The Metformin Immunoregulatory Actions in Tumor Suppression and Normal Tissues Protection


Cite item

Full Text

Abstract

:The immune system is the key player in a wide range of responses in normal tissues and tumors to anticancer therapy. Inflammatory and fibrotic responses in normal tissues are the main limitations of chemotherapy, radiotherapy, and also some newer anticancer drugs such as immune checkpoint inhibitors (ICIs). Immune system responses within solid tumors including anti-tumor and tumor- promoting responses can suppress or help tumor growth. Thus, modulation of immune cells and their secretions such as cytokines, growth factors and epigenetic modulators, pro-apoptosis molecules, and some other molecules can be suggested to alleviate side effects in normal tissues and drug-resistance mechanisms in the tumor. Metformin as an anti-diabetes drug has shown intriguing properties such as anti-inflammation, anti-fibrosis, and anticancer effects. Some investigations have uncovered that metformin can ameliorate radiation/chemotherapy toxicity in normal cells and tissues through the modulation of several targets in cells and tissues. These effects of metformin may ameliorate severe inflammatory responses and fibrosis after exposure to ionizing radiation or following treatment with highly toxic chemotherapy drugs. Metformin can suppress the activity of immunosuppressive cells in the tumor through the phosphorylation of AMP-activated protein kinase (AMPK). In addition, metformin may stimulate antigen presentation and maturation of anticancer immune cells, which lead to the induction of anticancer immunity in the tumor. This review aims to explain the detailed mechanisms of normal tissue sparing and tumor suppression during cancer therapy using adjuvant metformin with an emphasis on immune system responses.

About the authors

Jitendra Gupta

Institute of Pharmaceutical Research, GLA University

Email: info@benthamscience.net

Abduladheem Jalil

Medical Laboratories Techniques Department, Al-Mustaqbal University College

Author for correspondence.
Email: info@benthamscience.net

Zahraa Abd Alzahraa

, National University of Science and Technology

Email: info@benthamscience.net

Zafar Aminov

Department of Public Health and Healthcare management, Samarkand State Medical University

