeb, D.; Musa, A.E.; Najafi, M.; Farhood, B. Metformin as a radiation modifier; Implications to normal tissue protection and tumor sensitization. Curr. Clin. Pharmacol., 2019, 14(1), 41-53. doi: 10.2174/1574884713666181025141559 PMID: 30360725
- Xu, G.; Wu, H.; Zhang, J.; Li, D.; Wang, Y.; Wang, Y.; Zhang, H.; Lu, L.; Li, C.; Huang, S.; Xing, Y.; Zhou, D.; Meng, A. Metformin ameliorates ionizing irradiation-induced long-term hematopoietic stem cell injury in mice. Free Radic. Biol. Med., 2015, 87, 15-25. doi: 10.1016/j.freeradbiomed.2015.05.045 PMID: 26086617
- Spałek, M. Chronic radiation-induced dermatitis: Challenges and solutions. Clin. Cosmet. Investig. Dermatol., 2016, 9, 473-482. doi: 10.2147/CCID.S94320 PMID: 28003769
- Kole, A.J.; Kole, L.; Moran, M. Acute radiation dermatitis in breast cancer patients: Challenges and solutions. Breast Cancer, 2017, 9, 313-323. doi: 10.2147/BCTT.S109763 PMID: 28503074
- Ferreira, E.B.; Ciol, M.A.; de Meneses, A.G.; Bontempo, P.S.M.; Hoffman, J.M.; Reis, P.E.D. Chamomile gel versus urea cream to prevent acute radiation dermatitis in head and neck cancer patients: Results from a preliminary clinical trial. Integr. Cancer Ther., 2020, 19 doi: 10.1177/1534735420962174 PMID: 32985288
- Liang, X.; Bradley, J.A.; Zheng, D.; Rutenberg, M.; Yeung, D.; Mendenhall, N.; Li, Z. Prognostic factors of radiation dermatitis following passive-scattering proton therapy for breast cancer. Radiat. Oncol., 2018, 13(1), 72. doi: 10.1186/s13014-018-1004-3 PMID: 29673384
- Shabeeb, D.; Najafi, M.; Musa, A.E.; Keshavarz, M.; Shirazi, A.; Hassanzadeh, G.; Hadian, M.R.; Samandari, H. Biochemical and histopathological evaluation of the radioprotective effects of melatonin against gamma ray-induced skin damage. Curr. Radiopharm., 2019, 12(1), 72-81. doi: 10.2174/1874471012666181120163250 PMID: 30465519
- Kim, J.M.; Yoo, H.; Kim, J.Y.; Oh, S.H.; Kang, J.W.; Yoo, B.R.; Han, S.Y.; Kim, C.S.; Choi, W.H.; Lee, E.J.; Byeon, H.J.; Lee, W.J.; Lee, Y.S.; Cho, J. Metformin alleviates radiation-induced skin fibrosis via the downregulation of FOXO3. Cell. Physiol. Biochem., 2018, 48(3), 959-970. doi: 10.1159/000491964 PMID: 30036874
- Mollà, M.; Panés, J. Radiation-induced intestinal inflammation. World J. Gastroenterol., 2007, 13(22), 3043-3046. doi: 10.3748/wjg.v13.i22.3043 PMID: 17589918
- Wang, J.; Boerma, M.; Fu, Q.; HauerJensen, M. Significance of endothelial dysfunction in the pathogenesis of early and delayed radiation enteropathy. World J. Gastroenterol., 2007, 13(22), 3047-3055. doi: 10.3748/wjg.v13.i22.3047 PMID: 17589919
- Gervaz, P.; Morel, P.; Vozenin-Brotons, M.C. Molecular aspects of intestinal radiation-induced fibrosis. Curr. Mol. Med., 2009, 9(3), 273-280. doi: 10.2174/156652409787847164 PMID: 19355909
- Shadad, A.K.; Sullivan, F.J.; Martin, J.D.; Egan, L.J. Gastrointestinal radiation injury: Symptoms, risk factors and mechanisms. World J. Gastroenterol., 2013, 19(2), 185-198. doi: 10.3748/wjg.v19.i2.185 PMID: 23345941
- Bagheri, H.; Rezapoor, S.; Najafi, M.; Safar, H.; Shabeeb, D.; Cheki, M.; Shekarchi, B.; Motevaseli, E. Metformin protects the rat small intestine against radiation enteritis. Jundishapur J. Nat. Pharm. Prod., 2019, 14(4) doi: 10.5812/jjnpp.67352
- Uthaiwat, P.; Priprem, A.; Chio-Srichan, S.; Settasatian, C.; Lee, Y.C.; Mahakunakorn, P.; Boonsiri, P.; Leelayuwat, C.; Tippayawat, P.; Puthongking, P.; Daduang, J. Oral administration of melatonin or succinyl melatonin niosome gel benefits 5-fu-induced small intestinal mucositis treatment in mice. AAPS PharmSciTech, 2021, 22(5), 200. doi: 10.1208/s12249-021-01941-y PMID: 34212283
- Uthaiwat, P.; Daduang, J.; Priprem, A.; Settasatian, C.; Chio-Srichan, S.; Lee, Y.C.; Mahakunakorn, P.; Boonsiri, P. Topical melatonin niosome gel for the treatment of 5-fu-induced oral mucositis in mice. Curr. Drug Deliv., 2021, 18(2), 199-211. doi: 10.2174/1567201817666200525151848 PMID: 32484102
- Lozano, A.; Marruecos, J.; Rubió, J.; Farré, N.; Gómez-Millán, J.; Morera, R.; Planas, I.; Lanzuela, M.; Vázquez-Masedo, M.G.; Cascallar, L.; Giralt, J.; Escames, G.; Valentí, V.; Grima, P.; Bosser, R.; Tarragó, C.; Mesía, R. Randomized placebo-controlled phase II trial of high-dose melatonin mucoadhesive oral gel for the prevention and treatment of oral mucositis in patients with head and neck cancer undergoing radiation therapy concurrent with systemic treatment. Clin. Transl. Oncol., 2021, 23(9), 1801-1810. doi: 10.1007/s12094-021-02586-w PMID: 33738704
- Pulito, C.; Cristaudo, A.; Porta, C.L.; Zapperi, S.; Blandino, G.; Morrone, A.; Strano, S. Oral mucositis: The hidden side of cancer therapy. J. Exp. Clin. Cancer Res., 2020, 39(1), 210. doi: 10.1186/s13046-020-01715-7 PMID: 33028357
- Sun, H.; Zhou, Y.; Ma, R.; Zhang, J.; Shan, J.; Chen, Y.; Li, X.; Shan, E. Metformin protects 5-Fu-induced chemotherapy oral mucositis by reducing endoplasmic reticulum stress in mice. Eur. J. Pharm. Sci., 2022, 173, 106182. doi: 10.1016/j.ejps.2022.106182 PMID: 35405270
- Xia, J.; Chen, J.; Vashisth, M.K.; Ge, Y.; Dai, Q.; He, S.; Shi, Y.; Wang, X. Metformin ameliorates 5-fluorouracil-induced intestinal injury by inhibiting cellular senescence, inflammation, and oxidative stress. Int. Immunopharmacol., 2022, 113(Pt A), 109342. doi: 10.1016/j.intimp.2022.109342 PMID: 36327871
- Mercurio, V.; Cuomo, A.; Della Pepa, R.; Ciervo, D.; Cella, L.; Pirozzi, F.; Parrella, P.; Campi, G.; Franco, R.; Varricchi, G.; Abete, P.; Marone, G.; Petretta, M.; Bonaduce, D.; Pacelli, R.; Picardi, M.; Tocchetti, C.G. What is the cardiac impact of chemotherapy and subsequent radiotherapy in lymphoma patients? Antioxid. Redox Signal., 2019, 31(15), 1166-1174. doi: 10.1089/ars.2019.7842 PMID: 31436110
- Gorini, S.; De Angelis, A.; Berrino, L.; Malara, N.; Rosano, G.; Ferraro, E. Chemotherapeutic drugs and mitochondrial dysfunction: Focus on doxorubicin, trastuzumab, and sunitinib. Oxid. Med. Cell. Longev., 2018, 2018, 1-15. doi: 10.1155/2018/7582730 PMID: 29743983
- Safaei, A.; Sheibani, M.; Azizi, Y. A journey in anthracycline-induced cardiotoxicity with emphasizing on doxorubicin: a review article. Tehran Univ. Medical J, 2021, 79(8), 575-583.
