Modulatory Role of Phytochemicals/Natural Products in Cancer Immunotherapy
- Authors: Vijayan Y.1, Sandhu J.1, Harikumar K.1
-
Affiliations:
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB)
- Issue: Vol 31, No 32 (2024)
- Pages: 5165-5177
- Section: Anti-Infectives and Infectious Diseases
- URL: https://rjeid.com/0929-8673/article/view/645044
- DOI: https://doi.org/10.2174/0109298673274796240116105555
- ID: 645044
Cite item
Full Text
Abstract
:Immunotherapy is a newly emerging and effective approach to treating cancer. However, there are many challenges associated with using checkpoint inhibitors in this treatment strategy. The component of the tumor microenvironment plays a crucial role in antitumor immune response, regulating tumor immune surveillance and immunological evasion. Natural products/phytochemicals can modulate the tumor microenvironment and function as immunomodulatory agents. In clinical settings, there is a strong need to develop synergistic combination regimens using natural products that can effectively enhance the therapeutic benefits of immune checkpoint inhibitors relative to their effectiveness as single therapies. The review discusses immunotherapy, its side effects, and a summary of evidence suggesting the use of natural products to modulate immune checkpoint pathways.
About the authors
Yadu Vijayan
Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB)
Email: info@benthamscience.net
Jaskirat Sandhu
Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB)
Email: info@benthamscience.net
Kuzhuvelil Harikumar
Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB)
Author for correspondence.
Email: info@benthamscience.net
References
- Debela, D.T.; Muzazu, S.G.Y.; Heraro, K.D.; Ndalama, M.T.; Mesele, B.W.; Haile, D.C.; Kitui, S.K.; Manyazewal, T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med., 2021, 9, 20503121211034366. doi: 10.1177/20503121211034366 PMID: 34408877
- Falzone, L.; Salomone, S.; Libra, M. Evolution of cancer pharmacological treatments at the turn of the third millennium. Front. Pharmacol., 2018, 9, 1300. doi: 10.3389/fphar.2018.01300 PMID: 30483135
- Dobosz, P.; Dzieciątkowski, T. The intriguing history of cancer immunotherapy. Front. Immunol., 2019, 10, 2965. doi: 10.3389/fimmu.2019.02965 PMID: 31921205
- Thomas, L. On immunosurveillance in human cancer. Yale J. Biol. Med., 1982, 55(3-4), 329-333. PMID: 6758376
- Debien, V.; De Caluwé, A.; Wang, X.; Piccart-Gebhart, M.; Tuohy, V.K.; Romano, E.; Buisseret, L. Immunotherapy in breast cancer: An overview of current strategies and perspectives. NPJ Breast Cancer, 2023, 9(1), 7. doi: 10.1038/s41523-023-00508-3 PMID: 36781869
- Mishra, A.K.; Ali, A.; Dutta, S.; Banday, S.; Malonia, S.K. Emerging trends in immunotherapy for cancer. Diseases, 2022, 10(3), 60. doi: 10.3390/diseases10030060 PMID: 36135216
- Zhao, W.; Jin, L.; Chen, P.; Li, D.; Gao, W.; Dong, G. Colorectal cancer immunotherapy-Recent progress and future directions. Cancer Lett., 2022, 545, 215816. doi: 10.1016/j.canlet.2022.215816 PMID: 35810989
- Gumber, D.; Wang, L.D. Improving CAR-T immunotherapy: Overcoming the challenges of T cell exhaustion. E.Bio.Medicine, 2022, 77, 103941. doi: 10.1016/j.ebiom.2022.103941 PMID: 35301179
- Kamrani, A.; Hosseinzadeh, R.; Shomali, N.; Heris, J.A.; Shahabi, P.; Mohammadinasab, R.; Sadeghvand, S.; Ghahremanzadeh, K.; Sadeghi, M.; Akbari, M. New immunotherapeutic approaches for cancer treatment. Pathol. Res. Pract., 2023, 248, 154632. doi: 10.1016/j.prp.2023.154632 PMID: 37480597
- Zhang, Y.; Xue, W.; Xu, C.; Nan, Y.; Mei, S.; Ju, D.; Wang, S.; Zhang, X. Innate immunity in cancer biology and therapy. Int. J. Mol. Sci., 2023, 24(14), 11233. doi: 10.3390/ijms241411233 PMID: 37510993
- Bretscher, P.A. A two-step, two-signal model for the primary activation of precursor helper T cells. Proc. Natl. Acad. Sci., 1999, 96(1), 185-190. doi: 10.1073/pnas.96.1.185 PMID: 9874793