Email: info@benthamscience.net

Fahad Alsaikhan

College of Pharmacy, Prince Sattam Bin Abdulaziz University

Author for correspondence.
Email: info@benthamscience.net

Andrés Ramírez-Coronel

Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca

Email: info@benthamscience.net

Pushpamala Ramaiah

Faculty of Nursing, Umm al-Qura University

Email: info@benthamscience.net

Masoud Najafi

Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
  2. Koene, R.J.; Prizment, A.E.; Blaes, A.; Konety, S.H. Shared risk factors in cardiovascular disease and cancer. Circulation, 2016, 133(11), 1104-1114. doi: 10.1161/CIRCULATIONAHA.115.020406 PMID: 26976915
  3. Das, S.; Dasari, A. Novel therapeutics for patients with well-differentiated gastroenteropancreatic neuroendocrine tumors. Ther. Adv. Med. Oncol., 2021, 13 doi: 10.1177/17588359211018047 PMID: 34093744
  4. Das, S.; Phillips, S.; Lee, C.L.; Agarwal, R.; Bergsland, E.; Strosberg, J.; Chan, J.A.; LaFerriere, H.; Ramirez, R.A.; Berlin, J.; Dasari, A. Efficacy and toxicity of anti-vascular endothelial growth receptor tyrosine kinase inhibitors in patients with neuroendocrine tumours – A systematic review and meta-analysis. Eur. J. Cancer, 2023, 182, 43-52. doi: 10.1016/j.ejca.2022.12.031 PMID: 36738541
  5. Popp, I.; Grosu, A.L.; Niedermann, G.; Duda, D.G. Immune modulation by hypofractionated stereotactic radiation therapy: Therapeutic implications. Radiother. Oncol., 2016, 120(2), 185-194. doi: 10.1016/j.radonc.2016.07.013 PMID: 27495145
  6. Lubas, M.J.; Kumar, S.S. The combined use of SBRT and immunotherapy—a literature review. Curr. Oncol. Rep., 2020, 22(12), 117. doi: 10.1007/s11912-020-00986-9 PMID: 32929678
  7. Yang, F.; Li, A.; Liu, H.; Zhang, H. Gastric cancer combination therapy: synthesis of a hyaluronic acid and cisplatin containing lipid prodrug coloaded with sorafenib in a nanoparticulate system to exhibit enhanced anticancer efficacy and reduced toxicity. Drug Des. Devel. Ther., 2018, 12, 3321-3333. doi: 10.2147/DDDT.S176879 PMID: 30323564
  8. Bensadoun, R.J.; Schubert, M.M.; Lalla, R.V.; Keefe, D. Amifostine in the management of radiation-induced and chemo-induced mucositis. Support. Care Cancer, 2006, 14(6), 566-572. doi: 10.1007/s00520-006-0047-4 PMID: 16586122
  9. Rades, D.; Fehlauer, F.; Bajrovic, A.; Mahlmann, B.; Richter, E.; Alberti, W. Serious adverse effects of amifostine during radiotherapy in head and neck cancer patients. Radiother. Oncol., 2004, 70(3), 261-264. doi: 10.1016/j.radonc.2003.10.005 PMID: 15064010
  10. Kouvaris, J.R.; Kouloulias, V.E.; Vlahos, L.J. Amifostine: The first selective-target and broad-spectrum radioprotector. Oncologist, 2007, 12(6), 738-747. doi: 10.1634/theoncologist.12-6-738 PMID: 17602063
  11. Fernando, W.; Rupasinghe, H.P.V.; Hoskin, D.W. Dietary phytochemicals with anti-oxidant and pro-oxidant activities: A double-edged sword in relation to adjuvant chemotherapy and radiotherapy? Cancer Lett., 2019, 452, 168-177. doi: 10.1016/j.canlet.2019.03.022 PMID: 30910593
  12. Golchin, A.; Farahany, T.Z. Biological products: Cellular therapy and FDA approved products. Stem Cell Rev., 2019, 15(2), 166-175. doi: 10.1007/s12015-018-9866-1 PMID: 30623359
  13. Majolo, F.; de Oliveira Becker Delwing, L.K.; Marmitt, D.J.; Bustamante-Filho, I.C.; Goettert, M.I. Medicinal plants and bioactive natural compounds for cancer treatment: Important advances for drug discovery. Phytochem. Lett., 2019, 31, 196-207. doi: 10.1016/j.phytol.2019.04.003
  14. Zhao, S.; Tang, Y.; Wang, R.; Najafi, M. Mechanisms of cancer cell death induction by paclitaxel: An updated review. Apoptosis, 2022, 27(9-10), 647-667. doi: 10.1007/s10495-022-01750-z PMID: 35849264
  15. Ma, R.; Yi, B.; Riker, A.I.; Xi, Y. Metformin and cancer immunity. Acta Pharmacol. Sin., 2020, 41(11), 1403-1409. doi: 10.1038/s41401-020-00508-0 PMID: 32868904
  16. Tang, Z.; Tang, N.; Jiang, S.; Bai, Y.; Guan, C.; Zhang, W.; Fan, S.; Huang, Y.; Lin, H.; Ying, Y. The chemosensitizing role of metformin in anti-cancer therapy. Anticancer Agents Med Chem, 2021, 21(8), 949-962.
  17. Sutkowska, E.; Fortuna, P.; Wisniewski, J.; Sutkowska, K.; Hodurek, P.; Gamian, A.; Kaluza, B. Low metformin dose and its therapeutic serum concentration in prediabetes. Sci. Rep., 2021, 11(1), 11684. doi: 10.1038/s41598-021-91174-7 PMID: 34083618
  18. Ningrum, V.D.A.; Ikawati, Z.; Sadewa, A.H.; Ikhsan, M.R. Patient-factors associated with metformin steady-state levels in type 2 diabetes mellitus with therapeutic dosage. J. Clin. Transl. Endocrinol., 2018, 12, 42-47. doi: 10.1016/j.jcte.2018.05.001 PMID: 29892566
  19. Najafi, M.; Cheki, M.; Rezapoor, S.; Geraily, G.; Motevaseli, E.; Carnovale, C.; Clementi, E.; Shirazi, A. Metformin: Prevention of genomic instability and cancer: A review. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2018, 827, 1-8. doi: 10.1016/j.mrgentox.2018.01.007 PMID: 29502733
  20. Jeong, Y.S.; Jusko, W.J. Meta-assessment of metformin absorption and disposition pharmacokinetics in nine species. Pharmaceuticals, 2021, 14(6), 545. doi: 10.3390/ph14060545 PMID: 34200427
  21. Jalving, M.; Gietema, J.A.; Lefrandt, J.D.; Jong, S.; Reyners, A.K.L.; Gans, R.O.B.; Vries, E.G.E. Metformin: Taking away the candy for cancer? Eur. J. Cancer, 2010, 46(13), 2369-2380. doi: 10.1016/j.ejca.2010.06.012 PMID: 20656475
  22. Saraei, P.; Asadi, I.; Kakar, M.A.; Moradi-Kor, N. The beneficial effects of metformin on cancer prevention and therapy: A comprehensive review of recent advances. Cancer Manag. Res., 2019, 11, 3295-3313. doi: 10.2147/CMAR.S200059 PMID: 31114366
  23. DeCensi, A.; Puntoni, M.; Goodwin, P.; Cazzaniga, M.; Gennari, A.; Bonanni, B.; Gandini, S. Metformin and cancer risk in diabetic patients: A systematic review and meta-analysis. Cancer Prev. Res., 2010, 3(11), 1451-1461. doi: 10.1158/1940-6207.CAPR-10-0157 PMID: 20947488
  24. vial, G.; Detaille, D.; Guigas, B. Role of mitochondria in the mechanism(s) of action of metformin. Front. Endocrinol., 2019, 10, 294. doi: 10.3389/fendo.2019.00294 PMID: 31133988
  25. Fontaine, E. Metformin-induced mitochondrial complex I inhibition: Facts, uncertainties, and consequences. Front. Endocrinol., 2018, 9, 753. doi: 10.3389/fendo.2018.00753 PMID: 30619086
  26. Tosca, L.; Ramé, C.; Chabrolle, C.; Tesseraud, S.; Dupont, J. Metformin decreases IGF1-induced cell proliferation and protein synthesis through AMP-activated protein kinase in cultured bovine granulosa cells. Reproduction, 2010, 139(2), 409-418. doi: 10.1530/REP-09-0351 PMID: 19906888
  27. Farhood, B.; Ashrafizadeh, M.; khodamoradi, E.; Hoseini-Ghahfarokhi, M.; Afrashi, S.; Musa, A.E.; Najafi, M. Targeting of cellular redox metabolism for mitigation of radiation injury. Life Sci., 2020, 250, 117570. doi: 10.1016/j.lfs.2020.117570 PMID: 32205088
  28. Liu, Y.Q.; Wang, X.L.; He, D.H.; Cheng, Y.X. Protection against chemotherapy- and radiotherapy-induced side effects: A review based on the mechanisms and therapeutic opportunities of phytochemicals. Phytomedicine, 2021, 80, 153402. doi: 10.1016/j.phymed.2020.153402 PMID: 33203590
  29. Boopathi, E.; Thangavel, C. Dark side of cancer therapy: Cancer treatment-induced cardiopulmonary inflammation, fibrosis, and immune modulation. Int. J. Mol. Sci., 2021, 22(18), 10126. doi: 10.3390/ijms221810126 PMID: 34576287
  30. Ashrafizadeh, M.; Farhood, B.; Eleojo Musa, A.; Taeb, S.; Najafi, M. Damage-associated molecular patterns in tumor radiotherapy. Int. Immunopharmacol., 2020, 86, 106761. doi: 10.1016/j.intimp.2020.106761 PMID: 32629409
  31. Veiko, N.N. Oxidized extracellular DNA as a stress signal in human cells. Oxid Med Cell Longev, 2013, 2013, 649747.
  32. Wu, X.; Xu, W.W.; Huan, X.; Wu, G.; Li, G.; Zhou, Y.H.; Najafi, M. Mechanisms of cancer cell killing by metformin: a review on different cell death pathways. Mol. Cell. Biochem., 2023, 478(1), 197-214. doi: 10.1007/s11010-022-04502-4 PMID: 35771397
  33. Huang, J.; Chang, Z.; Lu, Q.; Chen, X.; Najafi, M. Nobiletin as an inducer of programmed cell death in cancer: A review. Apoptosis, 2022, 27(5-6), 297-310. doi: 10.1007/s10495-022-01721-4 PMID: 35312885