- Fabin, N.; Bergami, M.; Cenko, E.; Bugiardini, R.; Manfrini, O. The role of vasospasm and microcirculatory dysfunction in fluoropyrimidine-induced ischemic heart disease. J. Clin. Med., 2022, 11(5), 1244. doi: 10.3390/jcm11051244 PMID: 35268333
- Qi, Y.; Ying, Y.; Zou, J.; Fang, Q.; Yuan, X.; Cao, Y.; Cai, Y.; Fu, S. Kaempferol attenuated cisplatin-induced cardiac injury via inhibiting STING/NF-κB-mediated inflammation. Am. J. Transl. Res., 2020, 12(12), 8007-8018. PMID: 33437376
- Yang, R.; Tan, C.; Najafi, M. Cardiac inflammation and fibrosis following chemo/radiation therapy: Mechanisms and therapeutic agents. Inflammopharmacology, 2022, 30(1), 73-89. doi: 10.1007/s10787-021-00894-9 PMID: 34813027
- Wei, T.; Cheng, Y. The cardiac toxicity of radiotherapy a review of characteristics, mechanisms, diagnosis, and prevention. Int. J. Radiat. Biol., 2021, 97(10), 1333-1340. doi: 10.1080/09553002.2021.1956007 PMID: 34264176
- Livingston, K.; Schlaak, R.A.; Puckett, L.L.; Bergom, C. The role of mitochondrial dysfunction in radiation-induced heart disease: from bench to bedside. Front. Cardiovasc. Med., 2020, 7, 20. doi: 10.3389/fcvm.2020.00020 PMID: 32154269
- Dhingra, R.; Rabinovich-Nikitin, I.; Rothman, S.; Guberman, M.; Gang, H.; Margulets, V.; Jassal, D.S.; Alagarsamy, K.N.; Dhingra, S.; Valenzuela Ripoll, C.; Billia, F.; Diwan, A.; Javaheri, A.; Kirshenbaum, L.A. Proteasomal degradation of TRAF2 mediates mitochondrial dysfunction in doxorubicin-cardiomyopathy. Circulation, 2022, 146(12), 934-954. doi: 10.1161/CIRCULATIONAHA.121.058411 PMID: 35983756
- El kiki, S.M.; Omran, M.M.; Mansour, H.H.; Hasan, H.F. Metformin and/or low dose radiation reduces cardiotoxicity and apoptosis induced by cyclophosphamide through SIRT-1/SOD and BAX/Bcl-2 pathways in rats. Mol. Biol. Rep., 2020, 47(7), 5115-5126. doi: 10.1007/s11033-020-05582-5 PMID: 32537703
- Karam, H.M.; Radwan, R.R. Metformin modulates cardiac endothelial dysfunction, oxidative stress and inflammation in irradiated rats: A new perspective of an antidiabetic drug. Clin. Exp. Pharmacol. Physiol., 2019, 46(12), 1124-1132. doi: 10.1111/1440-1681.13148 PMID: 31357226
- Yahyapour, R.; Amini, P.; Saffar, H.; Rezapoor, S.; Motevaseli, E.; Cheki, M.; Farhood, B.; Nouruzi, F.; Shabeeb, D.; Eleojo Musa, A.; Najafi, M. Metformin protects against radiation-induced heart injury and attenuates the upregulation of dual oxidase genes following rats chest irradiation. Int. J. Mol. Cell. Med., 2018, 7(3), 193-202. PMID: 31565651
- Panpan, T.; Yuchen, D.; Xianyong, S.; Meng, L.; Ruijuan, H.; Ranran, D.; Pengyan, Z.; Mingxi, L.; Rongrong, X. Cardiac remodelling following cancer therapy: A review. Cardiovasc. Toxicol., 2022, 22(9), 771-786. doi: 10.1007/s12012-022-09762-6 PMID: 35877038
- Arinno, A.; Maneechote, C.; Khuanjing, T.; Chunchai, T.; Prathumsap, N.; Arunsak, B.; Kerdphoo, S.; Shinlapawittayatorn, K.; Chattipakorn, S.; Chattipakorn, N. Abstract 9375: Melatonin and metformin exert cardioprotection against trastuzumab-induced cardiotoxicity through modulating cardiac mitochondrial dynamics in rats. Circulation, 2021, 144(S1), A9375-A9375.