- Tivol, E.A.; Borriello, F.; Schweitzer, A.N.; Lynch, W.P.; Bluestone, J.A.; Sharpe, A.H. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity, 1995, 3(5), 541-547. doi: 10.1016/1074-7613(95)90125-6 PMID: 7584144
- Waterhouse, P.; Penninger, J.M.; Timms, E.; Wakeham, A.; Shahinian, A.; Lee, K.P.; Thompson, C.B.; Griesser, H.; Mak, T.W. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science, 1995, 270(5238), 985-988. doi: 10.1126/science.270.5238.985 PMID: 7481803
- Nishimura, H.; Nose, M.; Hiai, H.; Minato, N.; Honjo, T. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity, 1999, 11(2), 141-151. doi: 10.1016/S1074-7613(00)80089-8 PMID: 10485649
- Nishimura, H.; Okazaki, T.; Tanaka, Y.; Nakatani, K.; Hara, M.; Matsumori, A.; Sasayama, S.; Mizoguchi, A.; Hiai, H.; Minato, N.; Honjo, T. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science, 2001, 291(5502), 319-322. doi: 10.1126/science.291.5502.319 PMID: 11209085
- Walunas, T.L.; Lenschow, D.J.; Bakker, C.Y.; Linsley, P.S.; Freeman, G.J.; Green, J.M.; Thompson, C.B.; Bluestone, J.A. CTLA-4 can function as a negative regulator of T cell activation. Immunity, 1994, 1(5), 405-413. doi: 10.1016/1074-7613(94)90071-X PMID: 7882171
- Brunner, M.C.; Chambers, C.A.; Chan, F.K.M.; Hanke, J.; Winoto, A.; Allison, J.P. CTLA-4-Mediated inhibition of early events of T cell proliferation. J. Immunol., 1999, 162(10), 5813-5820. doi: 10.4049/jimmunol.162.10.5813 PMID: 10229815
- Egen, J.G.; Allison, J.P. Cytotoxic T lymphocyte antigen-4 accumulation in the immunological synapse is regulated by TCR signal strength. Immunity, 2002, 16(1), 23-35. doi: 10.1016/S1074-7613(01)00259-X PMID: 11825563
- Chambers, C.A.; Kuhns, M.S.; Egen, J.G.; Allison, J.P. CTLA-4-mediated inhibition in regulation of T cell responses: Mechanisms and manipulation in tumor immunotherapy. Annu. Rev. Immunol., 2001, 19(1), 565-594. doi: 10.1146/annurev.immunol.19.1.565 PMID: 11244047
- Krummel, M.F.; Allison, J.P. CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J. Exp. Med., 1995, 182(2), 459-465. doi: 10.1084/jem.182.2.459 PMID: 7543139
- Buchbinder, E.I.; Desai, A. CTLA-4 and PD-1 pathways. Am. J. Clin. Oncol., 2016, 39(1), 98-106. doi: 10.1097/COC.0000000000000239 PMID: 26558876
- Friedline, R.H.; Brown, D.S.; Nguyen, H.; Kornfeld, H.; Lee, J.; Zhang, Y.; Appleby, M.; Der, S.D.; Kang, J.; Chambers, C.A. CD4+ regulatory T cells require CTLA-4 for the maintenance of systemic tolerance. J. Exp. Med., 2009, 206(2), 421-434. doi: 10.1084/jem.20081811 PMID: 19188497
- Read, S.; Greenwald, R.; Izcue, A.; Robinson, N.; Mandelbrot, D.; Francisco, L.; Sharpe, A.H.; Powrie, F. Blockade of CTLA-4 on CD4+CD25+ regulatory T cells abrogates their function in vivo. J. Immunol., 2006, 177(7), 4376-4383. doi: 10.4049/jimmunol.177.7.4376 PMID: 16982872
- Calabrò, L.; Morra, A.; Fonsatti, E.; Cutaia, O.; Amato, G.; Giannarelli, D.; Di Giacomo, A.M.; Danielli, R.; Altomonte, M.; Mutti, L.; Maio, M. Tremelimumab for patients with chemotherapy-resistant advanced malignant mesothelioma: An open-label, single-arm, phase 2 trial. Lancet Oncol., 2013, 14(11), 1104-1111. doi: 10.1016/S1470-2045(13)70381-4 PMID: 24035405
- Kavanagh, B.; OBrien, S.; Lee, D.; Hou, Y.; Weinberg, V.; Rini, B.; Allison, J.P.; Small, E.J.; Fong, L. CTLA4 blockade expands FOXP3+ regulatory and activated effector CD4+ T cells in a dose-dependent fashion. Blood, 2008, 112(4), 1175-1183. doi: 10.1182/blood-2007-11-125435 PMID: 18523152
- Nayak, L.; Iwamoto, F.M.; LaCasce, A.; Mukundan, S.; Roemer, M.G.M.; Chapuy, B.; Armand, P.; Rodig, S.J.; Shipp, M.A. PD-1 blockade with nivolumab in relapsed/refractory primary central nervous system and testicular lymphoma. Blood, 2017, 129(23), 3071-3073. doi: 10.1182/blood-2017-01-764209 PMID: 28356247