  34. Hochreiter-Hufford, A.; Ravichandran, K.S. Clearing the dead: Apoptotic cell sensing, recognition, engulfment, and digestion. Cold Spring Harb. Perspect. Biol., 2013, 5(1), a008748. doi: 10.1101/cshperspect.a008748 PMID: 23284042
  35. Prata, L.G.L.; Ovsyannikova, I.G.; Tchkonia, T.; Kirkland, J.L. In Semin Immunol; Elsevier, 2018, Vol. 40, p. 101275.
  36. Tominaga, K.; Suzuki, H.I. TGF-β signaling in cellular senescence and aging-related pathology. Int. J. Mol. Sci., 2019, 20(20), 5002. doi: 10.3390/ijms20205002 PMID: 31658594
  37. Marchi, S.; Guilbaud, E.; Tait, S.W.; Yamazaki, T.; Galluzzi, L. Mitochondrial control of inflammation. Nat. Rev. Immunol., 2022, 23(3), 159-173. PMID: 35879417
  38. Pandolfi, F.; Altamura, S.; Frosali, S.; Conti, P. Key role of DAMP in inflammation, cancer, and tissue repair. Clin. Ther., 2016, 38(5), 1017-1028. doi: 10.1016/j.clinthera.2016.02.028 PMID: 27021609
  39. Gong, T.; Liu, L.; Jiang, W.; Zhou, R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat. Rev. Immunol., 2020, 20(2), 95-112. doi: 10.1038/s41577-019-0215-7 PMID: 31558839
  40. Lai, X.; Najafi, M. Redox interactions in chemo/radiation therapy-induced lung toxicity; Mechanisms and therapy perspectives. Curr. Drug Targets, 2022, 23(13), 1261-1276. doi: 10.2174/1389450123666220705123315 PMID: 35792117
  41. khodamoradi, E.; Hoseini-Ghahfarokhi, M.; Amini, P.; Motevaseli, E.; Shabeeb, D.; Musa, A.E.; Najafi, M.; Farhood, B. Targets for protection and mitigation of radiation injury. Cell. Mol. Life Sci., 2020, 77(16), 3129-3159. doi: 10.1007/s00018-020-03479-x PMID: 32072238
  42. Yang, C.; Song, C.; Wang, Y.; Zhou, W.; Zheng, W.; Zhou, H.; Deng, G.; Li, H.; Xiao, W.; Yang, Z.; Kong, L.; Ge, H.; Song, Y.; Sun, Y. Re-Du-Ning injection ameliorates radiation-induced pneumonitis and fibrosis by inhibiting AIM2 inflammasome and epithelial-mesenchymal transition. Phytomedicine, 2022, 102, 154184. doi: 10.1016/j.phymed.2022.154184 PMID: 35665679
  43. Yu, D.; Li, S.; Wang, S.; Li, X.; Zhu, M.; Huang, S.; Sun, L.; Zhang, Y.; Liu, Y.; Wang, S. Development and characterization of VEGF165-chitosan nanoparticles for the treatment of radiation-induced skin injury in rats. Mar. Drugs, 2016, 14(10), 182. doi: 10.3390/md14100182 PMID: 27727163
  44. Borrelli, M.R.; Shen, A.H.; Lee, G.K.; Momeni, A.; Longaker, M.T.; Wan, D.C. Radiation-induced skin fibrosis: Pathogenesis, current treatment options, and emerging therapeutics. Ann. Plast. Surg., 2019, 83(4S)(Suppl. 1), S59-S64. doi: 10.1097/SAP.0000000000002098 PMID: 31513068
  45. Cohn, S.M.; Vidrich, A.; Bickston, S.J. Radiation injury in the gastrointestinal tract; Yamada's Textbook of Gastroenterology, 2015, pp. 2509-2520.
  46. Chen, C.C.; Wang, L.; Lin, J.C.; Jan, J.S. The prognostic factors for locally advanced cervical cancer patients treated by intensity-modulated radiation therapy with concurrent chemotherapy. J. Formos. Med. Assoc., 2015, 114(3), 231-237. doi: 10.1016/j.jfma.2012.10.021 PMID: 25777974
  47. Xu, C.; Najafi, M.; Shang, Z. lung pneumonitis and fibrosis in cancer therapy: A review on cellular and molecular mechanisms. Curr. Drug Targets, 2022, 23(16), 1505-1525. doi: 10.2174/1389450123666220907144131 PMID: 36082868
  48. Fu, X.; Tang, J.; Wen, P.; Huang, Z.; Najafi, M. Redox interactions-induced cardiac toxicity in cancer therapy. Arch. Biochem. Biophys., 2021, 708, 108952. doi: 10.1016/j.abb.2021.108952 PMID: 34097901
  49. Altan, M.; Toki, M.I.; Gettinger, S.N.; Carvajal-Hausdorf, D.E.; Zugazagoitia, J.; Sinard, J.H.; Herbst, R.S.; Rimm, D.L. Immune checkpoint inhibitor–associated pericarditis. J. Thorac. Oncol., 2019, 14(6), 1102-1108. doi: 10.1016/j.jtho.2019.02.026 PMID: 30851443
  50. Michel, L.; Rassaf, T.; Totzeck, M. Cardiotoxicity from immune checkpoint inhibitors. Int. J. Cardiol. Heart Vasc., 2019, 25, 100420. doi: 10.1016/j.ijcha.2019.100420 PMID: 31517036
  51. Klein, D.; Steens, J.; Wiesemann, A.; Schulz, F.; Kaschani, F.; Röck, K.; Yamaguchi, M.; Wirsdörfer, F.; Kaiser, M.; Fischer, J.W.; Stuschke, M.; Jendrossek, V. Mesenchymal stem cell therapy protects lungs from radiation-induced endothelial cell loss by restoring superoxide dismutase 1 expression. Antioxid. Redox Signal., 2017, 26(11), 563-582. doi: 10.1089/ars.2016.6748 PMID: 27572073
  52. Groves, A.M.; Johnston, C.J.; Williams, J.P.; Finkelstein, J.N. Role of infiltrating monocytes in the development of radiation-induced pulmonary fibrosis. Radiat. Res., 2018, 189(3), 300-311. doi: 10.1667/RR14874.1 PMID: 29332538
  53. Li, L.; Mok, H.; Jhaveri, P.; Bonnen, M.D.; Sikora, A.G.; Eissa, N.T.; Komaki, R.U.; Ghebre, Y.T. Anticancer therapy and lung injury: Molecular mechanisms. Expert Rev. Anticancer Ther., 2018, 18(10), 1041-1057. doi: 10.1080/14737140.2018.1500180 PMID: 29996062
  54. Leger, P.; Limper, A.H.; Maldonado, F. Pulmonary toxicities from conventional chemotherapy. Clin. Chest Med., 2017, 38(2), 209-222. doi: 10.1016/j.ccm.2017.01.002 PMID: 28477634
  55. Straub, J.M.; New, J.; Hamilton, C.D.; Lominska, C.; Shnayder, Y.; Thomas, S.M. Radiation-induced fibrosis: Mechanisms and implications for therapy. J. Cancer Res. Clin. Oncol., 2015, 141(11), 1985-1994. doi: 10.1007/s00432-015-1974-6 PMID: 25910988
  56. Farhood, B.; Aliasgharzadeh, A.; Amini, P.; Rezaeyan, A.; Tavassoli, A.; Motevaseli, E.; Shabeeb, D.; Eleojo Musa, A.; Najafi, M. Mitigation of radiation-induced lung pneumonitis and fibrosis using metformin and melatonin: A histopathological study. Medicina, 2019, 55(8), 417. doi: 10.3390/medicina55080417 PMID: 31366142
  57. Yahyapour, R.; Amini, P.; Saffar, H.; Motevaseli, E.; Farhood, B.; Pooladvand, V.; Shabeeb, D.; Musa, A.E.; Najafi, M. Protective effect of metformin, resveratrol and alpha-lipoic acid on radiation- induced pneumonitis and fibrosis: A histopathological study. Curr. Drug Res. Rev., 2019, 11(2), 111-117. doi: 10.2174/2589977511666191018180758 PMID: 31875783
  58. Azmoonfar, R.; Amini, P.; Saffar, H.; Rezapoor, S.; Motevaseli, E.; Cheki, M.; Yahyapour, R.; farhood, B.; Nouruzi, F.; Khodamoradi, E.; Shabeeb, D.; Eleojo Musa, A.; Najafi, M. Metformin protects against radiation-induced pneumonitis and fibrosis and attenuates upregulation of dual oxidase genes expression. Adv. Pharm. Bull., 2018, 8(4), 697-704. doi: 10.15171/apb.2018.078 PMID: 30607342
  59. Chung, S.I.; Horton, J.A.; Ramalingam, T.R.; White, A.O.; Chung, E.J.; Hudak, K.E.; Scroggins, B.T.; Arron, J.R.; Wynn, T.A.; Citrin, D.E. IL-13 is a therapeutic target in radiation lung injury. Sci. Rep., 2016, 6(1), 39714. doi: 10.1038/srep39714 PMID: 28004808
  60. Groves, A.M.; Johnston, C.J.; Misra, R.S.; Williams, J.P.; Finkelstein, J.N. Effects of IL-4 on pulmonary fibrosis and the accumulation and phenotype of macrophage subpopulations following thoracic irradiation. Int. J. Radiat. Biol., 2016, 92(12), 754-765. doi: 10.1080/09553002.2016.1222094 PMID: 27539247
  61. Büttner, C.; Skupin, A.; Reimann, T.; Rieber, E.P.; Unteregger, G.; Geyer, P.; Frank, K.H. Local production of interleukin-4 during radiation-induced pneumonitis and pulmonary fibrosis in rats: Macrophages as a prominent source of interleukin-4. Am. J. Respir. Cell Mol. Biol., 1997, 17(3), 315-325. doi: 10.1165/ajrcmb.17.3.2279 PMID: 9308918
  62. Park, H.R.; Jo, S.K.; Jung, U. Ionizing radiation promotes epithelial–to–mesenchymal transition in lung epithelial cells by TGF-β-producing M2 macrophages. In Vivo, 2019, 33(6), 1773-1784. doi: 10.21873/invivo.11668 PMID: 31662502
  63. Jakubzick, C.; Choi, E.S.; Joshi, B.H.; Keane, M.P.; Kunkel, S.L.; Puri, R.K.; Hogaboam, C.M. Therapeutic attenuation of pulmonary fibrosis via targeting of IL-4- and IL-13-responsive cells. J. Immunol., 2003, 171(5), 2684-2693. doi: 10.4049/jimmunol.171.5.2684 PMID: 12928422
  64. Karo-Atar, D.; Bordowitz, A.; Wand, O.; Pasmanik-Chor, M.; Fernandez, I.E.; Itan, M.; Frenkel, R.; Herbert, D.R.; Finkelman, F.D.; Eickelberg, O.; Munitz, A. A protective role for IL-13 receptor α 1 in bleomycin-induced pulmonary injury and repair. Mucosal Immunol., 2016, 9(1), 240-253. doi: 10.1038/mi.2015.56 PMID: 26153764