- Arinno, A.; Maneechote, C.; Khuanjing, T.; Prathumsap, N.; Chunchai, T.; Arunsak, B.; Nawara, W.; Kerdphoo, S.; Shinlapawittayatorn, K.; Chattipakorn, S.C.; Chattipakorn, N. Melatonin and metformin ameliorated trastuzumab-induced cardiotoxicity through the modulation of mitochondrial function and dynamics without reducing its anticancer efficacy. Biochim. Biophys. Acta Mol. Basis Dis., 2023, 1869(2), 166618. doi: 10.1016/j.bbadis.2022.166618 PMID: 36494039
- Kuburas, R.; Gharanei, M.; Haussmann, I.; Maddock, H.; Sandhu, H. Metformin protects against sunitinib-induced cardiotoxicity: Investigating the role of AMPK. J. Cardiovasc. Pharmacol., 2022, 79(6), 799-807. doi: 10.1097/FJC.0000000000001256 PMID: 35266920
- Ajzashokouhi, A.H.; Bostan, H.B.; Jomezadeh, V.; Hayes, A.W.; Karimi, G. A review on the cardioprotective mechanisms of metformin against doxorubicin. Hum. Exp. Toxicol., 2020, 39(3), 237-248. doi: 10.1177/0960327119888277 PMID: 31735071
- Karim, L.Z.A.; Arif, I.S.; Saady, F. Metabolomics Of metformins cardioprotective effect in acute doxorubicin induced-cardiotoxicity in rats. Syst. Rev. Pharm, 2021, 12, 100-109.
- Ikewuchi, J.C.; Ikewuchi, C.C.; Ifeanacho, M.O.; Jaja, V.S.; Okezue, E.C.; Jamabo, C.N.; Adeku, K.A. Attenuation of doxorubicin-induced cardiotoxicity in Wistar rats by aqueous leaf-extracts of Chromolaena odorata and Tridax procumbens. J. Ethnopharmacol., 2021, 274, 114004. doi: 10.1016/j.jep.2021.114004 PMID: 33727109
- Arinno, A.; Maneechote, C.; Khuanjing, T.; Ongnok, B.; Prathumsap, N.; Chunchai, T.; Arunsak, B.; Kerdphoo, S.; Shinlapawittayatorn, K.; Chattipakorn, S.C.; Chattipakorn, N. Cardioprotective effects of melatonin and metformin against doxorubicin-induced cardiotoxicity in rats are through preserving mitochondrial function and dynamics. Biochem. Pharmacol., 2021, 192, 114743. doi: 10.1016/j.bcp.2021.114743 PMID: 34453902
- Shaty, M.H.; Al-Ezzi, M.I.; Arif, I.S.; Basil, D. Effect of metformin on inflammatory markers involved in cardiotoxicity induced by doxorubicin. Res. J. Pharm. Technol., 2019, 12(12), 5815-5821. doi: 10.5958/0974-360X.2019.01007.2
- Timm, K.N.; Tyler, D.J. The role of AMPK activation for cardioprotection in doxorubicin-induced cardiotoxicity. Cardiovasc. Drugs Ther., 2020, 34(2), 255-269. doi: 10.1007/s10557-020-06941-x PMID: 32034646
- Chen, J.; Zhang, S.; Pan, G.; Lin, L.; Liu, D.; Liu, Z.; Mei, S.; Zhang, L.; Hu, Z.; Chen, J.; Luo, H.; Wang, Y.; Xin, Y.; You, Z. Modulatory effect of metformin on cardiotoxicity induced by doxorubicin via the MAPK and AMPK pathways. Life Sci., 2020, 249, 117498. doi: 10.1016/j.lfs.2020.117498 PMID: 32142765
- Chen, K.; Li, Y.; Guo, Z.; Zeng, Y.; Zhang, W.; Wang, H. Metformin: Current clinical applications in nondiabetic patients with cancer. Aging, 2020, 12(4), 3993-4009. doi: 10.18632/aging.102787 PMID: 32074084
- Rocca, A.; Cortesi, P.; Cortesi, L.; Gianni, L.; Matteucci, F.; Fantini, L.; Maestri, A.; Giunchi, D.C.; Cavanna, L.; Ciani, R.; Falcini, F.; Bagni, A.; Meldoli, E.; DallAgata, M.; Volpi, R.; Andreis, D.; Nanni, O.; Curcio, A.; Lucchi, L.; Amadori, D.; Fedeli, A. Phase II study of liposomal doxorubicin, docetaxel and trastuzumab in combination with metformin as neoadjuvant therapy for HER2-positive breast cancer. Ther. Adv. Med. Oncol., 2021, 13 doi: 10.1177/1758835920985632 PMID: 33613693
- Osataphan, N.; Apaijai, N.; Phrommintikul, A.; LEEMASAWAT, K.; Somwangprasert, A.; Suksai, S.; Chattipakorn, S.; Chattipakorn, N. Abstract 11469: Effects of metformin and donepezil on the prevention of doxorubicin-induced cardiotoxicity in breast cancer patient: A randomized controlled trial. Circulation, 2022, 146(S1), A11469-A11469.