- Sage, P.T.; Paterson, A.M.; Lovitch, S.B.; Sharpe, A.H. The coinhibitory receptor CTLA-4 controls B cell responses by modulating T follicular helper, T follicular regulatory, and T regulatory cells. Immunity, 2014, 41(6), 1026-1039. doi: 10.1016/j.immuni.2014.12.005 PMID: 25526313
- Okazaki, T.; Honjo, T. PD-1 and PD-1 ligands: From discovery to clinical application. Int. Immunol., 2007, 19(7), 813-824. doi: 10.1093/intimm/dxm057 PMID: 17606980
- Bengsch, B.; Johnson, A.L.; Kurachi, M.; Odorizzi, P.M.; Pauken, K.E.; Attanasio, J.; Stelekati, E.; McLane, L.M.; Paley, M.A.; Delgoffe, G.M.; Wherry, E.J. Bioenergetic insufficiencies due to metabolic alterations regulated by the inhibitory receptor PD-1 are an early driver of CD8+ T cell exhaustion. Immunity, 2016, 45(2), 358-373. doi: 10.1016/j.immuni.2016.07.008 PMID: 27496729
- Patsoukis, N.; Bardhan, K.; Chatterjee, P.; Sari, D.; Liu, B.; Bell, L.N.; Karoly, E.D.; Freeman, G.J.; Petkova, V.; Seth, P.; Li, L.; Boussiotis, V.A. PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nat. Commun., 2015, 6(1), 6692. doi: 10.1038/ncomms7692 PMID: 25809635
- Buck, M.D.; OSullivan, D.; Klein Geltink, R.I.; Curtis, J.D.; Chang, C.H.; Sanin, D.E.; Qiu, J.; Kretz, O.; Braas, D.; van der Windt, G.J.W.; Chen, Q.; Huang, S.C.C.; ONeill, C.M.; Edelson, B.T.; Pearce, E.J.; Sesaki, H.; Huber, T.B.; Rambold, A.S.; Pearce, E.L. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell, 2016, 166(1), 63-76. doi: 10.1016/j.cell.2016.05.035 PMID: 27293185
- Akbay, E.A.; Koyama, S.; Carretero, J.; Altabef, A.; Tchaicha, J.H.; Christensen, C.L.; Mikse, O.R.; Cherniack, A.D.; Beauchamp, E.M.; Pugh, T.J.; Wilkerson, M.D.; Fecci, P.E.; Butaney, M.; Reibel, J.B.; Soucheray, M.; Cohoon, T.J.; Janne, P.A.; Meyerson, M.; Hayes, D.N.; Shapiro, G.I.; Shimamura, T.; Sholl, L.M.; Rodig, S.J.; Freeman, G.J.; Hammerman, P.S.; Dranoff, G.; Wong, K.K. Activation of the PD-1 pathway contributes to immune escape in EGFR-driven lung tumors. Cancer Discov., 2013, 3(12), 1355-1363. doi: 10.1158/2159-8290.CD-13-0310 PMID: 24078774
- Patnaik, A.; Kang, S.P.; Rasco, D.; Papadopoulos, K.P.; Elassaiss-Schaap, J.; Beeram, M.; Drengler, R.; Chen, C.; Smith, L.; Espino, G.; Gergich, K.; Delgado, L.; Daud, A.; Lindia, J.A.; Li, X.N.; Pierce, R.H.; Yearley, J.H.; Wu, D.; Laterza, O.; Lehnert, M.; Iannone, R.; Tolcher, A.W.; Phase, I. Phase I study of pembrolizumab (MK-3475; Anti-PD-1 monoclonal antibody) in patients with advanced solid tumors. Clin. Cancer Res., 2015, 21(19), 4286-4293. doi: 10.1158/1078-0432.CCR-14-2607 PMID: 25977344
- Brahmer, J.R.; Tykodi, S.S.; Chow, L.Q.M.; Hwu, W.J.; Topalian, S.L.; Hwu, P.; Drake, C.G.; Camacho, L.H.; Kauh, J.; Odunsi, K.; Pitot, H.C.; Hamid, O.; Bhatia, S.; Martins, R.; Eaton, K.; Chen, S.; Salay, T.M.; Alaparthy, S.; Grosso, J.F.; Korman, A.J.; Parker, S.M.; Agrawal, S.; Goldberg, S.M.; Pardoll, D.M.; Gupta, A.; Wigginton, J.M. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N. Engl. J. Med., 2012, 366(26), 2455-2465. doi: 10.1056/NEJMoa1200694 PMID: 22658128
- Topalian, S.L.; Hodi, F.S.; Brahmer, J.R.; Gettinger, S.N.; Smith, D.C.; McDermott, D.F.; Powderly, J.D.; Carvajal, R.D.; Sosman, J.A.; Atkins, M.B.; Leming, P.D.; Spigel, D.R.; Antonia, S.J.; Horn, L.; Drake, C.G.; Pardoll, D.M.; Chen, L.; Sharfman, W.H.; Anders, R.A.; Taube, J.M.; McMiller, T.L.; Xu, H.; Korman, A.J.; Jure-Kunkel, M.; Agrawal, S.; McDonald, D.; Kollia, G.D.; Gupta, A.; Wigginton, J.M.; Sznol, M. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N. Engl. J. Med., 2012, 366(26), 2443-2454. doi: 10.1056/NEJMoa1200690 PMID: 22658127
- Teng, M.W.L.; Ngiow, S.F.; Ribas, A.; Smyth, M.J. Classifying cancers based on T-cell infiltration and PD-L1. Cancer Res., 2015, 75(11), 2139-2145. doi: 10.1158/0008-5472.CAN-15-0255 PMID: 25977340
- Weber, J.S.; Hodi, F.S.; Wolchok, J.D.; Topalian, S.L.; Schadendorf, D.; Larkin, J.; Sznol, M.; Long, G.V.; Li, H.; Waxman, I.M.; Jiang, J.; Robert, C. Safety profile of nivolumab monotherapy: A pooled analysis of patients with advanced melanoma. J. Clin. Oncol., 2017, 35(7), 785-792. doi: 10.1200/JCO.2015.66.1389 PMID: 28068177