  65. Wang, J.; Wang, Y.; Han, J.; Mei, H.; Yu, D.; Ding, Q.; Zhang, T.; Wu, G.; Peng, G.; Lin, Z. Metformin attenuates radiation-induced pulmonary fibrosis in a murine model. Radiat. Res., 2017, 188(1), 105-113. doi: 10.1667/RR14708.1 PMID: 28437189
  66. Shahid, S. Review of hematological indices of cancer patients receiving combined chemotherapy & radiotherapy or receiving radiotherapy alone. Crit. Rev. Oncol. Hematol., 2016, 105, 145-155. doi: 10.1016/j.critrevonc.2016.06.001 PMID: 27423975
  67. Kumar, T.; Schernberg, A.; Busato, F.; Laurans, M.; Fumagalli, I.; Dumas, I.; Deutsch, E.; Haie-Meder, C.; Chargari, C. Correlation between pelvic bone marrow radiation dose and acute hematological toxicity in cervical cancer patients treated with concurrent chemoradiation. Cancer Manag. Res., 2019, 11, 6285-6297. doi: 10.2147/CMAR.S195989 PMID: 31372035
  68. Chang, J.; Feng, W.; Wang, Y.; Luo, Y.; Allen, A.R.; Koturbash, I.; Turner, J.; Stewart, B.; Raber, J.; Hauer-Jensen, M.; Zhou, D.; Shao, L. Whole-body proton irradiation causes long-term damage to hematopoietic stem cells in mice. Radiat. Res., 2015, 183(2), 240-248. doi: 10.1667/RR13887.1 PMID: 25635345
  69. Wang, Y.; Liu, L.; Pazhanisamy, S.K.; Li, H.; Meng, A.; Zhou, D. Total body irradiation causes residual bone marrow injury by induction of persistent oxidative stress in murine hematopoietic stem cells. Free Radic. Biol. Med., 2010, 48(2), 348-356. doi: 10.1016/j.freeradbiomed.2009.11.005 PMID: 19925862
  70. Zhang, H.; Zhai, Z.; Wang, Y.; Zhang, J.; Wu, H.; Wang, Y.; Li, C.; Li, D.; Lu, L.; Wang, X.; Chang, J.; Hou, Q.; Ju, Z.; Zhou, D.; Meng, A. Resveratrol ameliorates ionizing irradiation-induced long-term hematopoietic stem cell injury in mice. Free Radic. Biol. Med., 2013, 54, 40-50. doi: 10.1016/j.freeradbiomed.2012.10.530 PMID: 23124026
  71. Zhang, H.; Wang, Y.; Meng, A.; Yan, H.; Wang, X.; Niu, J.; Li, J.; Wang, H. Inhibiting TGFβ1 has a protective effect on mouse bone marrow suppression following ionizing radiation exposure in vitro. J. Radiat. Res., 2013, 54(4), 630-636. doi: 10.1093/jrr/rrs142 PMID: 23370919
  72. Cheki, M.; Shirazi, A.; Mahmoudzadeh, A.; Bazzaz, J.T.; Hosseinimehr, S.J. The radioprotective effect of metformin against cytotoxicity and genotoxicity induced by ionizing radiation in cultured human blood lymphocytes. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2016, 809, 24-32. doi: 10.1016/j.mrgentox.2016.09.001 PMID: 27692296
  73. Mortezaee, K.; Shabeeb, D.; Musa, A.E.; Najafi, M.; Farhood, B. Metformin as a radiation modifier; Implications to normal tissue protection and tumor sensitization. Curr. Clin. Pharmacol., 2019, 14(1), 41-53. doi: 10.2174/1574884713666181025141559 PMID: 30360725
  74. Xu, G.; Wu, H.; Zhang, J.; Li, D.; Wang, Y.; Wang, Y.; Zhang, H.; Lu, L.; Li, C.; Huang, S.; Xing, Y.; Zhou, D.; Meng, A. Metformin ameliorates ionizing irradiation-induced long-term hematopoietic stem cell injury in mice. Free Radic. Biol. Med., 2015, 87, 15-25. doi: 10.1016/j.freeradbiomed.2015.05.045 PMID: 26086617
  75. Spałek, M. Chronic radiation-induced dermatitis: Challenges and solutions. Clin. Cosmet. Investig. Dermatol., 2016, 9, 473-482. doi: 10.2147/CCID.S94320 PMID: 28003769
  76. Kole, A.J.; Kole, L.; Moran, M. Acute radiation dermatitis in breast cancer patients: Challenges and solutions. Breast Cancer, 2017, 9, 313-323. doi: 10.2147/BCTT.S109763 PMID: 28503074
  77. Ferreira, E.B.; Ciol, M.A.; de Meneses, A.G.; Bontempo, P.S.M.; Hoffman, J.M.; Reis, P.E.D. Chamomile gel versus urea cream to prevent acute radiation dermatitis in head and neck cancer patients: Results from a preliminary clinical trial. Integr. Cancer Ther., 2020, 19 doi: 10.1177/1534735420962174 PMID: 32985288
  78. Liang, X.; Bradley, J.A.; Zheng, D.; Rutenberg, M.; Yeung, D.; Mendenhall, N.; Li, Z. Prognostic factors of radiation dermatitis following passive-scattering proton therapy for breast cancer. Radiat. Oncol., 2018, 13(1), 72. doi: 10.1186/s13014-018-1004-3 PMID: 29673384
  79. Shabeeb, D.; Najafi, M.; Musa, A.E.; Keshavarz, M.; Shirazi, A.; Hassanzadeh, G.; Hadian, M.R.; Samandari, H. Biochemical and histopathological evaluation of the radioprotective effects of melatonin against gamma ray-induced skin damage. Curr. Radiopharm., 2019, 12(1), 72-81. doi: 10.2174/1874471012666181120163250 PMID: 30465519
  80. Kim, J.M.; Yoo, H.; Kim, J.Y.; Oh, S.H.; Kang, J.W.; Yoo, B.R.; Han, S.Y.; Kim, C.S.; Choi, W.H.; Lee, E.J.; Byeon, H.J.; Lee, W.J.; Lee, Y.S.; Cho, J. Metformin alleviates radiation-induced skin fibrosis via the downregulation of FOXO3. Cell. Physiol. Biochem., 2018, 48(3), 959-970. doi: 10.1159/000491964 PMID: 30036874
  81. Mollà, M.; Panés, J. Radiation-induced intestinal inflammation. World J. Gastroenterol., 2007, 13(22), 3043-3046. doi: 10.3748/wjg.v13.i22.3043 PMID: 17589918
  82. Wang, J.; Boerma, M.; Fu, Q.; HauerJensen, M. Significance of endothelial dysfunction in the pathogenesis of early and delayed radiation enteropathy. World J. Gastroenterol., 2007, 13(22), 3047-3055. doi: 10.3748/wjg.v13.i22.3047 PMID: 17589919
  83. Gervaz, P.; Morel, P.; Vozenin-Brotons, M.C. Molecular aspects of intestinal radiation-induced fibrosis. Curr. Mol. Med., 2009, 9(3), 273-280. doi: 10.2174/156652409787847164 PMID: 19355909
  84. Shadad, A.K.; Sullivan, F.J.; Martin, J.D.; Egan, L.J. Gastrointestinal radiation injury: Symptoms, risk factors and mechanisms. World J. Gastroenterol., 2013, 19(2), 185-198. doi: 10.3748/wjg.v19.i2.185 PMID: 23345941
  85. Bagheri, H.; Rezapoor, S.; Najafi, M.; Safar, H.; Shabeeb, D.; Cheki, M.; Shekarchi, B.; Motevaseli, E. Metformin protects the rat small intestine against radiation enteritis. Jundishapur J. Nat. Pharm. Prod., 2019, 14(4) doi: 10.5812/jjnpp.67352
  86. Uthaiwat, P.; Priprem, A.; Chio-Srichan, S.; Settasatian, C.; Lee, Y.C.; Mahakunakorn, P.; Boonsiri, P.; Leelayuwat, C.; Tippayawat, P.; Puthongking, P.; Daduang, J. Oral administration of melatonin or succinyl melatonin niosome gel benefits 5-fu-induced small intestinal mucositis treatment in mice. AAPS PharmSciTech, 2021, 22(5), 200. doi: 10.1208/s12249-021-01941-y PMID: 34212283
  87. Uthaiwat, P.; Daduang, J.; Priprem, A.; Settasatian, C.; Chio-Srichan, S.; Lee, Y.C.; Mahakunakorn, P.; Boonsiri, P. Topical melatonin niosome gel for the treatment of 5-fu-induced oral mucositis in mice. Curr. Drug Deliv., 2021, 18(2), 199-211. doi: 10.2174/1567201817666200525151848 PMID: 32484102
  88. Lozano, A.; Marruecos, J.; Rubió, J.; Farré, N.; Gómez-Millán, J.; Morera, R.; Planas, I.; Lanzuela, M.; Vázquez-Masedo, M.G.; Cascallar, L.; Giralt, J.; Escames, G.; Valentí, V.; Grima, P.; Bosser, R.; Tarragó, C.; Mesía, R. Randomized placebo-controlled phase II trial of high-dose melatonin mucoadhesive oral gel for the prevention and treatment of oral mucositis in patients with head and neck cancer undergoing radiation therapy concurrent with systemic treatment. Clin. Transl. Oncol., 2021, 23(9), 1801-1810. doi: 10.1007/s12094-021-02586-w PMID: 33738704
  89. Pulito, C.; Cristaudo, A.; Porta, C.L.; Zapperi, S.; Blandino, G.; Morrone, A.; Strano, S. Oral mucositis: The hidden side of cancer therapy. J. Exp. Clin. Cancer Res., 2020, 39(1), 210. doi: 10.1186/s13046-020-01715-7 PMID: 33028357
  90. Sun, H.; Zhou, Y.; Ma, R.; Zhang, J.; Shan, J.; Chen, Y.; Li, X.; Shan, E. Metformin protects 5-Fu-induced chemotherapy oral mucositis by reducing endoplasmic reticulum stress in mice. Eur. J. Pharm. Sci., 2022, 173, 106182. doi: 10.1016/j.ejps.2022.106182 PMID: 35405270
  91. Xia, J.; Chen, J.; Vashisth, M.K.; Ge, Y.; Dai, Q.; He, S.; Shi, Y.; Wang, X. Metformin ameliorates 5-fluorouracil-induced intestinal injury by inhibiting cellular senescence, inflammation, and oxidative stress. Int. Immunopharmacol., 2022, 113(Pt A), 109342. doi: 10.1016/j.intimp.2022.109342 PMID: 36327871
  92. Mercurio, V.; Cuomo, A.; Della Pepa, R.; Ciervo, D.; Cella, L.; Pirozzi, F.; Parrella, P.; Campi, G.; Franco, R.; Varricchi, G.; Abete, P.; Marone, G.; Petretta, M.; Bonaduce, D.; Pacelli, R.; Picardi, M.; Tocchetti, C.G. What is the cardiac impact of chemotherapy and subsequent radiotherapy in lymphoma patients? Antioxid. Redox Signal., 2019, 31(15), 1166-1174. doi: 10.1089/ars.2019.7842 PMID: 31436110