- Yu, J-M.; Hsieh, M-C.; Qin, L.; Zhang, J.; Wu, S-Y. Metformin reduces radiation-induced cardiac toxicity risk in patients having breast cancer. Am. J. Cancer Res., 2019, 9(5), 1017-1026. PMID: 31218109
- Hirata, E.; Sahai, E. Tumor microenvironment and differential responses to therapy. Cold Spring Harb. Perspect. Med., 2017, 7(7), a026781. doi: 10.1101/cshperspect.a026781 PMID: 28213438
- Melaiu, O.; Lucarini, V.; Cifaldi, L.; Fruci, D. Influence of the tumor microenvironment on NK cell function in solid tumors. Front. Immunol., 2020, 10, 3038. doi: 10.3389/fimmu.2019.03038 PMID: 32038612
- Katsuta, E.; Rashid, O.M.; Takabe, K. Clinical relevance of tumor microenvironment: Immune cells, vessels, and mouse models. Hum. Cell, 2020, 33(4), 930-937. doi: 10.1007/s13577-020-00380-4 PMID: 32507979
- Thorsson, V.; Gibbs, D.L.; Brown, S.D.; Wolf, D.; Bortone, D.S.; Yang, T.-H.O.; Porta-Pardo, E.; Gao, G.F.; Plaisier, C.L.; Eddy, J.A. The immune landscape of cancer. Immunity, 2018, 48(4), 812-830. e814.. doi: 10.1016/j.immuni.2018.03.023
- Schreiber, S.; Hammers, C.M.; Kaasch, A.J.; Schraven, B.; Dudeck, A.; Kahlfuss, S. Metabolic interdependency of Th2 cell-mediated type 2 immunity and the tumor microenvironment. Front. Immunol., 2021, 12, 632581. doi: 10.3389/fimmu.2021.632581 PMID: 34135885
- Radomska-Leśniewska, D.M.; Białoszewska, A.; Kamiński, P. Angiogenic properties of NK cells in cancer and other angiogenesis-dependent diseases. Cells, 2021, 10(7), 1621. doi: 10.3390/cells10071621 PMID: 34209508
- Tsukioki, T.; Shien, T.; Tanaka, T.; Suzuki, Y.; Kajihara, Y.; Hatono, M.; Kawada, K.; Kochi, M.; Iwamoto, T.; Ikeda, H.; Taira, N.; Doihara, H.; Toyooka, S. Influences of preoperative metformin on immunological factors in early breast cancer. Cancer Chemother. Pharmacol., 2020, 86(1), 55-63. doi: 10.1007/s00280-020-04092-2 PMID: 32533334
- Wang, S.; Lin, Y.; Xiong, X.; Wang, L.; Guo, Y.; Chen, Y.; Chen, S.; Wang, G.; Lin, P.; Chen, H.; Yeung, S.C.J.; Bremer, E.; Zhang, H. Low-dose metformin reprograms the tumor immune microenvironment in human esophageal cancer: Results of a phase II clinical trial. Clin. Cancer Res., 2020, 26(18), 4921-4932. doi: 10.1158/1078-0432.CCR-20-0113 PMID: 32646922
- Patel, D.D.; Kuchroo, V.K. Th17 cell pathway in human immunity: Lessons from genetics and therapeutic interventions. Immunity, 2015, 43(6), 1040-1051. doi: 10.1016/j.immuni.2015.12.003 PMID: 26682981
- Perez, L.G.; Kempski, J.; McGee, H.M.; Pelzcar, P.; Agalioti, T.; Giannou, A.; Konczalla, L.; Brockmann, L.; Wahib, R.; Xu, H.; Vesely, M.C.A.; Soukou, S.; Steglich, B.; Bedke, T.; Manthey, C.; Seiz, O.; Diercks, B.P.; Gnafakis, S.; Guse, A.H.; Perez, D.; Izbicki, J.R.; Gagliani, N.; Flavell, R.A.; Huber, S. TGF-β signaling in Th17 cells promotes IL-22 production and colitis-associated colon cancer. Nat. Commun., 2020, 11(1), 2608. doi: 10.1038/s41467-020-16363-w PMID: 32451418
- Nalbant, A. IL-17, IL-21, and IL-22 Cytokines of T Helper 17 Cells in Cancer. J. Interferon Cytokine Res., 2019, 39(1), 56-60. doi: 10.1089/jir.2018.0057 PMID: 30562123
- Asadzadeh, Z.; Mohammadi, H.; Safarzadeh, E.; Hemmatzadeh, M.; Mahdian-shakib, A.; Jadidi-Niaragh, F.; Azizi, G.; Baradaran, B. The paradox of Th17 cell functions in tumor immunity. Cell. Immunol., 2017, 322, 15-25. doi: 10.1016/j.cellimm.2017.10.015 PMID: 29103586
- Zhao, D.; Long, X.D.; Lu, T.F.; Wang, T.; Zhang, W.W.; Liu, Y.X.; Cui, X.L.; Dai, H.J.; Xue, F.; Xia, Q. Metformin decreases IL-22 secretion to suppress tumor growth in an orthotopic mouse model of hepatocellular carcinoma. Int. J. Cancer, 2015, 136(11), 2556-2565. doi: 10.1002/ijc.29305 PMID: 25370454
- Limagne, E.; Thibaudin, M.; Euvrard, R.; Berger, H.; Chalons, P.; Végan, F.; Humblin, E.; Boidot, R.; Rébé, C.; Derangère, V.; Ladoire, S.; Apetoh, L.; Delmas, D.; Ghiringhelli, F. Sirtuin-1 activation controls tumor growth by impeding Th17 differentiation via STAT3 deacetylation. Cell Rep., 2017, 19(4), 746-759. doi: 10.1016/j.celrep.2017.04.004 PMID: 28445726
- Chiang, C.F.; Chao, T.T.; Su, Y.F.; Hsu, C.C.; Chien, C.Y.; Chiu, K.C.; Shiah, S.G.; Lee, C.H.; Liu, S.Y.; Shieh, Y.S. Metformin-treated cancer cells modulate macrophage polarization through AMPK-NF-κB signaling. Oncotarget, 2017, 8(13), 20706-20718. doi: 10.18632/oncotarget.14982 PMID: 28157701
- Ding, L.; Liang, G.; Yao, Z.; Zhang, J.; Liu, R.; Chen, H.; Zhou, Y.; Wu, H.; Yang, B.; He, Q. Metformin prevents cancer metastasis by inhibiting M2-like polarization of tumor associated macrophages. Oncotarget, 2015, 6(34), 36441-36455. doi: 10.18632/oncotarget.5541 PMID: 26497364
- Kunisada, Y.; Eikawa, S.; Tomonobu, N.; Domae, S.; Uehara, T.; Hori, S.; Furusawa, Y.; Hase, K.; Sasaki, A.; Udono, H. Attenuation of CD4+CD25+ regulatory T cells in the tumor microenvironment by metformin, a type 2 diabetes drug. EBioMedicine, 2017, 25, 154-164. doi: 10.1016/j.ebiom.2017.10.009 PMID: 29066174