- Postow, M.A.; Sidlow, R.; Hellmann, M.D. Immune-related adverse events associated with immune checkpoint blockade. N. Engl. J. Med., 2018, 378(2), 158-168. doi: 10.1056/NEJMra1703481 PMID: 29320654
- Brahmer, J.R.; Lacchetti, C.; Schneider, B.J.; Atkins, M.B.; Brassil, K.J.; Caterino, J.M.; Chau, I.; Ernstoff, M.S.; Gardner, J.M.; Ginex, P.; Hallmeyer, S.; Holter Chakrabarty, J.; Leighl, N.B.; Mammen, J.S.; McDermott, D.F.; Naing, A.; Nastoupil, L.J.; Phillips, T.; Porter, L.D.; Puzanov, I.; Reichner, C.A.; Santomasso, B.D.; Seigel, C.; Spira, A.; Suarez-Almazor, M.E.; Wang, Y.; Weber, J.S.; Wolchok, J.D.; Thompson, J.A. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American society of clinical oncology clinical practice guideline. J. Clin. Oncol., 2018, 36(17), 1714-1768. doi: 10.1200/JCO.2017.77.6385 PMID: 29442540
- Johnson, D.B.; Chandra, S.; Sosman, J.A. Immune checkpoint inhibitor toxicity in 2018. JAMA, 2018, 320(16), 1702-1703. doi: 10.1001/jama.2018.13995 PMID: 30286224
- Robert, C.; Schachter, J.; Long, G.V.; Arance, A.; Grob, J.J.; Mortier, L.; Daud, A.; Carlino, M.S.; McNeil, C.; Lotem, M.; Larkin, J.; Lorigan, P.; Neyns, B.; Blank, C.U.; Hamid, O.; Mateus, C.; Shapira-Frommer, R.; Kosh, M.; Zhou, H.; Ibrahim, N.; Ebbinghaus, S.; Ribas, A. Pembrolizumab versus ipilimumab in advanced melanoma. N. Engl. J. Med., 2015, 372(26), 2521-2532. doi: 10.1056/NEJMoa1503093 PMID: 25891173
- Wolchok, J.D.; Chiarion-Sileni, V.; Gonzalez, R.; Rutkowski, P.; Grob, J.J.; Cowey, C.L.; Lao, C.D.; Wagstaff, J.; Schadendorf, D.; Ferrucci, P.F.; Smylie, M.; Dummer, R.; Hill, A.; Hogg, D.; Haanen, J.; Carlino, M.S.; Bechter, O.; Maio, M.; Marquez-Rodas, I.; Guidoboni, M.; McArthur, G.; Lebbé, C.; Ascierto, P.A.; Long, G.V.; Cebon, J.; Sosman, J.; Postow, M.A.; Callahan, M.K.; Walker, D.; Rollin, L.; Bhore, R.; Hodi, F.S.; Larkin, J. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N. Engl. J. Med., 2017, 377(14), 1345-1356. doi: 10.1056/NEJMoa1709684 PMID: 28889792
- Ahmed, S.A.; Parama, D.; Daimari, E.; Girisa, S.; Banik, K.; Harsha, C.; Dutta, U.; Kunnumakkara, A.B. Rationalizing the therapeutic potential of apigenin against cancer. Life Sci., 2021, 267, 118814. doi: 10.1016/j.lfs.2020.118814 PMID: 33333052
- Yan, X.; Qi, M.; Li, P.; Zhan, Y.; Shao, H. Apigenin in cancer therapy: Anti-cancer effects and mechanisms of action. Cell Biosci., 2017, 7(1), 50. doi: 10.1186/s13578-017-0179-x PMID: 29034071
- Ghanbari-Movahed, M.; Shafiee, S.; Burcher, J.T.; Lagoa, R.; Farzaei, M.H.; Bishayee, A. Anticancer potential of apigenin and isovitexin with focus on oncogenic metabolism in cancer stem cells. Metabolites, 2023, 13(3), 404. doi: 10.3390/metabo13030404 PMID: 36984844
- Waheed, A.; Zameer, S.; Ashrafi, K.; Ali, A.; Sultana, N.; Aqil, M.; Sultana, Y.; Iqbal, Z. Insights into pharmacological potential of apigenin through various pathways on a nanoplatform in multitude of diseases. Curr. Pharm. Des., 2023, 29(17), 1326-1340. doi: 10.2174/1381612829666230529164321 PMID: 37254541
- Feng, Y.B.; Chen, L.; Chen, F.X.; Yang, Y.; Chen, G.H.; Zhou, Z.H.; Xu, C.F. Immunopotentiation effects of apigenin on NK cell proliferation and killing pancreatic cancer cells. Int. J. Immunopathol. Pharmacol., 2023, 37, 03946320231161174. doi: 10.1177/03946320231161174 PMID: 36848930
- Jiang, Z.B.; Wang, W.J.; Xu, C.; Xie, Y.J.; Wang, X.R.; Zhang, Y.Z.; Huang, J.M.; Huang, M.; Xie, C.; Liu, P.; Fan, X.X.; Ma, Y.P.; Yan, P.Y.; Liu, L.; Yao, X.J.; Wu, Q.B.; Lai-Han Leung, E. Luteolin and its derivative apigenin suppress the inducible PD-L1 expression to improve anti-tumor immunity in KRAS-mutant lung cancer. Cancer Lett., 2021, 515, 36-48. doi: 10.1016/j.canlet.2021.05.019 PMID: 34052328