  93. Gorini, S.; De Angelis, A.; Berrino, L.; Malara, N.; Rosano, G.; Ferraro, E. Chemotherapeutic drugs and mitochondrial dysfunction: Focus on doxorubicin, trastuzumab, and sunitinib. Oxid. Med. Cell. Longev., 2018, 2018, 1-15. doi: 10.1155/2018/7582730 PMID: 29743983
  94. Safaei, A.; Sheibani, M.; Azizi, Y. A journey in anthracycline-induced cardiotoxicity with emphasizing on doxorubicin: a review article. Tehran Univ. Medical J, 2021, 79(8), 575-583.
  95. Fabin, N.; Bergami, M.; Cenko, E.; Bugiardini, R.; Manfrini, O. The role of vasospasm and microcirculatory dysfunction in fluoropyrimidine-induced ischemic heart disease. J. Clin. Med., 2022, 11(5), 1244. doi: 10.3390/jcm11051244 PMID: 35268333
  96. Qi, Y.; Ying, Y.; Zou, J.; Fang, Q.; Yuan, X.; Cao, Y.; Cai, Y.; Fu, S. Kaempferol attenuated cisplatin-induced cardiac injury via inhibiting STING/NF-κB-mediated inflammation. Am. J. Transl. Res., 2020, 12(12), 8007-8018. PMID: 33437376
  97. Yang, R.; Tan, C.; Najafi, M. Cardiac inflammation and fibrosis following chemo/radiation therapy: Mechanisms and therapeutic agents. Inflammopharmacology, 2022, 30(1), 73-89. doi: 10.1007/s10787-021-00894-9 PMID: 34813027
  98. Wei, T.; Cheng, Y. The cardiac toxicity of radiotherapy – a review of characteristics, mechanisms, diagnosis, and prevention. Int. J. Radiat. Biol., 2021, 97(10), 1333-1340. doi: 10.1080/09553002.2021.1956007 PMID: 34264176
  99. Livingston, K.; Schlaak, R.A.; Puckett, L.L.; Bergom, C. The role of mitochondrial dysfunction in radiation-induced heart disease: from bench to bedside. Front. Cardiovasc. Med., 2020, 7, 20. doi: 10.3389/fcvm.2020.00020 PMID: 32154269
  100. Dhingra, R.; Rabinovich-Nikitin, I.; Rothman, S.; Guberman, M.; Gang, H.; Margulets, V.; Jassal, D.S.; Alagarsamy, K.N.; Dhingra, S.; Valenzuela Ripoll, C.; Billia, F.; Diwan, A.; Javaheri, A.; Kirshenbaum, L.A. Proteasomal degradation of TRAF2 mediates mitochondrial dysfunction in doxorubicin-cardiomyopathy. Circulation, 2022, 146(12), 934-954. doi: 10.1161/CIRCULATIONAHA.121.058411 PMID: 35983756
  101. El kiki, S.M.; Omran, M.M.; Mansour, H.H.; Hasan, H.F. Metformin and/or low dose radiation reduces cardiotoxicity and apoptosis induced by cyclophosphamide through SIRT-1/SOD and BAX/Bcl-2 pathways in rats. Mol. Biol. Rep., 2020, 47(7), 5115-5126. doi: 10.1007/s11033-020-05582-5 PMID: 32537703
  102. Karam, H.M.; Radwan, R.R. Metformin modulates cardiac endothelial dysfunction, oxidative stress and inflammation in irradiated rats: A new perspective of an antidiabetic drug. Clin. Exp. Pharmacol. Physiol., 2019, 46(12), 1124-1132. doi: 10.1111/1440-1681.13148 PMID: 31357226
  103. Yahyapour, R.; Amini, P.; Saffar, H.; Rezapoor, S.; Motevaseli, E.; Cheki, M.; Farhood, B.; Nouruzi, F.; Shabeeb, D.; Eleojo Musa, A.; Najafi, M. Metformin protects against radiation-induced heart injury and attenuates the upregulation of dual oxidase genes following rat’s chest irradiation. Int. J. Mol. Cell. Med., 2018, 7(3), 193-202. PMID: 31565651
  104. Panpan, T.; Yuchen, D.; Xianyong, S.; Meng, L.; Ruijuan, H.; Ranran, D.; Pengyan, Z.; Mingxi, L.; Rongrong, X. Cardiac remodelling following cancer therapy: A review. Cardiovasc. Toxicol., 2022, 22(9), 771-786. doi: 10.1007/s12012-022-09762-6 PMID: 35877038
  105. Arinno, A.; Maneechote, C.; Khuanjing, T.; Chunchai, T.; Prathumsap, N.; Arunsak, B.; Kerdphoo, S.; Shinlapawittayatorn, K.; Chattipakorn, S.; Chattipakorn, N. Abstract 9375: Melatonin and metformin exert cardioprotection against trastuzumab-induced cardiotoxicity through modulating cardiac mitochondrial dynamics in rats. Circulation, 2021, 144(S1), A9375-A9375.
  106. Arinno, A.; Maneechote, C.; Khuanjing, T.; Prathumsap, N.; Chunchai, T.; Arunsak, B.; Nawara, W.; Kerdphoo, S.; Shinlapawittayatorn, K.; Chattipakorn, S.C.; Chattipakorn, N. Melatonin and metformin ameliorated trastuzumab-induced cardiotoxicity through the modulation of mitochondrial function and dynamics without reducing its anticancer efficacy. Biochim. Biophys. Acta Mol. Basis Dis., 2023, 1869(2), 166618. doi: 10.1016/j.bbadis.2022.166618 PMID: 36494039
  107. Kuburas, R.; Gharanei, M.; Haussmann, I.; Maddock, H.; Sandhu, H. Metformin protects against sunitinib-induced cardiotoxicity: Investigating the role of AMPK. J. Cardiovasc. Pharmacol., 2022, 79(6), 799-807. doi: 10.1097/FJC.0000000000001256 PMID: 35266920
  108. Ajzashokouhi, A.H.; Bostan, H.B.; Jomezadeh, V.; Hayes, A.W.; Karimi, G. A review on the cardioprotective mechanisms of metformin against doxorubicin. Hum. Exp. Toxicol., 2020, 39(3), 237-248. doi: 10.1177/0960327119888277 PMID: 31735071
  109. Karim, L.Z.A.; Arif, I.S.; Saady, F. Metabolomics Of metformin’s cardioprotective effect in acute doxorubicin induced-cardiotoxicity in rats. Syst. Rev. Pharm, 2021, 12, 100-109.
  110. Ikewuchi, J.C.; Ikewuchi, C.C.; Ifeanacho, M.O.; Jaja, V.S.; Okezue, E.C.; Jamabo, C.N.; Adeku, K.A. Attenuation of doxorubicin-induced cardiotoxicity in Wistar rats by aqueous leaf-extracts of Chromolaena odorata and Tridax procumbens. J. Ethnopharmacol., 2021, 274, 114004. doi: 10.1016/j.jep.2021.114004 PMID: 33727109
  111. Arinno, A.; Maneechote, C.; Khuanjing, T.; Ongnok, B.; Prathumsap, N.; Chunchai, T.; Arunsak, B.; Kerdphoo, S.; Shinlapawittayatorn, K.; Chattipakorn, S.C.; Chattipakorn, N. Cardioprotective effects of melatonin and metformin against doxorubicin-induced cardiotoxicity in rats are through preserving mitochondrial function and dynamics. Biochem. Pharmacol., 2021, 192, 114743. doi: 10.1016/j.bcp.2021.114743 PMID: 34453902
  112. Shaty, M.H.; Al-Ezzi, M.I.; Arif, I.S.; Basil, D. Effect of metformin on inflammatory markers involved in cardiotoxicity induced by doxorubicin. Res. J. Pharm. Technol., 2019, 12(12), 5815-5821. doi: 10.5958/0974-360X.2019.01007.2
  113. Timm, K.N.; Tyler, D.J. The role of AMPK activation for cardioprotection in doxorubicin-induced cardiotoxicity. Cardiovasc. Drugs Ther., 2020, 34(2), 255-269. doi: 10.1007/s10557-020-06941-x PMID: 32034646
  114. Chen, J.; Zhang, S.; Pan, G.; Lin, L.; Liu, D.; Liu, Z.; Mei, S.; Zhang, L.; Hu, Z.; Chen, J.; Luo, H.; Wang, Y.; Xin, Y.; You, Z. Modulatory effect of metformin on cardiotoxicity induced by doxorubicin via the MAPK and AMPK pathways. Life Sci., 2020, 249, 117498. doi: 10.1016/j.lfs.2020.117498 PMID: 32142765
  115. Chen, K.; Li, Y.; Guo, Z.; Zeng, Y.; Zhang, W.; Wang, H. Metformin: Current clinical applications in nondiabetic patients with cancer. Aging, 2020, 12(4), 3993-4009. doi: 10.18632/aging.102787 PMID: 32074084
  116. Rocca, A.; Cortesi, P.; Cortesi, L.; Gianni, L.; Matteucci, F.; Fantini, L.; Maestri, A.; Giunchi, D.C.; Cavanna, L.; Ciani, R.; Falcini, F.; Bagni, A.; Meldoli, E.; Dall’Agata, M.; Volpi, R.; Andreis, D.; Nanni, O.; Curcio, A.; Lucchi, L.; Amadori, D.; Fedeli, A. Phase II study of liposomal doxorubicin, docetaxel and trastuzumab in combination with metformin as neoadjuvant therapy for HER2-positive breast cancer. Ther. Adv. Med. Oncol., 2021, 13 doi: 10.1177/1758835920985632 PMID: 33613693
  117. Osataphan, N.; Apaijai, N.; Phrommintikul, A.; LEEMASAWAT, K.; Somwangprasert, A.; Suksai, S.; Chattipakorn, S.; Chattipakorn, N. Abstract 11469: Effects of metformin and donepezil on the prevention of doxorubicin-induced cardiotoxicity in breast cancer patient: A randomized controlled trial. Circulation, 2022, 146(S1), A11469-A11469.
  118. Yu, J-M.; Hsieh, M-C.; Qin, L.; Zhang, J.; Wu, S-Y. Metformin reduces radiation-induced cardiac toxicity risk in patients having breast cancer. Am. J. Cancer Res., 2019, 9(5), 1017-1026. PMID: 31218109
  119. Hirata, E.; Sahai, E. Tumor microenvironment and differential responses to therapy. Cold Spring Harb. Perspect. Med., 2017, 7(7), a026781. doi: 10.1101/cshperspect.a026781 PMID: 28213438
  120. Melaiu, O.; Lucarini, V.; Cifaldi, L.; Fruci, D. Influence of the tumor microenvironment on NK cell function in solid tumors. Front. Immunol., 2020, 10, 3038. doi: 10.3389/fimmu.2019.03038 PMID: 32038612