- Amin, D.; Richa, T.; Mollaee, M.; Zhan, T.; Tassone, P.; Johnson, J.; Luginbuhl, A.; Cognetti, D.; Martinez-Outschoorn, U.; Stapp, R.; Solomides, C.; Rodeck, U.; Curry, J. Metformin effects on FOXP3 + and CD8 + T cell infiltrates of head and neck squamous cell carcinoma. Laryngoscope, 2020, 130(9), E490-E498. doi: 10.1002/lary.28336 PMID: 31593308
- Qin, G.; Lian, J.; Huang, L.; Zhao, Q.; Liu, S.; Zhang, Z.; Chen, X.; Yue, D.; Li, L.; Li, F.; Wang, L.; Umansky, V.; Zhang, B.; Yang, S.; Zhang, Y. Metformin blocks myeloid-derived suppressor cell accumulation through AMPK-DACH1-CXCL1 axis. OncoImmunology, 2018, 7(7), e1442167. doi: 10.1080/2162402X.2018.1442167 PMID: 29900050
- Xu, P.; Yin, K.; Tang, X.; Tian, J.; Zhang, Y.; Ma, J.; Xu, H.; Xu, Q.; Wang, S. Metformin inhibits the function of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. Biomed. Pharmacother., 2019, 120, 109458. doi: 10.1016/j.biopha.2019.109458 PMID: 31550676
- Li, L.; Wang, L.; Li, J.; Fan, Z.; Yang, L.; Zhang, Z.; Zhang, C.; Yue, D.; Qin, G.; Zhang, T.; Li, F.; Chen, X.; Ping, Y.; Wang, D.; Gao, Q.; He, Q.; Huang, L.; Li, H.; Huang, J.; Zhao, X.; Xue, W.; Sun, Z.; Lu, J.; Yu, J.J.; Zhao, J.; Zhang, B.; Zhang, Y. Metformin-induced reduction of CD39 and CD73 blocks myeloid-derived suppressor cell activity in patients with ovarian cancer. Cancer Res., 2018, 78(7), 1779-1791. doi: 10.1158/0008-5472.CAN-17-2460 PMID: 29374065
- Incio, J.; Suboj, P.; Chin, S.M.; Vardam-Kaur, T.; Liu, H.; Hato, T.; Babykutty, S.; Chen, I.; Deshpande, V.; Jain, R.K.; Fukumura, D. Metformin reduces desmoplasia in pancreatic cancer by reprogramming stellate cells and tumor-associated macrophages. PLoS One, 2015, 10(12), e0141392. doi: 10.1371/journal.pone.0141392 PMID: 26641266
- Abdelmoneim, M.; Eissa, I.R.; Aboalela, M.A.; Naoe, Y.; Matsumura, S.; Sibal, P.A.; Bustos-Villalobos, I.; Tanaka, M.; Kodera, Y.; Kasuya, H. Metformin enhances the antitumor activity of oncolytic herpes simplex virus HF10 (canerpaturev) in a pancreatic cell cancer subcutaneous model. Sci. Rep., 2022, 12(1), 21570. doi: 10.1038/s41598-022-25065-w PMID: 36513720
- Oliveras-Ferraros, C.; Cufí, S.; Vazquez-Martin, A.; Menendez, O.J.; Bosch-Barrera, J.; Martin-Castillo, B.; Joven, J.; Menendez, J.A. Metformin rescues cell surface major histocompatibility complex class I (MHC-I) deficiency caused by oncogenic transformation. Cell Cycle, 2012, 11(5), 865-870. doi: 10.4161/cc.11.5.19252 PMID: 22333588
- Hashimoto, M.; Kamphorst, A.O.; Im, S.J.; Kissick, H.T.; Pillai, R.N.; Ramalingam, S.S.; Araki, K.; Ahmed, R. CD8 T cell exhaustion in chronic infection and cancer: Opportunities for interventions. Annu. Rev. Med., 2018, 69(1), 301-318. doi: 10.1146/annurev-med-012017-043208 PMID: 29414259
- Kurachi, M. CD8+ T cell exhaustion. Semin. Immunopathol., 2019, 41(3), 327-337. doi: 10.1007/s00281-019-00744-5 PMID: 30989321
- Rha, M.S.; Shin, E.C. Activation or exhaustion of CD8+ T cells in patients with COVID-19. Cell. Mol. Immunol., 2021, 18(10), 2325-2333. doi: 10.1038/s41423-021-00750-4 PMID: 34413488
- Jiang, W.; He, Y.; He, W.; Wu, G.; Zhou, X.; Sheng, Q.; Zhong, W.; Lu, Y.; Ding, Y.; Lu, Q.; Ye, F.; Hua, H. Exhausted CD8+ T cells in the tumor immune microenvironment: New pathways to therapy. Front. Immunol., 2021, 11, 622509. doi: 10.3389/fimmu.2020.622509 PMID: 33633741
- Huang, Y.; Jia, A.; Wang, Y.; Liu, G. CD8+ T cell exhaustion in anti-tumour immunity: The new insights for cancer immunotherapy. Immunology, 2023, 168(1), 30-48. doi: 10.1111/imm.13588 PMID: 36190809
- Nojima, I.; Eikawa, S.; Tomonobu, N.; Hada, Y.; Kajitani, N.; Teshigawara, S.; Miyamoto, S.; Tone, A.; Uchida, H.A.; Nakatsuka, A.; Eguchi, J.; Shikata, K.; Udono, H.; Wada, J. Dysfunction of CD8+ PD-1 + T cells in type 2 diabetes caused by the impairment of metabolism-immune axis. Sci. Rep., 2020, 10(1), 14928. doi: 10.1038/s41598-020-71946-3 PMID: 32913271
- Shikuma, C.M.; Chew, G.M.; Kohorn, L.; Souza, S.A.; Chow, D.; SahBandar, I.N.; Park, E.Y.; Hanks, N.; Gangcuangco, L.M.A.; Gerschenson, M.; Ndhlovu, L.C. Short communication: Metformin reduces CD4 T cell exhaustion in HIV-infected adults on suppressive antiretroviral therapy. AIDS Res. Hum. Retroviruses, 2020, 36(4), 303-305. doi: 10.1089/aid.2019.0078 PMID: 31731885
- Wu, Z.; Zhang, C.; Najafi, M. Targeting of the tumor immune microenvironment by metformin. J. Cell Commun. Signal., 2022, 16(3), 333-348. doi: 10.1007/s12079-021-00648-w PMID: 34611852
- Zhang, Z.; Li, F.; Tian, Y.; Cao, L.; Gao, Q.; Zhang, C.; Zhang, K.; Shen, C.; Ping, Y.; Maimela, N.R.; Wang, L.; Zhang, B.; Zhang, Y. Metformin enhances the antitumor activity of CD8+ T lymphocytes via the AMPKmiR-107EomesPD-1 pathway. J. Immunol., 2020, 204(9), 2575-2588. doi: 10.4049/jimmunol.1901213 PMID: 32221038
- Watanabe, M.; Eikawa, S.; Shien, K.; Yamamoto, H.; Shien, T.; Soh, J.; Doihara, H.; Toyooka, S.; Miyoshi, S.; Udono, H. Abstract 5592: Metformin improves immune function of exhausted peripheral CD8+ T cells derived from cancer patients. Cancer Res., 2017, 77(S13), 5592-5592. doi: 10.1158/1538-7445.AM2017-5592
- Xu, X.D.; Shao, S.X.; Jiang, H.P.; Cao, Y.W.; Wang, Y.H.; Yang, X.C.; Wang, Y.L.; Wang, X.S.; Niu, H.T. Warburg effect or reverse Warburg effect? A review of cancer metabolism. Oncol. Res. Treat., 2015, 38(3), 117-122. doi: 10.1159/000375435 PMID: 25792083
- Chang, C.H.; Qiu, J.; OSullivan, D.; Buck, M.D.; Noguchi, T.; Curtis, J.D.; Chen, Q.; Gindin, M.; Gubin, M.M.; van der Windt, G.J.W.; Tonc, E.; Schreiber, R.D.; Pearce, E.J.; Pearce, E.L. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell, 2015, 162(6), 1229-1241. doi: 10.1016/j.cell.2015.08.016 PMID: 26321679
- Bahrambeigi, S.; Shafiei-Irannejad, V. Immune-mediated anti-tumor effects of metformin; targeting metabolic reprogramming of T cells as a new possible mechanism for anti-cancer effects of metformin. Biochem. Pharmacol., 2020, 174, 113787. doi: 10.1016/j.bcp.2019.113787 PMID: 31884044
- Zhang, J.; Liu, J. Tumor stroma as targets for cancer therapy. Pharmacol. Ther., 2013, 137(2), 200-215. doi: 10.1016/j.pharmthera.2012.10.003 PMID: 23064233
- Horn, L.A.; Chariou, P.L.; Gameiro, S.R.; Qin, H.; Iida, M.; Fousek, K.; Meyer, T.J.; Cam, M.; Flies, D.; Langermann, S.; Schlom, J.; Palena, C. Remodeling the tumor microenvironment via blockade of LAIR-1 and TGF-β signaling enables PD-L1mediated tumor eradication. J. Clin. Invest., 2022, 132(8), e155148. doi: 10.1172/JCI155148 PMID: 35230974
- Augsten, M. Cancer-associated fibroblasts as another polarized cell type of the tumor microenvironment. Front. Oncol., 2014, 4, 62. doi: 10.3389/fonc.2014.00062 PMID: 24734219
- Gunaydin, G. CAFs interacting with TAMs in tumor microenvironment to enhance tumorigenesis and immune evasion. Front. Oncol., 2021, 11, 668349. doi: 10.3389/fonc.2021.668349 PMID: 34336660
- Jiang, Y.; Zhang, H.; Wang, J.; Liu, Y.; Luo, T.; Hua, H. Targeting extracellular matrix stiffness and mechanotransducers to improve cancer therapy. J. Hematol. Oncol., 2022, 15(1), 34. doi: 10.1186/s13045-022-01252-0 PMID: 35331296
- Kojima, Y.; Acar, A.; Eaton, E.N.; Mellody, K.T.; Scheel, C.; Ben-Porath, I.; Onder, T.T.; Wang, Z.C.; Richardson, A.L.; Weinberg, R.A.; Orimo, A. Autocrine TGF-β and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc. Natl. Acad. Sci., 2010, 107(46), 20009-20014. doi: 10.1073/pnas.1013805107 PMID: 21041659
- Xu, S.; Yang, Z.; Jin, P.; Yang, X.; Li, X.; Wei, X.; Wang, Y.; Long, S.; Zhang, T.; Chen, G.; Sun, C.; Ma, D.; Gao, Q. Metformin suppresses tumor progression by inactivating stromal fibroblasts in ovarian cancer. Mol. Cancer Ther., 2018, 17(6), 1291-1302. doi: 10.1158/1535-7163.MCT-17-0927 PMID: 29545331
- Shao, S.; Zhao, L.; An, G.; Zhang, L.; Jing, X.; Luo, M.; Li, W.; Meng, D.; Ning, Q.; Zhao, X.; Lei, J. Metformin suppresses HIF-1α expression in cancer-associated fibroblasts to prevent tumor-stromal cross talk in breast cancer. FASEB J., 2020, 34(8), 10860-10870. doi: 10.1096/fj.202000951RR PMID: 32592239
- Zhang, X.; Dong, Y.; Zhao, M.; Ding, L.; Yang, X.; Jing, Y.; Song, Y.; Chen, S.; Hu, Q.; Ni, Y. ITGB2-mediated metabolic switch in CAFs promotes OSCC proliferation by oxidation of NADH in mitochondrial oxidative phosphorylation system. Theranostics, 2020, 10(26), 12044-12059. doi: 10.7150/thno.47901 PMID: 33204328
- Curry, J.; Johnson, J.; Tassone, P.; Vidal, M.D.; Menezes, D.W.; Sprandio, J.; Mollaee, M.; Cotzia, P.; Birbe, R.; Lin, Z.; Gill, K.; Duddy, E.; Zhan, T.; Leiby, B.; Reyzer, M.; Cognetti, D.; Luginbuhl, A.; Tuluc, M.; Martinez-Outschoorn, U. Metformin effects on head and neck squamous carcinoma microenvironment: Window of opportunity trial. Laryngoscope, 2017, 127(8), 1808-1815. doi: 10.1002/lary.26489 PMID: 28185288
- Galluzzi, L.; Kroemer, G. Potent immunosuppressive effects of the oncometabolite R -2-hydroxyglutarate. OncoImmunology, 2018, 7(12), e1528815. doi: 10.1080/2162402X.2018.1528815 PMID: 30524910
- Jeek, P. 2-Hydroxyglutarate in cancer cells. Antioxid. Redox Signal., 2020, 33(13), 903-926. doi: 10.1089/ars.2019.7902 PMID: 31847543
- Wang, Y.P.; Li, J.T.; Qu, J.; Yin, M.; Lei, Q.Y. Metabolite sensing and signaling in cancer. J. Biol. Chem., 2020, 295(33), 11938-11946. doi: 10.1074/jbc.REV119.007624 PMID: 32641495
- Oh, S.; Cho, Y.; Chang, M.; Park, S.; Kwon, H. Metformin decreases 2-HG production through the MYC-PHGDH pathway in suppressing breast cancer cell proliferation. Metabolites, 2021, 11(8), 480.
- Zhang, X.; Schönrogge, M.; Eichberg, J.; Wendt, E.H.U.; Kumstel, S.; Stenzel, J.; Lindner, T.; Jaster, R.; Krause, B.J.; Vollmar, B.; Zechner, D. Blocking autophagy in cancer-associated fibroblasts supports chemotherapy of pancreatic cancer cells. Front. Oncol., 2018, 8, 590. doi: 10.3389/fonc.2018.00590 PMID: 30568920
- Ashrafizadeh, M.; Farhood, B.; Eleojo Musa, A.; Taeb, S.; Rezaeyan, A.; Najafi, M. Abscopal effect in radioimmunotherapy. Int. Immunopharmacol., 2020, 85, 106663. doi: 10.1016/j.intimp.2020.106663 PMID: 32521494
- Xue, J.; Li, L.; Li, N.; Li, F.; Qin, X.; Li, T.; Liu, M. Metformin suppresses cancer cell growth in endometrial carcinoma by inhibiting PD-L1. Eur. J. Pharmacol., 2019, 859, 172541. doi: 10.1016/j.ejphar.2019.172541 PMID: 31319067
- Cha, J.H.; Yang, W.H.; Xia, W.; Wei, Y.; Chan, L.C.; Lim, S.O.; Li, C.W.; Kim, T.; Chang, S.S.; Lee, H.H.; Hsu, J.L.; Wang, H.L.; Kuo, C.W.; Chang, W.C.; Hadad, S.; Purdie, C.A.; McCoy, A.M.; Cai, S.; Tu, Y.; Litton, J.K.; Mittendorf, E.A.; Moulder, S.L.; Symmans, W.F.; Thompson, A.M.; Piwnica-Worms, H.; Chen, C.H.; Khoo, K.H.; Hung, M.C. Metformin promotes antitumor immunity via endoplasmic-reticulum-associated degradation of PD-L1. Mol. Cell, 2018, 71(4), 606-620.e7. doi: 10.1016/j.molcel.2018.07.030 PMID: 30118680
- Han, Y.; Li, C.W.; Hsu, J.M.; Hsu, J.L.; Chan, L.C.; Tan, X.; He, G.J. Metformin reverses PARP inhibitors-induced epithelial-mesenchymal transition and PD-L1 upregulation in triple-negative breast cancer. Am. J. Cancer Res., 2019, 9(4), 800-815. PMID: 31106005
- Jiang, X.; Zhou, J.; Giobbie-Hurder, A.; Wargo, J.; Hodi, F.S. The activation of MAPK in melanoma cells resistant to BRAF inhibition promotes PD-L1 expression that is reversible by MEK and PI3K inhibition. Clin. Cancer Res., 2013, 19(3), 598-609. doi: 10.1158/1078-0432.CCR-12-2731 PMID: 23095323
- Zhang, J.J.; Zhang, Q.S.; Li, Z.Q.; Zhou, J.W.; Du, J. Metformin attenuates PD-L1 expression through activating Hippo signaling pathway in colorectal cancer cells. Am. J. Transl. Res., 2019, 11(11), 6965-6976. PMID: 31814900
- Lu, Y.; Xin, D.; Guan, L.; Xu, M.; Yang, Y.; Chen, Y.; Yang, Y.; Wang-Gillam, A.; Wang, L.; Zong, S.; Wang, F. Metformin downregulates PD-L1 expression in esophageal squamous cell carcinoma by inhibiting IL-6 signaling pathway. Front. Oncol., 2021, 11, 762523. doi: 10.3389/fonc.2021.762523 PMID: 34881181
- Wang, Y.; Hu, J.; Sun, Y.; Song, B.; Zhang, Y.; Lu, Y.; Ma, H. Metformin synergizes with PD-L1 monoclonal antibody enhancing tumor immune response in treating non-small cell lung cancer and its molecular mechanism investigation. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-9. doi: 10.1155/2022/5983959 PMID: 36199547
- Goggi, J.L.; Hartimath, S.V.; Khanapur, S.; Ramasamy, B.; Chin, Z.F.; Cheng, P.; Chin, H.X.; Hwang, Y.Y.; Robins, E.G. Imaging memory T-cells stratifies response to adjuvant metformin combined with αPD-1 therapy. Int. J. Mol. Sci., 2022, 23(21), 12892. doi: 10.3390/ijms232112892 PMID: 36361684
- Kim, Y.; Vagia, E.; Viveiros, P.; Kang, C.Y.; Lee, J.Y.; Gim, G.; Cho, S.; Choi, H.; Kim, L.; Park, I.; Choi, J.; Chae, Y.K. Overcoming acquired resistance to PD-1 inhibitor with the addition of metformin in small cell lung cancer (SCLC). Cancer Immunol. Immunother., 2021, 70(4), 961-965. doi: 10.1007/s00262-020-02703-8 PMID: 33084943
- Ciccarese, C.; Iacovelli, R.; Buti, S.; Primi, F.; Astore, S.; Massari, F.; Ferrara, M.G.; Palermo, G.; Foschi, N.; Iacovelli, V.; Rossi, E.; Schinzari, G.; Bove, P.; Bassi, P.; Bria, E.; Tortora, G. Concurrent nivolumab and metformin in diabetic cancer patients: Is it safe and more active? Anticancer Res., 2022, 42(3), 1487-1493. doi: 10.21873/anticanres.15620 PMID: 35220243
- Farran, B.; Switchenko, J.M.; Khalil, L.; Shaib, W.L.; Olson, B.; Ruggieri, A.; Wu, C.; Alese, O.B.; Diab, M.; Lesinski, G.B.; El-Rayes, B.; Akce, M. Abstract 3482: Correlative analysis of metformin and nivolumab combination in treatment-refractory microsatellite stable (MSS) metastatic colorectal cancer (mCRC). Cancer Res., 2022, 82(S12), 3482-3482. doi: 10.1158/1538-7445.AM2022-3482
- Wang, D.Y.; McQuade, J.L.; Rai, R.R.; Park, J.J.; Zhao, S.; Ye, F.; Beckermann, K.E.; Rubinstein, S.M.; Johnpulle, R.; Long, G.V.; Carlino, M.S.; Menzies, A.M.; Davies, M.A.; Johnson, D.B. The impact of nonsteroidal anti-inflammatory drugs, beta blockers, and metformin on the efficacy of anti-PD-1 therapy in advanced melanoma. Oncologist, 2020, 25(3), e602-e605. doi: 10.1634/theoncologist.2019-0518 PMID: 32162820
- Zhou, H.; Liu, J.; Zhang, Y.; Zhang, L. Inflammatory bowel disease associated with the combination treatment of nivolumab and metformin: Data from the FDA adverse event reporting system. Cancer Chemother. Pharmacol., 2019, 83(3), 599-601. doi: 10.1007/s00280-018-03763-5 PMID: 30623231
- Cai, S.; Chen, Z.; Wang, Y.; Wang, M.; Wu, J.; Tong, Y.; Chen, L.; Lu, C.; Yang, H. Reducing PD-L1 expression with a self-assembled nanodrug: An alternative to PD-L1 antibody for enhanced chemo-immunotherapy. Theranostics, 2021, 11(4), 1970-1981. doi: 10.7150/thno.45777 PMID: 33408792