- Xu, L.; Zhang, Y.; Tian, K.; Chen, X.; Zhang, R.; Mu, X.; Wu, Y.; Wang, D.; Wang, S.; Liu, F.; Wang, T.; Zhang, J.; Liu, S.; Zhang, Y.; Tu, C.; Liu, H. Apigenin suppresses PD-L1 expression in melanoma and host dendritic cells to elicit synergistic therapeutic effects. J. Exp. Clin. Cancer Res., 2018, 37(1), 261. doi: 10.1186/s13046-018-0929-6 PMID: 30373602
- Coombs, M.R.P.; Harrison, M.E.; Hoskin, D.W. Apigenin inhibits the inducible expression of programmed death ligand 1 by human and mouse mammary carcinoma cells. Cancer Lett., 2016, 380(2), 424-433. doi: 10.1016/j.canlet.2016.06.023 PMID: 27378243
- Trujillo-Ochoa, J.L.; Kazemian, M.; Afzali, B. The role of transcription factors in shaping regulatory T cell identity. Nat. Rev. Immunol., 2023, 23(12), 842-856. doi: 10.1038/s41577-023-00893-7 PMID: 37336954
- Nelson, N.; Szekeres, K.; Iclozan, C.; Rivera, I.O.; McGill, A.; Johnson, G.; Nwogu, O.; Ghansah, T. Apigenin: Selective CK2 inhibitor increases Ikaros expression and improves T cell homeostasis and function in murine pancreatic cancer. PLoS One, 2017, 12(2), e0170197. doi: 10.1371/journal.pone.0170197 PMID: 28152014
- Anis, K.V.; Rajeshkumar, N.V.; Kuttan, R. Inhibition of chemical carcinogenesis by berberine in rats and mice. J. Pharm. Pharmacol., 2010, 53(5), 763-768. doi: 10.1211/0022357011775901 PMID: 11370717
- Sun, Y.; Zhou, Q.; Chen, F.; Gao, X.; Yang, L.; Jin, X.; Wink, M.; Sharopov, F.S.; Sethi, G. Berberine inhibits breast carcinoma proliferation and metastasis under hypoxic microenvironment involving gut microbiota and endogenous metabolites. Pharmacol. Res., 2023, 193, 106817. doi: 10.1016/j.phrs.2023.106817 PMID: 37315824
- Harikumar, K.B.; Kuttan, G.; Kuttan, R. Inhibition of progression of erythroleukemia induced by Friend virus in BALB/c mice by natural products-berberine, curcumin and picroliv. J. Exp. Ther. Oncol., 2008, 7(4), 275-284. PMID: 19227007
- Shou, J.W.; Shaw, P.C. Berberine activates PPARδ and promotes gut microbiota-derived butyric acid to suppress hepatocellular carcinoma. Phytomedicine, 2023, 115, 154842. doi: 10.1016/j.phymed.2023.154842 PMID: 37148713
- Yang, L.; Cheng, C.F.; Li, Z.F.; Huang, X.J.; Cai, S.Q.; Ye, S.Y.; Zhao, L.J.; Xiong, Y.; Chen, D.F.; Liu, H.L.; Ren, Z.X.; Fang, H.C. Berberine blocks inflammasome activation and alleviates diabetic cardiomyopathy via the miR-18a-3p/Gsdmd pathway. Int. J. Mol. Med., 2023, 51(6), 49. doi: 10.3892/ijmm.2023.5252 PMID: 37114562
- Shah, D.; Challagundla, N.; Dave, V.; Patidar, A.; Saha, B.; Nivsarkar, M.; Trivedi, V.B.; Agrawal-Rajput, R. Berberine mediates tumor cell death by skewing tumor-associated immunosuppressive macrophages to inflammatory macrophages. Phytomedicine, 2022, 99, 153904. doi: 10.1016/j.phymed.2021.153904 PMID: 35231825
- Xiong, K.; Deng, J.; Yue, T.; Hu, W.; Zeng, X.; Yang, T.; Xiao, T. Berberine promotes M2 macrophage polarisation through the IL-4-STAT6 signalling pathway in ulcerative colitis treatment. Heliyon, 2023, 9(3), e14176. doi: 10.1016/j.heliyon.2023.e14176 PMID: 36923882
- Liu, Y.; Liu, X.; Hua, W.; Wei, Q.; Fang, X.; Zhao, Z.; Ge, C.; Liu, C.; Chen, C.; Tao, Y.; Zhu, Y. Berberine inhibits macrophage M1 polarization via AKT1/SOCS1/NF-κB signaling pathway to protect against DSS-induced colitis. Int. Immunopharmacol., 2018, 57, 121-131. doi: 10.1016/j.intimp.2018.01.049 PMID: 29482156
- Qiu, D.; Zhang, W.; Song, Z.; Xue, M.; Zhang, Y.; Yang, Y.; Tong, C.; Cai, D. Berberine suppresses cecal ligation and puncture induced intestinal injury by enhancing Treg cell function. Int. Immunopharmacol., 2022, 106, 108564. doi: 10.1016/j.intimp.2022.108564 PMID: 35158228
- Li, Y.; Xiao, H.; Hu, D.; Fatima, S.; Lin, C.; Mu, H.; Lee, N.P.; Bian, Z. Berberine ameliorates chronic relapsing dextran sulfate sodium-induced colitis in C57BL/6 mice by suppressing Th17 responses. Pharmacol. Res., 2016, 110, 227-239. doi: 10.1016/j.phrs.2016.02.010 PMID: 26969793