  121. Katsuta, E.; Rashid, O.M.; Takabe, K. Clinical relevance of tumor microenvironment: Immune cells, vessels, and mouse models. Hum. Cell, 2020, 33(4), 930-937. doi: 10.1007/s13577-020-00380-4 PMID: 32507979
  122. Thorsson, V.; Gibbs, D.L.; Brown, S.D.; Wolf, D.; Bortone, D.S.; Yang, T.-H.O.; Porta-Pardo, E.; Gao, G.F.; Plaisier, C.L.; Eddy, J.A. The immune landscape of cancer. Immunity, 2018, 48(4), 812-830. e814.. doi: 10.1016/j.immuni.2018.03.023
  123. Schreiber, S.; Hammers, C.M.; Kaasch, A.J.; Schraven, B.; Dudeck, A.; Kahlfuss, S. Metabolic interdependency of Th2 cell-mediated type 2 immunity and the tumor microenvironment. Front. Immunol., 2021, 12, 632581. doi: 10.3389/fimmu.2021.632581 PMID: 34135885
  124. Radomska-Leśniewska, D.M.; Białoszewska, A.; Kamiński, P. Angiogenic properties of NK cells in cancer and other angiogenesis-dependent diseases. Cells, 2021, 10(7), 1621. doi: 10.3390/cells10071621 PMID: 34209508
  125. Tsukioki, T.; Shien, T.; Tanaka, T.; Suzuki, Y.; Kajihara, Y.; Hatono, M.; Kawada, K.; Kochi, M.; Iwamoto, T.; Ikeda, H.; Taira, N.; Doihara, H.; Toyooka, S. Influences of preoperative metformin on immunological factors in early breast cancer. Cancer Chemother. Pharmacol., 2020, 86(1), 55-63. doi: 10.1007/s00280-020-04092-2 PMID: 32533334
  126. Wang, S.; Lin, Y.; Xiong, X.; Wang, L.; Guo, Y.; Chen, Y.; Chen, S.; Wang, G.; Lin, P.; Chen, H.; Yeung, S.C.J.; Bremer, E.; Zhang, H. Low-dose metformin reprograms the tumor immune microenvironment in human esophageal cancer: Results of a phase II clinical trial. Clin. Cancer Res., 2020, 26(18), 4921-4932. doi: 10.1158/1078-0432.CCR-20-0113 PMID: 32646922
  127. Patel, D.D.; Kuchroo, V.K. Th17 cell pathway in human immunity: Lessons from genetics and therapeutic interventions. Immunity, 2015, 43(6), 1040-1051. doi: 10.1016/j.immuni.2015.12.003 PMID: 26682981
  128. Perez, L.G.; Kempski, J.; McGee, H.M.; Pelzcar, P.; Agalioti, T.; Giannou, A.; Konczalla, L.; Brockmann, L.; Wahib, R.; Xu, H.; Vesely, M.C.A.; Soukou, S.; Steglich, B.; Bedke, T.; Manthey, C.; Seiz, O.; Diercks, B.P.; Gnafakis, S.; Guse, A.H.; Perez, D.; Izbicki, J.R.; Gagliani, N.; Flavell, R.A.; Huber, S. TGF-β signaling in Th17 cells promotes IL-22 production and colitis-associated colon cancer. Nat. Commun., 2020, 11(1), 2608. doi: 10.1038/s41467-020-16363-w PMID: 32451418
  129. Nalbant, A. IL-17, IL-21, and IL-22 Cytokines of T Helper 17 Cells in Cancer. J. Interferon Cytokine Res., 2019, 39(1), 56-60. doi: 10.1089/jir.2018.0057 PMID: 30562123
  130. Asadzadeh, Z.; Mohammadi, H.; Safarzadeh, E.; Hemmatzadeh, M.; Mahdian-shakib, A.; Jadidi-Niaragh, F.; Azizi, G.; Baradaran, B. The paradox of Th17 cell functions in tumor immunity. Cell. Immunol., 2017, 322, 15-25. doi: 10.1016/j.cellimm.2017.10.015 PMID: 29103586
  131. Zhao, D.; Long, X.D.; Lu, T.F.; Wang, T.; Zhang, W.W.; Liu, Y.X.; Cui, X.L.; Dai, H.J.; Xue, F.; Xia, Q. Metformin decreases IL-22 secretion to suppress tumor growth in an orthotopic mouse model of hepatocellular carcinoma. Int. J. Cancer, 2015, 136(11), 2556-2565. doi: 10.1002/ijc.29305 PMID: 25370454
  132. Limagne, E.; Thibaudin, M.; Euvrard, R.; Berger, H.; Chalons, P.; Végan, F.; Humblin, E.; Boidot, R.; Rébé, C.; Derangère, V.; Ladoire, S.; Apetoh, L.; Delmas, D.; Ghiringhelli, F. Sirtuin-1 activation controls tumor growth by impeding Th17 differentiation via STAT3 deacetylation. Cell Rep., 2017, 19(4), 746-759. doi: 10.1016/j.celrep.2017.04.004 PMID: 28445726
  133. Chiang, C.F.; Chao, T.T.; Su, Y.F.; Hsu, C.C.; Chien, C.Y.; Chiu, K.C.; Shiah, S.G.; Lee, C.H.; Liu, S.Y.; Shieh, Y.S. Metformin-treated cancer cells modulate macrophage polarization through AMPK-NF-κB signaling. Oncotarget, 2017, 8(13), 20706-20718. doi: 10.18632/oncotarget.14982 PMID: 28157701
  134. Ding, L.; Liang, G.; Yao, Z.; Zhang, J.; Liu, R.; Chen, H.; Zhou, Y.; Wu, H.; Yang, B.; He, Q. Metformin prevents cancer metastasis by inhibiting M2-like polarization of tumor associated macrophages. Oncotarget, 2015, 6(34), 36441-36455. doi: 10.18632/oncotarget.5541 PMID: 26497364
  135. Kunisada, Y.; Eikawa, S.; Tomonobu, N.; Domae, S.; Uehara, T.; Hori, S.; Furusawa, Y.; Hase, K.; Sasaki, A.; Udono, H. Attenuation of CD4+CD25+ regulatory T cells in the tumor microenvironment by metformin, a type 2 diabetes drug. EBioMedicine, 2017, 25, 154-164. doi: 10.1016/j.ebiom.2017.10.009 PMID: 29066174
  136. Amin, D.; Richa, T.; Mollaee, M.; Zhan, T.; Tassone, P.; Johnson, J.; Luginbuhl, A.; Cognetti, D.; Martinez-Outschoorn, U.; Stapp, R.; Solomides, C.; Rodeck, U.; Curry, J. Metformin effects on FOXP3 + and CD8 + T cell infiltrates of head and neck squamous cell carcinoma. Laryngoscope, 2020, 130(9), E490-E498. doi: 10.1002/lary.28336 PMID: 31593308
  137. Qin, G.; Lian, J.; Huang, L.; Zhao, Q.; Liu, S.; Zhang, Z.; Chen, X.; Yue, D.; Li, L.; Li, F.; Wang, L.; Umansky, V.; Zhang, B.; Yang, S.; Zhang, Y. Metformin blocks myeloid-derived suppressor cell accumulation through AMPK-DACH1-CXCL1 axis. OncoImmunology, 2018, 7(7), e1442167. doi: 10.1080/2162402X.2018.1442167 PMID: 29900050
  138. Xu, P.; Yin, K.; Tang, X.; Tian, J.; Zhang, Y.; Ma, J.; Xu, H.; Xu, Q.; Wang, S. Metformin inhibits the function of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. Biomed. Pharmacother., 2019, 120, 109458. doi: 10.1016/j.biopha.2019.109458 PMID: 31550676
  139. Li, L.; Wang, L.; Li, J.; Fan, Z.; Yang, L.; Zhang, Z.; Zhang, C.; Yue, D.; Qin, G.; Zhang, T.; Li, F.; Chen, X.; Ping, Y.; Wang, D.; Gao, Q.; He, Q.; Huang, L.; Li, H.; Huang, J.; Zhao, X.; Xue, W.; Sun, Z.; Lu, J.; Yu, J.J.; Zhao, J.; Zhang, B.; Zhang, Y. Metformin-induced reduction of CD39 and CD73 blocks myeloid-derived suppressor cell activity in patients with ovarian cancer. Cancer Res., 2018, 78(7), 1779-1791. doi: 10.1158/0008-5472.CAN-17-2460 PMID: 29374065
  140. Incio, J.; Suboj, P.; Chin, S.M.; Vardam-Kaur, T.; Liu, H.; Hato, T.; Babykutty, S.; Chen, I.; Deshpande, V.; Jain, R.K.; Fukumura, D. Metformin reduces desmoplasia in pancreatic cancer by reprogramming stellate cells and tumor-associated macrophages. PLoS One, 2015, 10(12), e0141392. doi: 10.1371/journal.pone.0141392 PMID: 26641266
  141. Abdelmoneim, M.; Eissa, I.R.; Aboalela, M.A.; Naoe, Y.; Matsumura, S.; Sibal, P.A.; Bustos-Villalobos, I.; Tanaka, M.; Kodera, Y.; Kasuya, H. Metformin enhances the antitumor activity of oncolytic herpes simplex virus HF10 (canerpaturev) in a pancreatic cell cancer subcutaneous model. Sci. Rep., 2022, 12(1), 21570. doi: 10.1038/s41598-022-25065-w PMID: 36513720
  142. Oliveras-Ferraros, C.; Cufí, S.; Vazquez-Martin, A.; Menendez, O.J.; Bosch-Barrera, J.; Martin-Castillo, B.; Joven, J.; Menendez, J.A. Metformin rescues cell surface major histocompatibility complex class I (MHC-I) deficiency caused by oncogenic transformation. Cell Cycle, 2012, 11(5), 865-870. doi: 10.4161/cc.11.5.19252 PMID: 22333588
  143. Hashimoto, M.; Kamphorst, A.O.; Im, S.J.; Kissick, H.T.; Pillai, R.N.; Ramalingam, S.S.; Araki, K.; Ahmed, R. CD8 T cell exhaustion in chronic infection and cancer: Opportunities for interventions. Annu. Rev. Med., 2018, 69(1), 301-318. doi: 10.1146/annurev-med-012017-043208 PMID: 29414259
  144. Kurachi, M. CD8+ T cell exhaustion. Semin. Immunopathol., 2019, 41(3), 327-337. doi: 10.1007/s00281-019-00744-5 PMID: 30989321
  145. Rha, M.S.; Shin, E.C. Activation or exhaustion of CD8+ T cells in patients with COVID-19. Cell. Mol. Immunol., 2021, 18(10), 2325-2333. doi: 10.1038/s41423-021-00750-4 PMID: 34413488
  146. Jiang, W.; He, Y.; He, W.; Wu, G.; Zhou, X.; Sheng, Q.; Zhong, W.; Lu, Y.; Ding, Y.; Lu, Q.; Ye, F.; Hua, H. Exhausted CD8+ T cells in the tumor immune microenvironment: New pathways to therapy. Front. Immunol., 2021, 11, 622509. doi: 10.3389/fimmu.2020.622509 PMID: 33633741
  147. Huang, Y.; Jia, A.; Wang, Y.; Liu, G. CD8+ T cell exhaustion in anti-tumour immunity: The new insights for cancer immunotherapy. Immunology, 2023, 168(1), 30-48. doi: 10.1111/imm.13588 PMID: 36190809