- Tu, X.; Qin, B.; Zhang, Y.; Zhang, C.; Kahila, M.; Nowsheen, S.; Yin, P.; Yuan, J.; Pei, H.; Li, H.; Yu, J.; Song, Z.; Zhou, Q.; Zhao, F.; Liu, J.; Zhang, C.; Dong, H.; Mutter, R.W.; Lou, Z. PD-L1 (B7-H1) competes with the rna exosome to regulate the DNA damage response and can be targeted to sensitize to radiation or chemotherapy. Mol. Cell, 2019, 74(6), 1215-1226.e4. doi: 10.1016/j.molcel.2019.04.005 PMID: 31053471
- Zhou, Z.; Liu, Y.; Jiang, X.; Zheng, C.; Luo, W.; Xiang, X.; Qi, X.; Shen, J. Metformin modified chitosan as a multi-functional adjuvant to enhance cisplatin-based tumor chemotherapy efficacy. Int. J. Biol. Macromol., 2023, 224, 797-809. doi: 10.1016/j.ijbiomac.2022.10.167 PMID: 36283555
- Peng, M.; Mo, Y.; Wang, Y.; Wu, P.; Zhang, Y.; Xiong, F.; Guo, C.; Wu, X.; Li, Y.; Li, X.; Li, G.; Xiong, W.; Zeng, Z. Neoantigen vaccine: An emerging tumor immunotherapy. Mol. Cancer, 2019, 18(1), 128. doi: 10.1186/s12943-019-1055-6 PMID: 31443694
- Munoz, L.E.; Huang, L.; Bommireddy, R.; Sharma, R.; Monterroza, L.; Guin, R.N.; Samaranayake, S.G.; Pack, C.D.; Ramachandiran, S.; Reddy, S.J.C.; Shanmugam, M.; Selvaraj, P. Metformin reduces PD-L1 on tumor cells and enhances the anti-tumor immune response generated by vaccine immunotherapy. J. Immunother. Cancer, 2021, 9(11), e002614. doi: 10.1136/jitc-2021-002614 PMID: 34815353
- Kamanlı, A.F.; Yıldız, M.Z.; Özyol, E.; Deveci Ozkan, A.; Sozen Kucukkara, E.; Guney Eskiler, G. Investigation of LED-based photodynamic therapy efficiency on breast cancer cells. Lasers Med. Sci., 2021, 36(3), 563-569. doi: 10.1007/s10103-020-03061-8 PMID: 32577931
- Cramer, G.M.; Moon, E.K.; Cengel, K.A.; Busch, T.M. Photodynamic therapy and immune checkpoint blockade. Photochem. Photobiol., 2020, 96(5), 954-961. doi: 10.1111/php.13300 PMID: 32573787
- Xiong, W.; Qi, L.; Jiang, N.; Zhao, Q.; Chen, L.; Jiang, X.; Li, Y.; Zhou, Z.; Shen, J. Metformin liposome-mediated PD-L1 downregulation for amplifying the photodynamic immunotherapy efficacy. ACS Appl. Mater. Interfaces, 2021, 13(7), 8026-8041. doi: 10.1021/acsami.0c21743 PMID: 33577301
- Sun, Y.; Fang, K.; Hu, X.; Yang, J.; Jiang, Z.; Feng, L.; Li, R.; Rao, Y.; Shi, S.; Dong, C. NIR-light-controlled G-quadruplex hydrogel for synergistically enhancing photodynamic therapy via sustained delivery of metformin and catalase-like activity in breast cancer. Mater. Today Bio, 2022, 16, 100375. doi: 10.1016/j.mtbio.2022.100375 PMID: 35983175
- Ashrafizadeh, M.; Farhood, B.; Eleojo Musa, A.; Taeb, S.; Najafi, M. The interactions and communications in tumor resistance to radiotherapy: Therapy perspectives. Int. Immunopharmacol., 2020, 87, 106807. doi: 10.1016/j.intimp.2020.106807 PMID: 32683299
- Tojo, M.; Miyato, H.; Koinuma, K.; Horie, H.; Tsukui, H.; Kimura, Y.; Kaneko, Y.; Ohzawa, H.; Yamaguchi, H.; Yoshimura, K.; Lefor, A.K.; Sata, N.; Kitayama, J. Metformin combined with local irradiation provokes abscopal effects in a murine rectal cancer model. Sci. Rep., 2022, 12(1), 7290. doi: 10.1038/s41598-022-11236-2 PMID: 35508498
- Zake, D.M.; Kurlovics, J.; Zaharenko, L.; Komasilovs, V.; Klovins, J.; Stalidzans, E. Physiologically based metformin pharmacokinetics model of mice and scale-up to humans for the estimation of concentrations in various tissues. PLoS One, 2021, 16(4), e0249594. doi: 10.1371/journal.pone.0249594 PMID: 33826656
- Stambolic, V.; Woodgett, J.R.; Fantus, I.G.; Pritchard, K.I.; Goodwin, P.J. Utility of metformin in breast cancer treatment, is neoangiogenesis a risk factor? Breast Cancer Res. Treat., 2009, 114(2), 387-389. doi: 10.1007/s10549-008-0015-4 PMID: 18438706
- Dowling, R.J.O.; Niraula, S.; Stambolic, V.; Goodwin, P.J. Metformin in cancer: Translational challenges. J. Mol. Endocrinol., 2012, 48(3), R31-R43. doi: 10.1530/JME-12-0007 PMID: 22355097
- Liu, L.; Ulbrich, J.; Müller, J.; Wüstefeld, T.; Aeberhard, L.; Kress, T.R.; Muthalagu, N.; Rycak, L.; Rudalska, R.; Moll, R.; Kempa, S.; Zender, L.; Eilers, M.; Murphy, D.J. Deregulated MYC expression induces dependence upon AMPK-related kinase 5. Nature, 2012, 483(7391), 608-612. doi: 10.1038/nature10927 PMID: 22460906
- Zadra, G.; Batista, J.L.; Loda, M. Dissecting the dual role of AMPK in Cancer: From experimental to human studies. Mol. Cancer Res., 2015, 13(7), 1059-1072. doi: 10.1158/1541-7786.MCR-15-0068 PMID: 25956158
- Massie, C.E.; Lynch, A.; Ramos-Montoya, A.; Boren, J.; Stark, R.; Fazli, L.; Warren, A.; Scott, H.; Madhu, B.; Sharma, N.; Bon, H.; Zecchini, V.; Smith, D.M.; DeNicola, G.M.; Mathews, N.; Osborne, M.; Hadfield, J.; MacArthur, S.; Adryan, B.; Lyons, S.K.; Brindle, K.M.; Griffiths, J.; Gleave, M.E.; Rennie, P.S.; Neal, D.E.; Mills, I.G. The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J., 2011, 30(13), 2719-2733. doi: 10.1038/emboj.2011.158 PMID: 21602788
- Li, W.; Saud, S.M.; Young, M.R.; Chen, G.; Hua, B. Targeting AMPK for cancer prevention and treatment. Oncotarget, 2015, 6(10), 7365-7378. doi: 10.18632/oncotarget.3629 PMID: 25812084
Supplementary files