- Chen, L.; Liu, X.; Wang, X.; Lu, Z.; Ye, Y. Berberine alleviates acute lung injury in septic mice by modulating Treg/Th17 homeostasis and downregulating NF-κB signaling. Drug Des. Devel. Ther., 2023, 17, 1139-1151. doi: 10.2147/DDDT.S401293 PMID: 37077411
- Liu, Y.; Liu, X.; Zhang, N.; Yin, M.; Dong, J.; Zeng, Q.; Mao, G.; Song, D.; Liu, L.; Deng, H. Berberine diminishes cancer cell PD-L1 expression and facilitates antitumor immunity via inhibiting the deubiquitination activity of CSN5. Acta Pharm. Sin. B, 2020, 10(12), 2299-2312. doi: 10.1016/j.apsb.2020.06.014 PMID: 33354502
- Aggarwal, B.B.; Harikumar, K.B. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int. J. Biochem. Cell Biol., 2009, 41(1), 40-59. doi: 10.1016/j.biocel.2008.06.010 PMID: 18662800
- Anand, P.; Thomas, S.G.; Kunnumakkara, A.B.; Sundaram, C.; Harikumar, K.B.; Sung, B.; Tharakan, S.T.; Misra, K.; Priyadarsini, I.K.; Rajasekharan, K.N.; Aggarwal, B.B. Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochem. Pharmacol., 2008, 76(11), 1590-1611. doi: 10.1016/j.bcp.2008.08.008 PMID: 18775680
- Gupta, S.C.; Sung, B.; Kim, J.H.; Prasad, S.; Li, S.; Aggarwal, B.B. Multitargeting by turmeric, the golden spice: From kitchen to clinic. Mol. Nutr. Food Res., 2013, 57(9), 1510-1528. doi: 10.1002/mnfr.201100741 PMID: 22887802
- Kunnumakkara, A.B.; Bordoloi, D.; Padmavathi, G.; Monisha, J.; Roy, N.K.; Prasad, S.; Aggarwal, B.B. Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases. Br. J. Pharmacol., 2017, 174(11), 1325-1348. doi: 10.1111/bph.13621 PMID: 27638428
- Kunnumakkara, A.B.; Hegde, M.; Parama, D.; Girisa, S.; Kumar, A.; Daimary, U.D.; Garodia, P.; Yenisetti, S.C.; Oommen, O.V.; Aggarwal, B.B. Role of turmeric and curcumin in prevention and treatment of chronic diseases: Lessons learned from clinical trials. ACS Pharmacol. Transl. Sci., 2023, 6(4), 447-518. doi: 10.1021/acsptsci.2c00012 PMID: 37082752
- Karaboğa Arslan, A.K.; Uzunhisarcıklı, E.; Yerer, M.B.; Bishayee, A. The golden spice curcumin in cancer. J. Cancer Res. Ther., 2022, 18(1), 19-26. doi: 10.4103/jcrt.JCRT_1017_20 PMID: 35381757
- Tong, Q.; Wu, Z. Curcumin inhibits colon cancer malignant progression and promotes T cell killing by regulating miR-206 expression. Clin. Anat., 2024, 37(1), 2-11. PMID: 37191314
- Sun, L.; Yao, X.; Liu, J.; Zhang, Y.; Hu, J. Curcumin enhances the efficacy of docetaxel by promoting anti-tumor immune response in head and neck squamous cell carcinoma. Cancer Invest., 2023, 41(5), 524-533. doi: 10.1080/07357907.2023.2194420 PMID: 36946609
- Zhang, L.J.; Huang, R.; Shen, Y.W.; Liu, J.; Wu, Y.; Jin, J.M.; Zhang, H.; Sun, Y.; Chen, H.Z.; Luan, X. Enhanced anti-tumor efficacy by inhibiting HIF-1α to reprogram TAMs via core-satellite upconverting nanoparticles with curcumin mediated photodynamic therapy. Biomater. Sci., 2021, 9(19), 6403-6415. doi: 10.1039/D1BM00675D PMID: 34259235
- Xiu, Z.; Sun, T.; Yang, Y.; He, Y.; Yang, S.; Xue, X.; Yang, W. Curcumin enhanced ionizing radiation-induced immunogenic cell death in glioma cells through endoplasmic reticulum stress signaling pathways. Oxid. Med. Cell. Longev., 2022, 2022, 1-17. doi: 10.1155/2022/5424411 PMID: 36238646
- Hayakawa, T.; Yaguchi, T.; Kawakami, Y. Enhanced anti-tumor effects of the PD-1 blockade combined with a highly absorptive form of curcumin targeting STAT3. Cancer Sci., 2020, 111(12), 4326-4335. doi: 10.1111/cas.14675 PMID: 33006786
- Mardani, R.; Hamblin, M.R.; Taghizadeh, M.; Banafshe, H.R.; Nejati, M.; Mokhtari, M.; Borran, S.; Davoodvandi, A.; Khan, H.; Jaafari, M.R.; Mirzaei, H. Nanomicellar-curcumin exerts its therapeutic effects via affecting angiogenesis, apoptosis, and T cells in a mouse model of melanoma lung metastasis. Pathol. Res. Pract., 2020, 216(9), 153082. doi: 10.1016/j.prp.2020.153082 PMID: 32825950
- Xu, B.; Yu, L.; Zhao, L.Z. Curcumin up regulates T helper 1 cells in patients with colon cancer. Am. J. Transl. Res., 2017, 9(4), 1866-1875. PMID: 28469791
- Zou, J.Y.; Su, C.H.; Luo, H.H.; Lei, Y.Y.; Zeng, B.; Zhu, H.S.; Chen, Z.G. Curcumin converts FOXP3+ regulatory T cells to T helper 1 cells in patients with lung cancer. J. Cell. Biochem., 2018, 119(2), 1420-1428. doi: 10.1002/jcb.26302 PMID: 28731226
- Shao, Y.; Zhu, W.; Da, J.; Xu, M.; Wang, Y.; Zhou, J.; Wang, Z. Bisdemethoxycurcumin in combination with α-PD-L1 antibody boosts immune response against bladder cancer. OncoTargets Ther., 2017, 10, 2675-2683. doi: 10.2147/OTT.S130653 PMID: 28579805
- Marín, V.; Burgos, V.; Pérez, R.; Maria, D.A.; Pardi, P.; Paz, C. The potential role of Epigallocatechin-3-Gallate (EGCG) in breast cancer treatment. Int. J. Mol. Sci., 2023, 24(13), 10737. doi: 10.3390/ijms241310737 PMID: 37445915
- James, A.; Wang, K.; Wang, Y. Therapeutic activity of green tea epigallocatechin-3-gallate on metabolic diseases and non-alcoholic fatty liver diseases: The current updates. Nutrients, 2023, 15(13), 3022. doi: 10.3390/nu15133022 PMID: 37447347
- Kciuk, M.; Alam, M.; Ali, N.; Rashid, S.; Głowacka, P.; Sundaraj, R.; Celik, I.; Yahya, E.B.; Dubey, A.; Zerroug, E.; Kontek, R. Epigallocatechin-3-gallate therapeutic potential in cancer: Mechanism of action and clinical implications. Molecules, 2023, 28(13), 5246. doi: 10.3390/molecules28135246 PMID: 37446908
- Ravindran Menon, D.; Li, Y.; Yamauchi, T.; Osborne, D.G.; Vaddi, P.K.; Wempe, M.F.; Zhai, Z.; Fujita, M. EGCG inhibits tumor growth in melanoma by targeting JAK-STAT signaling and its downstream PD-L1/PD-L2-PD1 axis in tumors and enhancing cytotoxic T-cell responses. Pharmaceuticals, 2021, 14(11), 1081. doi: 10.3390/ph14111081 PMID: 34832863
- Xu, P.; Yan, F.; Zhao, Y.; Chen, X.; Sun, S.; Wang, Y.; Ying, L. Green tea polyphenol EGCG attenuates MDSCs-mediated immunosuppression through canonical and non-canonical pathways in a 4T1 murine breast cancer model. Nutrients, 2020, 12(4), 1042. doi: 10.3390/nu12041042 PMID: 32290071
- Rawangkan, A.; Wongsirisin, P.; Namiki, K.; Iida, K.; Kobayashi, Y.; Shimizu, Y.; Fujiki, H.; Suganuma, M. Green tea catechin is an alternative immune checkpoint inhibitor that inhibits PD-L1 expression and lung tumor growth. Molecules, 2018, 23(8), 2071. doi: 10.3390/molecules23082071 PMID: 30126206
- Kahkeshani, N.; Farzaei, F.; Fotouhi, M.; Alavi, S.S.; Bahramsoltani, R.; Naseri, R.; Momtaz, S.; Abbasabadi, Z.; Rahimi, R.; Farzaei, M.H.; Bishayee, A. Pharmacological effects of gallic acid in health and diseases: A mechanistic review. Iran. J. Basic Med. Sci., 2019, 22(3), 225-237. PMID: 31156781
- Wianowska, D.; Olszowy-Tomczyk, M. A concise profile of gallic acid-from its natural sources through biological properties and chemical methods of determination. Molecules, 2023, 28(3), 1186. doi: 10.3390/molecules28031186 PMID: 36770851
- Bhuia, M.S.; Rahaman, M.M.; Islam, T.; Bappi, M.H.; Sikder, M.I.; Hossain, K.N.; Akter, F.; Al Shamsh Prottay, A.; Rokonuzzman, M.; Gürer, E.S.; Calina, D.; Islam, M.T.; Sharifi-Rad, J. Neurobiological effects of gallic acid: Current perspectives. Chin. Med., 2023, 18(1), 27. doi: 10.1186/s13020-023-00735-7 PMID: 36918923
- Deng, B.; Yang, B.; Chen, J.; Wang, S.; Zhang, W.; Guo, Y.; Han, Y.; Li, H.; Dang, Y.; Yuan, Y.; Dai, X.; Zang, Y.; Li, Y.; Li, B. Gallic acid induces T-helper-1-like T reg cells and strengthens immune checkpoint blockade efficacy. J. Immunother. Cancer, 2022, 10(7), e004037. doi: 10.1136/jitc-2021-004037 PMID: 35817479
- Lee, H.; Lee, H.; Kwon, Y.; Lee, J.H.; Kim, J.; Shin, M.K.; Kim, S.H.; Bae, H. Methyl gallate exhibits potent antitumor activities by inhibiting tumor infiltration of CD4+CD25+ regulatory T cells. J. Immunol., 2010, 185(11), 6698-6705. doi: 10.4049/jimmunol.1001373 PMID: 21048105
- Petrocelli, G.; Marrazzo, P.; Bonsi, L.; Facchin, F.; Alviano, F.; Canaider, S. Plumbagin, a natural compound with several biological effects and anti-inflammatory properties. Life, 2023, 13(6), 1303. doi: 10.3390/life13061303 PMID: 37374085
- Roy, A. Plumbagin: A potential anti-cancer compound. Mini Rev. Med. Chem., 2021, 21(6), 731-737. doi: 10.2174/18755607MTEx2NTM02 PMID: 33200707
- Jiang, Z.B.; Xu, C.; Wang, W.; Zhang, Y.Z.; Huang, J.M.; Xie, Y.J.; Wang, Q.Q.; Fan, X.X.; Yao, X.J.; Xie, C.; Wang, X.R.; Yan, P.Y.; Ma, Y.P.; Wu, Q.B.; Leung, E.L.H. Plumbagin suppresses non-small cell lung cancer progression through downregulating ARF1 and by elevating CD8+ T cells. Pharmacol. Res., 2021, 169, 105656. doi: 10.1016/j.phrs.2021.105656 PMID: 33964470
- Wang, B.; Yang, L.; Liu, T.; Xun, J.; Zhuo, Y.; Zhang, L.; Zhang, Q.; Wang, X. Hydroxytyrosol inhibits MDSCs and promotes M1 macrophages in mice with orthotopic pancreatic tumor. Front. Pharmacol., 2021, 12, 759172. doi: 10.3389/fphar.2021.759172 PMID: 34858184
- Harikumar, K.B.; Aggarwal, B.B. Resveratrol: A multitargeted agent for age-associated chronic diseases. Cell Cycle, 2008, 7(8), 1020-1035. doi: 10.4161/cc.7.8.5740 PMID: 18414053
- Shakibaei, M.; Harikumar, K.B.; Aggarwal, B.B. Resveratrol addiction: To die or not to die. Mol. Nutr. Food Res., 2009, 53(1), 115-128. doi: 10.1002/mnfr.200800148 PMID: 19072742
- Brockmueller, A.; Sajeev, A.; Koklesova, L.; Samuel, S.M.; Kubatka, P.; Büsselberg, D.; Kunnumakkara, A.B.; Shakibaei, M. Resveratrol as sensitizer in colorectal cancer plasticity. Cancer Metastasis Rev., 2023, 1-31. doi: 10.1007/s10555-023-10126-x PMID: 37507626
- Radwan, F.F.Y.; Zhang, L.; Hossain, A.; Doonan, B.P.; God, J.M.; Haque, A. Mechanisms regulating enhanced human leukocyte antigen class II-mediated CD4+ T cell recognition of human B-cell lymphoma by resveratrol. Leuk. Lymphoma, 2012, 53(2), 305-314. doi: 10.3109/10428194.2011.615423 PMID: 21854084
- Craveiro, M.; Cretenet, G.; Mongellaz, C.; Matias, M.I.; Caron, O.; de Lima, M.C.P.; Zimmermann, V.S.; Solary, E.; Dardalhon, V.; Dulić, V.; Taylor, N. Resveratrol stimulates the metabolic reprogramming of human CD4+ T cells to enhance effector function. Sci. Signal., 2017, 10(501), eaal3024. doi: 10.1126/scisignal.aal3024 PMID: 29042482
- Zhang, Y.; Yang, S.; Yang, Y.; Liu, T. Resveratrol induces immunogenic cell death of human and murine ovarian carcinoma cells. Infect. Agent. Cancer, 2019, 14(1), 27. doi: 10.1186/s13027-019-0247-4 PMID: 31636696
- Verdura, S.; Cuyàs, E.; Cortada, E.; Brunet, J.; Lopez-Bonet, E.; Martin-Castillo, B.; Bosch-Barrera, J.; Encinar, J.A.; Menendez, J.A. Resveratrol targets PD-L1 glycosylation and dimerization to enhance antitumor T-cell immunity. Aging, 2020, 12(1), 8-34. doi: 10.18632/aging.102646 PMID: 31901900
- Kim, J.S.; Jeong, S.K.; Oh, S.J.; Lee, C.G.; Kang, Y.R.; Jo, W.S.; Jeong, M.H. The resveratrol analogue, HS-1793, enhances the effects of radiation therapy through the induction of anti-tumor immunity in mammary tumor growth. Int. J. Oncol., 2020, 56(6), 1405-1416. doi: 10.3892/ijo.2020.5017 PMID: 32236622
- Han, X.; Zhao, N.; Zhu, W.; Wang, J.; Liu, B.; Teng, Y. Resveratrol attenuates TNBC lung metastasis by down-regulating PD-1 expression on pulmonary T cells and converting macrophages to M1 phenotype in a murine tumor model. Cell. Immunol., 2021, 368, 104423. doi: 10.1016/j.cellimm.2021.104423 PMID: 34399171
- Sun, L.; Chen, B.; Jiang, R.; Li, J.; Wang, B. Resveratrol inhibits lung cancer growth by suppressing M2-like polarization of tumor associated macrophages. Cell. Immunol., 2017, 311, 86-93. doi: 10.1016/j.cellimm.2016.11.002 PMID: 27825563
- Jia, L.; Gao, Y.; Zhou, T.; Zhao, X.L.; Hu, H.Y.; Chen, D.W.; Qiao, M.X. Enhanced response to PD-L1 silencing by modulation of TME via balancing glucose metabolism and robust co-delivery of siRNA/Resveratrol with dual-responsive polyplexes. Biomaterials, 2021, 271, 120711. doi: 10.1016/j.biomaterials.2021.120711 PMID: 33592352
Supplementary files