  148. Nojima, I.; Eikawa, S.; Tomonobu, N.; Hada, Y.; Kajitani, N.; Teshigawara, S.; Miyamoto, S.; Tone, A.; Uchida, H.A.; Nakatsuka, A.; Eguchi, J.; Shikata, K.; Udono, H.; Wada, J. Dysfunction of CD8+ PD-1 + T cells in type 2 diabetes caused by the impairment of metabolism-immune axis. Sci. Rep., 2020, 10(1), 14928. doi: 10.1038/s41598-020-71946-3 PMID: 32913271
  149. Shikuma, C.M.; Chew, G.M.; Kohorn, L.; Souza, S.A.; Chow, D.; SahBandar, I.N.; Park, E.Y.; Hanks, N.; Gangcuangco, L.M.A.; Gerschenson, M.; Ndhlovu, L.C. Short communication: Metformin reduces CD4 T cell exhaustion in HIV-infected adults on suppressive antiretroviral therapy. AIDS Res. Hum. Retroviruses, 2020, 36(4), 303-305. doi: 10.1089/aid.2019.0078 PMID: 31731885
  150. Wu, Z.; Zhang, C.; Najafi, M. Targeting of the tumor immune microenvironment by metformin. J. Cell Commun. Signal., 2022, 16(3), 333-348. doi: 10.1007/s12079-021-00648-w PMID: 34611852
  151. Zhang, Z.; Li, F.; Tian, Y.; Cao, L.; Gao, Q.; Zhang, C.; Zhang, K.; Shen, C.; Ping, Y.; Maimela, N.R.; Wang, L.; Zhang, B.; Zhang, Y. Metformin enhances the antitumor activity of CD8+ T lymphocytes via the AMPK–miR-107–Eomes–PD-1 pathway. J. Immunol., 2020, 204(9), 2575-2588. doi: 10.4049/jimmunol.1901213 PMID: 32221038
  152. Watanabe, M.; Eikawa, S.; Shien, K.; Yamamoto, H.; Shien, T.; Soh, J.; Doihara, H.; Toyooka, S.; Miyoshi, S.; Udono, H. Abstract 5592: Metformin improves immune function of exhausted peripheral CD8+ T cells derived from cancer patients. Cancer Res., 2017, 77(S13), 5592-5592. doi: 10.1158/1538-7445.AM2017-5592
  153. Xu, X.D.; Shao, S.X.; Jiang, H.P.; Cao, Y.W.; Wang, Y.H.; Yang, X.C.; Wang, Y.L.; Wang, X.S.; Niu, H.T. Warburg effect or reverse Warburg effect? A review of cancer metabolism. Oncol. Res. Treat., 2015, 38(3), 117-122. doi: 10.1159/000375435 PMID: 25792083
  154. Chang, C.H.; Qiu, J.; O’Sullivan, D.; Buck, M.D.; Noguchi, T.; Curtis, J.D.; Chen, Q.; Gindin, M.; Gubin, M.M.; van der Windt, G.J.W.; Tonc, E.; Schreiber, R.D.; Pearce, E.J.; Pearce, E.L. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell, 2015, 162(6), 1229-1241. doi: 10.1016/j.cell.2015.08.016 PMID: 26321679
  155. Bahrambeigi, S.; Shafiei-Irannejad, V. Immune-mediated anti-tumor effects of metformin; targeting metabolic reprogramming of T cells as a new possible mechanism for anti-cancer effects of metformin. Biochem. Pharmacol., 2020, 174, 113787. doi: 10.1016/j.bcp.2019.113787 PMID: 31884044
  156. Zhang, J.; Liu, J. Tumor stroma as targets for cancer therapy. Pharmacol. Ther., 2013, 137(2), 200-215. doi: 10.1016/j.pharmthera.2012.10.003 PMID: 23064233
  157. Horn, L.A.; Chariou, P.L.; Gameiro, S.R.; Qin, H.; Iida, M.; Fousek, K.; Meyer, T.J.; Cam, M.; Flies, D.; Langermann, S.; Schlom, J.; Palena, C. Remodeling the tumor microenvironment via blockade of LAIR-1 and TGF-β signaling enables PD-L1–mediated tumor eradication. J. Clin. Invest., 2022, 132(8), e155148. doi: 10.1172/JCI155148 PMID: 35230974
  158. Augsten, M. Cancer-associated fibroblasts as another polarized cell type of the tumor microenvironment. Front. Oncol., 2014, 4, 62. doi: 10.3389/fonc.2014.00062 PMID: 24734219
  159. Gunaydin, G. CAFs interacting with TAMs in tumor microenvironment to enhance tumorigenesis and immune evasion. Front. Oncol., 2021, 11, 668349. doi: 10.3389/fonc.2021.668349 PMID: 34336660
  160. Jiang, Y.; Zhang, H.; Wang, J.; Liu, Y.; Luo, T.; Hua, H. Targeting extracellular matrix stiffness and mechanotransducers to improve cancer therapy. J. Hematol. Oncol., 2022, 15(1), 34. doi: 10.1186/s13045-022-01252-0 PMID: 35331296
  161. Kojima, Y.; Acar, A.; Eaton, E.N.; Mellody, K.T.; Scheel, C.; Ben-Porath, I.; Onder, T.T.; Wang, Z.C.; Richardson, A.L.; Weinberg, R.A.; Orimo, A. Autocrine TGF-β and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc. Natl. Acad. Sci., 2010, 107(46), 20009-20014. doi: 10.1073/pnas.1013805107 PMID: 21041659
  162. Xu, S.; Yang, Z.; Jin, P.; Yang, X.; Li, X.; Wei, X.; Wang, Y.; Long, S.; Zhang, T.; Chen, G.; Sun, C.; Ma, D.; Gao, Q. Metformin suppresses tumor progression by inactivating stromal fibroblasts in ovarian cancer. Mol. Cancer Ther., 2018, 17(6), 1291-1302. doi: 10.1158/1535-7163.MCT-17-0927 PMID: 29545331
  163. Shao, S.; Zhao, L.; An, G.; Zhang, L.; Jing, X.; Luo, M.; Li, W.; Meng, D.; Ning, Q.; Zhao, X.; Lei, J. Metformin suppresses HIF-1α expression in cancer-associated fibroblasts to prevent tumor-stromal cross talk in breast cancer. FASEB J., 2020, 34(8), 10860-10870. doi: 10.1096/fj.202000951RR PMID: 32592239
  164. Zhang, X.; Dong, Y.; Zhao, M.; Ding, L.; Yang, X.; Jing, Y.; Song, Y.; Chen, S.; Hu, Q.; Ni, Y. ITGB2-mediated metabolic switch in CAFs promotes OSCC proliferation by oxidation of NADH in mitochondrial oxidative phosphorylation system. Theranostics, 2020, 10(26), 12044-12059. doi: 10.7150/thno.47901 PMID: 33204328
  165. Curry, J.; Johnson, J.; Tassone, P.; Vidal, M.D.; Menezes, D.W.; Sprandio, J.; Mollaee, M.; Cotzia, P.; Birbe, R.; Lin, Z.; Gill, K.; Duddy, E.; Zhan, T.; Leiby, B.; Reyzer, M.; Cognetti, D.; Luginbuhl, A.; Tuluc, M.; Martinez-Outschoorn, U. Metformin effects on head and neck squamous carcinoma microenvironment: Window of opportunity trial. Laryngoscope, 2017, 127(8), 1808-1815. doi: 10.1002/lary.26489 PMID: 28185288
  166. Galluzzi, L.; Kroemer, G. Potent immunosuppressive effects of the oncometabolite R -2-hydroxyglutarate. OncoImmunology, 2018, 7(12), e1528815. doi: 10.1080/2162402X.2018.1528815 PMID: 30524910
  167. Ježek, P. 2-Hydroxyglutarate in cancer cells. Antioxid. Redox Signal., 2020, 33(13), 903-926. doi: 10.1089/ars.2019.7902 PMID: 31847543
  168. Wang, Y.P.; Li, J.T.; Qu, J.; Yin, M.; Lei, Q.Y. Metabolite sensing and signaling in cancer. J. Biol. Chem., 2020, 295(33), 11938-11946. doi: 10.1074/jbc.REV119.007624 PMID: 32641495
  169. Oh, S.; Cho, Y.; Chang, M.; Park, S.; Kwon, H. Metformin decreases 2-HG production through the MYC-PHGDH pathway in suppressing breast cancer cell proliferation. Metabolites, 2021, 11(8), 480.
  170. Zhang, X.; Schönrogge, M.; Eichberg, J.; Wendt, E.H.U.; Kumstel, S.; Stenzel, J.; Lindner, T.; Jaster, R.; Krause, B.J.; Vollmar, B.; Zechner, D. Blocking autophagy in cancer-associated fibroblasts supports chemotherapy of pancreatic cancer cells. Front. Oncol., 2018, 8, 590. doi: 10.3389/fonc.2018.00590 PMID: 30568920
  171. Ashrafizadeh, M.; Farhood, B.; Eleojo Musa, A.; Taeb, S.; Rezaeyan, A.; Najafi, M. Abscopal effect in radioimmunotherapy. Int. Immunopharmacol., 2020, 85, 106663. doi: 10.1016/j.intimp.2020.106663 PMID: 32521494
  172. Xue, J.; Li, L.; Li, N.; Li, F.; Qin, X.; Li, T.; Liu, M. Metformin suppresses cancer cell growth in endometrial carcinoma by inhibiting PD-L1. Eur. J. Pharmacol., 2019, 859, 172541. doi: 10.1016/j.ejphar.2019.172541 PMID: 31319067
  173. Cha, J.H.; Yang, W.H.; Xia, W.; Wei, Y.; Chan, L.C.; Lim, S.O.; Li, C.W.; Kim, T.; Chang, S.S.; Lee, H.H.; Hsu, J.L.; Wang, H.L.; Kuo, C.W.; Chang, W.C.; Hadad, S.; Purdie, C.A.; McCoy, A.M.; Cai, S.; Tu, Y.; Litton, J.K.; Mittendorf, E.A.; Moulder, S.L.; Symmans, W.F.; Thompson, A.M.; Piwnica-Worms, H.; Chen, C.H.; Khoo, K.H.; Hung, M.C. Metformin promotes antitumor immunity via endoplasmic-reticulum-associated degradation of PD-L1. Mol. Cell, 2018, 71(4), 606-620.e7. doi: 10.1016/j.molcel.2018.07.030 PMID: 30118680
  174. Han, Y.; Li, C.W.; Hsu, J.M.; Hsu, J.L.; Chan, L.C.; Tan, X.; He, G.J. Metformin reverses PARP inhibitors-induced epithelial-mesenchymal transition and PD-L1 upregulation in triple-negative breast cancer. Am. J. Cancer Res., 2019, 9(4), 800-815. PMID: 31106005
  175. Jiang, X.; Zhou, J.; Giobbie-Hurder, A.; Wargo, J.; Hodi, F.S. The activation of MAPK in melanoma cells resistant to BRAF inhibition promotes PD-L1 expression that is reversible by MEK and PI3K inhibition. Clin. Cancer Res., 2013, 19(3), 598-609. doi: 10.1158/1078-0432.CCR-12-2731 PMID: 23095323
  176. Zhang, J.J.; Zhang, Q.S.; Li, Z.Q.; Zhou, J.W.; Du, J. Metformin attenuates PD-L1 expression through activating Hippo signaling pathway in colorectal cancer cells. Am. J. Transl. Res., 2019, 11(11), 6965-6976. PMID: 31814900
  177. Lu, Y.; Xin, D.; Guan, L.; Xu, M.; Yang, Y.; Chen, Y.; Yang, Y.; Wang-Gillam, A.; Wang, L.; Zong, S.; Wang, F. Metformin downregulates PD-L1 expression in esophageal squamous cell carcinoma by inhibiting IL-6 signaling pathway. Front. Oncol., 2021, 11, 762523. doi: 10.3389/fonc.2021.762523 PMID: 34881181
  178. Wang, Y.; Hu, J.; Sun, Y.; Song, B.; Zhang, Y.; Lu, Y.; Ma, H. Metformin synergizes with PD-L1 monoclonal antibody enhancing tumor immune response in treating non-small cell lung cancer and its molecular mechanism investigation. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-9. doi: 10.1155/2022/5983959 PMID: 36199547
  179. Goggi, J.L.; Hartimath, S.V.; Khanapur, S.; Ramasamy, B.; Chin, Z.F.; Cheng, P.; Chin, H.X.; Hwang, Y.Y.; Robins, E.G. Imaging memory T-cells stratifies response to adjuvant metformin combined with αPD-1 therapy. Int. J. Mol. Sci., 2022, 23(21), 12892. doi: 10.3390/ijms232112892 PMID: 36361684
  180. Kim, Y.; Vagia, E.; Viveiros, P.; Kang, C.Y.; Lee, J.Y.; Gim, G.; Cho, S.; Choi, H.; Kim, L.; Park, I.; Choi, J.; Chae, Y.K. Overcoming acquired resistance to PD-1 inhibitor with the addition of metformin in small cell lung cancer (SCLC). Cancer Immunol. Immunother., 2021, 70(4), 961-965. doi: 10.1007/s00262-020-02703-8 PMID: 33084943
  181. Ciccarese, C.; Iacovelli, R.; Buti, S.; Primi, F.; Astore, S.; Massari, F.; Ferrara, M.G.; Palermo, G.; Foschi, N.; Iacovelli, V.; Rossi, E.; Schinzari, G.; Bove, P.; Bassi, P.; Bria, E.; Tortora, G. Concurrent nivolumab and metformin in diabetic cancer patients: Is it safe and more active? Anticancer Res., 2022, 42(3), 1487-1493. doi: 10.21873/anticanres.15620 PMID: 35220243
  182. Farran, B.; Switchenko, J.M.; Khalil, L.; Shaib, W.L.; Olson, B.; Ruggieri, A.; Wu, C.; Alese, O.B.; Diab, M.; Lesinski, G.B.; El-Rayes, B.; Akce, M. Abstract 3482: Correlative analysis of metformin and nivolumab combination in treatment-refractory microsatellite stable (MSS) metastatic colorectal cancer (mCRC). Cancer Res., 2022, 82(S12), 3482-3482. doi: 10.1158/1538-7445.AM2022-3482
  183. Wang, D.Y.; McQuade, J.L.; Rai, R.R.; Park, J.J.; Zhao, S.; Ye, F.; Beckermann, K.E.; Rubinstein, S.M.; Johnpulle, R.; Long, G.V.; Carlino, M.S.; Menzies, A.M.; Davies, M.A.; Johnson, D.B. The impact of nonsteroidal anti-inflammatory drugs, beta blockers, and metformin on the efficacy of anti-PD-1 therapy in advanced melanoma. Oncologist, 2020, 25(3), e602-e605. doi: 10.1634/theoncologist.2019-0518 PMID: 32162820
  184. Zhou, H.; Liu, J.; Zhang, Y.; Zhang, L. Inflammatory bowel disease associated with the combination treatment of nivolumab and metformin: Data from the FDA adverse event reporting system. Cancer Chemother. Pharmacol., 2019, 83(3), 599-601. doi: 10.1007/s00280-018-03763-5 PMID: 30623231
  185. Cai, S.; Chen, Z.; Wang, Y.; Wang, M.; Wu, J.; Tong, Y.; Chen, L.; Lu, C.; Yang, H. Reducing PD-L1 expression with a self-assembled nanodrug: An alternative to PD-L1 antibody for enhanced chemo-immunotherapy. Theranostics, 2021, 11(4), 1970-1981. doi: 10.7150/thno.45777 PMID: 33408792
  186. Tu, X.; Qin, B.; Zhang, Y.; Zhang, C.; Kahila, M.; Nowsheen, S.; Yin, P.; Yuan, J.; Pei, H.; Li, H.; Yu, J.; Song, Z.; Zhou, Q.; Zhao, F.; Liu, J.; Zhang, C.; Dong, H.; Mutter, R.W.; Lou, Z. PD-L1 (B7-H1) competes with the rna exosome to regulate the DNA damage response and can be targeted to sensitize to radiation or chemotherapy. Mol. Cell, 2019, 74(6), 1215-1226.e4. doi: 10.1016/j.molcel.2019.04.005 PMID: 31053471
  187. Zhou, Z.; Liu, Y.; Jiang, X.; Zheng, C.; Luo, W.; Xiang, X.; Qi, X.; Shen, J. Metformin modified chitosan as a multi-functional adjuvant to enhance cisplatin-based tumor chemotherapy efficacy. Int. J. Biol. Macromol., 2023, 224, 797-809. doi: 10.1016/j.ijbiomac.2022.10.167 PMID: 36283555
  188. Peng, M.; Mo, Y.; Wang, Y.; Wu, P.; Zhang, Y.; Xiong, F.; Guo, C.; Wu, X.; Li, Y.; Li, X.; Li, G.; Xiong, W.; Zeng, Z. Neoantigen vaccine: An emerging tumor immunotherapy. Mol. Cancer, 2019, 18(1), 128. doi: 10.1186/s12943-019-1055-6 PMID: 31443694
  189. Munoz, L.E.; Huang, L.; Bommireddy, R.; Sharma, R.; Monterroza, L.; Guin, R.N.; Samaranayake, S.G.; Pack, C.D.; Ramachandiran, S.; Reddy, S.J.C.; Shanmugam, M.; Selvaraj, P. Metformin reduces PD-L1 on tumor cells and enhances the anti-tumor immune response generated by vaccine immunotherapy. J. Immunother. Cancer, 2021, 9(11), e002614. doi: 10.1136/jitc-2021-002614 PMID: 34815353
  190. Kamanlı, A.F.; Yıldız, M.Z.; Özyol, E.; Deveci Ozkan, A.; Sozen Kucukkara, E.; Guney Eskiler, G. Investigation of LED-based photodynamic therapy efficiency on breast cancer cells. Lasers Med. Sci., 2021, 36(3), 563-569. doi: 10.1007/s10103-020-03061-8 PMID: 32577931
  191. Cramer, G.M.; Moon, E.K.; Cengel, K.A.; Busch, T.M. Photodynamic therapy and immune checkpoint blockade. Photochem. Photobiol., 2020, 96(5), 954-961. doi: 10.1111/php.13300 PMID: 32573787
  192. Xiong, W.; Qi, L.; Jiang, N.; Zhao, Q.; Chen, L.; Jiang, X.; Li, Y.; Zhou, Z.; Shen, J. Metformin liposome-mediated PD-L1 downregulation for amplifying the photodynamic immunotherapy efficacy. ACS Appl. Mater. Interfaces, 2021, 13(7), 8026-8041. doi: 10.1021/acsami.0c21743 PMID: 33577301
  193. Sun, Y.; Fang, K.; Hu, X.; Yang, J.; Jiang, Z.; Feng, L.; Li, R.; Rao, Y.; Shi, S.; Dong, C. NIR-light-controlled G-quadruplex hydrogel for synergistically enhancing photodynamic therapy via sustained delivery of metformin and catalase-like activity in breast cancer. Mater. Today Bio, 2022, 16, 100375. doi: 10.1016/j.mtbio.2022.100375 PMID: 35983175
  194. Ashrafizadeh, M.; Farhood, B.; Eleojo Musa, A.; Taeb, S.; Najafi, M. The interactions and communications in tumor resistance to radiotherapy: Therapy perspectives. Int. Immunopharmacol., 2020, 87, 106807. doi: 10.1016/j.intimp.2020.106807 PMID: 32683299
  195. Tojo, M.; Miyato, H.; Koinuma, K.; Horie, H.; Tsukui, H.; Kimura, Y.; Kaneko, Y.; Ohzawa, H.; Yamaguchi, H.; Yoshimura, K.; Lefor, A.K.; Sata, N.; Kitayama, J. Metformin combined with local irradiation provokes abscopal effects in a murine rectal cancer model. Sci. Rep., 2022, 12(1), 7290. doi: 10.1038/s41598-022-11236-2 PMID: 35508498
  196. Zake, D.M.; Kurlovics, J.; Zaharenko, L.; Komasilovs, V.; Klovins, J.; Stalidzans, E. Physiologically based metformin pharmacokinetics model of mice and scale-up to humans for the estimation of concentrations in various tissues. PLoS One, 2021, 16(4), e0249594. doi: 10.1371/journal.pone.0249594 PMID: 33826656
  197. Stambolic, V.; Woodgett, J.R.; Fantus, I.G.; Pritchard, K.I.; Goodwin, P.J. Utility of metformin in breast cancer treatment, is neoangiogenesis a risk factor? Breast Cancer Res. Treat., 2009, 114(2), 387-389. doi: 10.1007/s10549-008-0015-4 PMID: 18438706
  198. Dowling, R.J.O.; Niraula, S.; Stambolic, V.; Goodwin, P.J. Metformin in cancer: Translational challenges. J. Mol. Endocrinol., 2012, 48(3), R31-R43. doi: 10.1530/JME-12-0007 PMID: 22355097
  199. Liu, L.; Ulbrich, J.; Müller, J.; Wüstefeld, T.; Aeberhard, L.; Kress, T.R.; Muthalagu, N.; Rycak, L.; Rudalska, R.; Moll, R.; Kempa, S.; Zender, L.; Eilers, M.; Murphy, D.J. Deregulated MYC expression induces dependence upon AMPK-related kinase 5. Nature, 2012, 483(7391), 608-612. doi: 10.1038/nature10927 PMID: 22460906
  200. Zadra, G.; Batista, J.L.; Loda, M. Dissecting the dual role of AMPK in Cancer: From experimental to human studies. Mol. Cancer Res., 2015, 13(7), 1059-1072. doi: 10.1158/1541-7786.MCR-15-0068 PMID: 25956158
  201. Massie, C.E.; Lynch, A.; Ramos-Montoya, A.; Boren, J.; Stark, R.; Fazli, L.; Warren, A.; Scott, H.; Madhu, B.; Sharma, N.; Bon, H.; Zecchini, V.; Smith, D.M.; DeNicola, G.M.; Mathews, N.; Osborne, M.; Hadfield, J.; MacArthur, S.; Adryan, B.; Lyons, S.K.; Brindle, K.M.; Griffiths, J.; Gleave, M.E.; Rennie, P.S.; Neal, D.E.; Mills, I.G. The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J., 2011, 30(13), 2719-2733. doi: 10.1038/emboj.2011.158 PMID: 21602788
  202. Li, W.; Saud, S.M.; Young, M.R.; Chen, G.; Hua, B. Targeting AMPK for cancer prevention and treatment. Oncotarget, 2015, 6(10), 7365-7378. doi: 10.18632/oncotarget.3629 PMID: 25812084

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers