Prediction Model for Therapeutic Responses in Ovarian Cancer Patients using Paclitaxel-resistant Immune-related lncRNAs
- Authors: Li X.1, Liu H.1, Wang F.1, Yuan J.1, Guan W.1, Xu G.1
-
Affiliations:
- Research Center for Clinical Medicine, Jinshan Hospital of Fudan University
- Issue: Vol 31, No 26 (2024)
- Pages: 4213-4231
- Section: Anti-Infectives and Infectious Diseases
- URL: https://rjeid.com/0929-8673/article/view/644956
- DOI: https://doi.org/10.2174/0109298673281438231217151129
- ID: 644956
Cite item
Full Text
Abstract
Background::Ovarian cancer (OC) is the deadliest malignant tumor in women with a poor prognosis due to drug resistance and lack of prediction tools for therapeutic responses to anti- cancer drugs.
Objective::The objective of this study was to launch a prediction model for therapeutic responses in OC patients.
Methods::The RNA-seq technique was used to identify differentially expressed paclitaxel (PTX)- resistant lncRNAs (DE-lncRNAs). The Cancer Genome Atlas (TCGA)-OV and ImmPort database were used to obtain immune-related lncRNAs (ir-lncRNAs). Univariate, multivariate, and LASSO Cox regression analyses were performed to construct the prediction model. Kaplan- Meier plotter, Principal Component Analysis (PCA), nomogram, immune function analysis, and therapeutic response were applied with Genomics of Drug Sensitivity in Cancer (GDSC), CIBERSORT, and TCGA databases. The biological functions were evaluated in the CCLE database and OC cells.
Results::The RNA-seq defined 186 DE-lncRNAs between PTX-resistant A2780-PTX and PTXsensitive A2780 cells. Through the analysis of the TCGA-OV database, 225 ir-lncRNAs were identified. Analyzing 186 DE-lncRNAs and 225 ir-lncRNAs using univariate, multivariate, and LASSO Cox regression analyses, 9 PTX-resistant immune-related lncRNAs (DEir-lncRNAs) acted as biomarkers were discovered as potential biomarkers in the prediction model. Single-cell RNA sequencing (scRNA-seq) data of OC confirmed the relevance of DEir-lncRNAs in immune responsiveness. Patients with a low prediction score had a promising prognosis, whereas patients with a high prediction score were more prone to evade immunotherapy and chemotherapy and had poor prognosis.
Conclusion::The novel prediction model with 9 DEir-lncRNAs is a valuable tool for predicting immunotherapeutic and chemotherapeutic responses and prognosis of patients with OC.
About the authors
Xin Li
Research Center for Clinical Medicine, Jinshan Hospital of Fudan University
Email: info@benthamscience.net
Huiqiang Liu
Research Center for Clinical Medicine, Jinshan Hospital of Fudan University
Email: info@benthamscience.net
Fanchen Wang
Research Center for Clinical Medicine, Jinshan Hospital of Fudan University
Email: info@benthamscience.net
Jia Yuan
Research Center for Clinical Medicine, Jinshan Hospital of Fudan University
Email: info@benthamscience.net
Wencai Guan
Research Center for Clinical Medicine, Jinshan Hospital of Fudan University
Email: info@benthamscience.net
Guoxiong Xu
Research Center for Clinical Medicine, Jinshan Hospital of Fudan University
Author for correspondence.
Email: info@benthamscience.net
References
- Kuroki, L.; Guntupalli, S.R. Treatment of epithelial ovarian cancer. BMJ, 2020, 371, m3773. doi: 10.1136/bmj.m3773 PMID: 33168565
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin., 2023, 73(1), 17-48. doi: 10.3322/caac.21763 PMID: 36633525
- Thusgaard, C.F.; Korsholm, M.; Koldby, K.M.; Kruse, T.A.; Thomassen, M.; Jochumsen, K.M. Epithelial ovarian cancer and the use of circulating tumor DNA: A systematic review. Gynecol. Oncol., 2021, 161(3), 884-895. doi: 10.1016/j.ygyno.2021.04.020 PMID: 33892886
- Das, T; Anand, U; Pandey, SK; Ashby, CR, Jr; Assaraf, YG; Chen, ZS Therapeutic strategies to overcome taxane resistance in cancer. Drug resistance updates: Reviews and commentaries in antimicrobial and anticancer chemotherapy. 2021, 55, 100754. doi: 10.1016/j.drup.2021.100754
- Tymon-Rosario, J.; Adjei, N.N.; Roque, D.M.; Santin, A.D. Microtubule-interfering drugs: Current and future roles in epithelial ovarian cancer treatment. Cancers, 2021, 13(24), 6239. doi: 10.3390/cancers13246239 PMID: 34944858
- Baird, R.D.; Tan, D.S.P.; Kaye, S.B. Weekly paclitaxel in the treatment of recurrent ovarian cancer. Nat. Rev. Clin. Oncol., 2010, 7(10), 575-582. doi: 10.1038/nrclinonc.2010.120 PMID: 20683437
- Markman, M.; Mekhail, T.M. Paclitaxel in cancer therapy. Expert Opin. Pharmacother., 2002, 3(6), 755-766. doi: 10.1517/14656566.3.6.755 PMID: 12036415
- Sharma, S.; Salomon, C. Techniques associated with exosome isolation for biomarker development: Liquid biopsies for ovarian cancer detection. Methods Mol. Biol., 2020, 2055, 181-199. doi: 10.1007/978-1-4939-9773-2_8 PMID: 31502152
- Newick, K.; OBrien, S.; Moon, E.; Albelda, S.M. CAR T cell therapy for solid tumors. Annu. Rev. Med., 2017, 68(1), 139-152. doi: 10.1146/annurev-med-062315-120245 PMID: 27860544
- Lan, H.; Yuan, J.; Zeng, D.; Liu, C.; Guo, X.; Yong, J.; Zeng, X.; Xiao, S. The emerging role of non-coding RNAs in drug resistance of ovarian cancer. Front. Genet., 2021, 12, 693259. doi: 10.3389/fgene.2021.693259 PMID: 34512721
- Braga, E.A.; Fridman, M.V.; Moscovtsev, A.A.; Filippova, E.A.; Dmitriev, A.A.; Kushlinskii, N.E. LncRNAs in ovarian cancer progression, metastasis, and main pathways: ceRNA and alternative mechanisms. Int. J. Mol. Sci., 2020, 21(22), 8855. doi: 10.3390/ijms21228855 PMID: 33238475
- Song, Y.; Qu, H. Identification and validation of a seven m6A-related lncRNAs signature predicting prognosis of ovarian cancer. BMC Cancer, 2022, 22(1), 633. doi: 10.1186/s12885-022-09591-4 PMID: 35676619
- Zheng, J.; Guo, J.; Wang, Y.; Zheng, Y.; Zhang, K.; Tong, J. Bioinformatic analyses of the ferroptosis-related lncrnas signature for ovarian cancer. Front. Mol. Biosci., 2022, 8, 735871. doi: 10.3389/fmolb.2021.735871 PMID: 35127813
- Zheng, J.; Guo, J.; Zhu, L.; Zhou, Y.; Tong, J. Comprehensive analyses of glycolysis-related lncRNAs for ovarian cancer patients. J. Ovarian Res., 2021, 14(1), 124. doi: 10.1186/s13048-021-00881-2 PMID: 34560889
- Zhang, Z.; Xu, Z.; Yan, Y. Role of a pyroptosis-related lncRNA signature in risk stratification and immunotherapy of ovarian cancer. Front. Med., 2022, 8, 793515. doi: 10.3389/fmed.2021.793515 PMID: 35096881
- Li, H.; Liu, Z.Y.; Chen, Y.C.; Zhang, X.Y.; Wu, N.; Wang, J. Identification and validation of an immune-related lncRNAs signature to predict the overall survival of ovarian cancer. Front. Oncol., 2022, 12, 999654. doi: 10.3389/fonc.2022.999654 PMID: 36313727
- Lheureux, S.; Gourley, C.; Vergote, I.; Oza, A.M. Epithelial ovarian cancer. Lancet, 2019, 393(10177), 1240-1253. doi: 10.1016/S0140-6736(18)32552-2 PMID: 30910306
- Torre, L.A.; Trabert, B.; DeSantis, C.E.; Miller, K.D.; Samimi, G.; Runowicz, C.D.; Gaudet, M.M.; Jemal, A.; Siegel, R.L. Ovarian cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(4), 284-296. doi: 10.3322/caac.21456 PMID: 29809280
- Rodolakis, I.; Pergialiotis, V.; Liontos, M.; Haidopoulos, D.; Loutradis, D.; Rodolakis, A.; Bamias, A.; Thomakos, N. Chemotherapy response score in ovarian cancer patients: An overview of its clinical utility. J. Clin. Med., 2023, 12(6), 2155. doi: 10.3390/jcm12062155 PMID: 36983157
- Atallah, G.A.; Kampan, N.C.; Chew, K.T.; Mohd Mokhtar, N.; Md Zin, R.R.; Shafiee, M.N.B.; Abd Aziz, N.H.B. Predicting prognosis and platinum resistance in ovarian cancer: Role of immunohistochemistry biomarkers. Int. J. Mol. Sci., 2023, 24(3), 1973. doi: 10.3390/ijms24031973 PMID: 36768291
- Jin, Y.; Cao, J.; Cheng, H.; Hu, X. LncRNA POU6F2-AS2 contributes to malignant phenotypes and paclitaxel resistance by promoting SKP2 expression in stomach adenocarcinoma. J. Chemother., 2023, 35(7), 638-652. doi: 10.1080/1120009X.2023.2177807 PMID: 36797828
- Zhao, H.; Wang, A.; Zhang, Z. LncRNA SDHAP1 confers paclitaxel resistance of ovarian cancer by regulating EIF4G2 expression via miR-4465. J. Biochem., 2020, 168(2), 171-181. doi: 10.1093/jb/mvaa036 PMID: 32211849
- Chen, W.; Yan, L.; Long, B.; Lin, L. Identification of immune-related lncRNAs for predicting prognosis and immune landscape characteristics of uveal melanoma. J. Oncol., 2022, 2022, 1-12. doi: 10.1155/2022/7680657 PMID: 36405245
- Xing, X.L.; Xing, C.; Huang, Z.; Yao, Z.Y.; Liu, Y.W. Immune-related lncRNAs to construct novel signatures and predict the prognosis of rectal cancer. Front. Oncol., 2021, 11, 661846. doi: 10.3389/fonc.2021.661846 PMID: 34485113
- Cioffi, R.; Bergamini, A.; Rabaiotti, E.; Petrone, M.; Pella, F.; Ferrari, D.; Mangili, G.; Candiani, M. Neoadjuvant chemotherapy in high-risk ovarian cancer patients: Role of age. Tumori, 2019, 105(2), 168-173. doi: 10.1177/0300891618792468 PMID: 30157707
- Tajik, P.; van de Vrie, R.; Zafarmand, M.H.; Coens, C.; Buist, M.R.; Vergote, I. The FIGO stage IVA versus IVB of ovarian cancer: Prognostic value and predictive value for neoadjuvant chemotherapy. International journal of gynecological cancer. 2018, 28(3), 453-458. doi: 10.1097/IGC.0000000000001186
- Nasioudis, D.; Ko, E.M.; Haggerty, A.F.; Giuntoli, R.L., II; Burger, R.A.; Morgan, M.A.; Latif, N.A. Isolated distant lymph node metastases in ovarian cancer. Should a new substage be created? Gynecol. Oncol. Rep., 2019, 28, 86-90. doi: 10.1016/j.gore.2019.03.008 PMID: 30976643
- Liang, W.; Wang, L.; Li, H.; Liu, C.; Wu, M.; Li, J. The added value of CA125 normalization before interval debulking surgery to the chemotherapy response score for the prognostication of ovarian cancer patients receiving neoadjuvant chemotherapy for advanced disease. J. Cancer, 2021, 12(3), 946-953. doi: 10.7150/jca.52711 PMID: 33403051
- Klotz, D.M.; Link, T.; Wimberger, P.; Kuhlmann, J.D. A predictive and prognostic model for surgical outcome and prognosis in ovarian cancer computed by clinico-pathological and serological parameters (CA125, HE4, mesothelin). Clin. Chem. Lab. Med., 2023. doi: 10.1515/cclm-2023-0314
- Métairie, M.; Benoit, L.; Koual, M.; Bentivegna, E.; Wohrer, H.; Bolze, P.A.; Kerbage, Y.; Raimond, E.; Akladios, C.; Carcopino, X.; Canlorbe, G.; Uzan, J.; Lavoué, V.; Mimoun, C.; Huchon, C.; Koskas, M.; Costaz, H.; Margueritte, F.; Dabi, Y.; Touboul, C.; Bendifallah, S.; Ouldamer, L.; Delanoy, N.; Nguyen-Xuan, H.T.; Bats, A.S.; Azaïs, H. A suggested modification to FIGO stage IV epithelial ovarian cancer. Cancers, 2023, 15(3), 706. doi: 10.3390/cancers15030706 PMID: 36765667
- Zhu, J.W.; Wong, F.; Szymiczek, A.; Ene, G.E.V.; Zhang, S.; May, T.; Narod, S.A.; Kotsopoulos, J.; Akbari, M.R. Evaluating the utility of ctDNA in detecting residual cancer and predicting recurrence in patients with serous ovarian cancer. Int. J. Mol. Sci., 2023, 24(18), 14388. doi: 10.3390/ijms241814388 PMID: 37762691
- Lu, H.; Arshad, M.; Thornton, A.; Avesani, G.; Cunnea, P.; Curry, E.; Kanavati, F.; Liang, J.; Nixon, K.; Williams, S.T.; Hassan, M.A.; Bowtell, D.D.L.; Gabra, H.; Fotopoulou, C.; Rockall, A.; Aboagye, E.O. A mathematical-descriptor of tumor-mesoscopic-structure from computed-tomography images annotates prognostic- and molecular-phenotypes of epithelial ovarian cancer. Nat. Commun., 2019, 10(1), 764. doi: 10.1038/s41467-019-08718-9 PMID: 30770825
- Weigelt, B.; Vargas, H.A.; Selenica, P.; Geyer, F.C.; Mazaheri, Y.; Blecua, P.; Conlon, N.; Hoang, L.N.; Jungbluth, A.A.; Snyder, A.; Ng, C.K.Y.; Papanastasiou, A.D.; Sosa, R.E.; Soslow, R.A.; Chi, D.S.; Gardner, G.J.; Shen, R.; Reis-Filho, J.S.; Sala, E. Radiogenomics analysis of intratumor heterogeneity in a patient with high-grade serous ovarian cancer. JCO Precis. Oncol., 2019, 3(3), 1-9. doi: 10.1200/PO.18.00410 PMID: 32914032
- Crispin-Ortuzar, M.; Woitek, R.; Reinius, M.A.V.; Moore, E.; Beer, L.; Bura, V.; Rundo, L.; McCague, C.; Ursprung, S.; Escudero Sanchez, L.; Martin-Gonzalez, P.; Mouliere, F.; Chandrananda, D.; Morris, J.; Goranova, T.; Piskorz, A.M.; Singh, N.; Sahdev, A.; Pintican, R.; Zerunian, M.; Rosenfeld, N.; Addley, H.; Jimenez-Linan, M.; Markowetz, F.; Sala, E.; Brenton, J.D. Integrated radiogenomics models predict response to neoadjuvant chemotherapy in high grade serous ovarian cancer. Nat. Commun., 2023, 14(1), 6756. doi: 10.1038/s41467-023-41820-7 PMID: 37875466
- Sharbatoghli, M.; Vafaei, S.; Aboulkheyr Es, H.; Asadi-Lari, M.; Totonchi, M.; Madjd, Z. Prediction of the treatment response in ovarian cancer: A ctDNA approach. J. Ovarian Res., 2020, 13(1), 124. doi: 10.1186/s13048-020-00729-1 PMID: 33076944
- Dai, D.; Li, Q.; Zhou, P.; Huang, J.; Zhuang, H.; Wu, H.; Chen, B. Analysis of omics data reveals nucleotide excision repair-related genes signature in highly-grade serous ovarian cancer to predict prognosis. Front. Cell Dev. Biol., 2022, 10, 874588. doi: 10.3389/fcell.2022.874588 PMID: 35769257
- Zhang, M.; Cheng, S.; Jin, Y.; Zhao, Y.; Wang, Y. Roles of CA125 in diagnosis, prediction, and oncogenesis of ovarian cancer. Biochim. Biophys. Acta Rev. Cancer, 2021, 1875(2), 188503. doi: 10.1016/j.bbcan.2021.188503 PMID: 33421585
- Alegría-Baños, J.A.; Jiménez-López, J.C.; Vergara-Castañeda, A.; de León, D.F.C.; Mohar-Betancourt, A.; Pérez-Montiel, D.; Sánchez-Domínguez, G.; García-Villarejo, M.; Olivares-Pérez, C.; Hernández-Constantino, Á.; González-Santiago, A.; Clara-Altamirano, M.; Arela-Quispe, L.; Prada-Ortega, D. Kinetics of HE4 and CA125 as prognosis biomarkers during neoadjuvant chemotherapy in advanced epithelial ovarian cancer. J. Ovarian Res., 2021, 14(1), 96. doi: 10.1186/s13048-021-00845-6 PMID: 34275472
- Zhang, M.; Wang, Y.; Xu, S.; Huang, S.; Wu, M.; Chen, G.; Wang, Y. Endoplasmic reticulum stress-related ten-biomarker risk classifier for survival evaluation in epithelial ovarian cancer and TRPM2: A potential therapeutic target of ovarian cancer. Int. J. Mol. Sci., 2023, 24(18), 14010. doi: 10.3390/ijms241814010 PMID: 37762313
- Yang, J.; Wang, C.; Zhang, Y.; Cheng, S.; Xu, Y.; Wang, Y. A novel pyroptosis-related signature for predicting prognosis and evaluating tumor immune microenvironment in ovarian cancer. J. Ovarian Res., 2023, 16(1), 196. doi: 10.1186/s13048-023-01275-2 PMID: 37730669
- Wang, X.; Wang, Y.; Sun, F.; Xu, Y.; Zhang, Z.; Yang, C.; Zhang, L.; Lou, G. Novel LncRNA ZFHX4-AS1 as a potential prognostic biomarker that affects the immune microenvironment in ovarian cancer. Front. Oncol., 2022, 12, 945518. doi: 10.3389/fonc.2022.945518 PMID: 35903691
- Shi, X.; Guo, X.; Li, X.; Wang, M.; Qin, R. Loss of Linc01060 induces pancreatic cancer progression through vinculin-mediated focal adhesion turnover. Cancer Lett., 2018, 433, 76-85. doi: 10.1016/j.canlet.2018.06.015 PMID: 29913236
- Li, J.; Liao, T.; Liu, H.; Yuan, H.; Ouyang, T.; Wang, J.; Chai, S.; Li, J.; Chen, J.; Li, X.; Zhao, H.; Xiong, N. Hypoxic glioma stem cellderived exosomes containing linc01060 promote progression of glioma by regulating the MZF1/C-MYC/HIF1Α axis. Cancer Res., 2021, 81(1), 114-128. doi: 10.1158/0008-5472.CAN-20-2270 PMID: 33158815
- Zhu, L.; Zhang, X.P.; Xu, S.; Hu, M.G.; Zhao, Z.M.; Zhao, G.D.; Xiao, Z.H.; Liu, R. Identification of a CD4+ conventional T cells-related lncRNAs signature associated with hepatocellular carcinoma prognosis, therapy, and tumor microenvironment. Front. Immunol., 2023, 13, 1111246. doi: 10.3389/fimmu.2022.1111246 PMID: 36700197
- Li, L.; Han, J.; Zhang, S.; Dong, C.; Xiao, X. KIF26B-AS1 regulates TLR4 and activates the TLR4 signaling pathway to promote malignant progression of laryngeal cancer. J. Microbiol. Biotechnol., 2022, 32(10), 1344-1354. doi: 10.4014/jmb.2203.03037 PMID: 36224753
- Yang, C.; Xia, B.R.; Zhang, Z.C.; Zhang, Y.J.; Lou, G.; Jin, W.L. Immunotherapy for ovarian cancer: Adjuvant, combination, and neoadjuvant. Front. Immunol., 2020, 11, 577869. doi: 10.3389/fimmu.2020.577869 PMID: 33123161
- Margul, D.; Yu, C.; AlHilli, M.M. Tumor immune microenvironment in gynecologic cancers. Cancers, 2023, 15(15), 3849. doi: 10.3390/cancers15153849 PMID: 37568665
- Colombo, I.; Karakasis, K.; Suku, S.; Oza, A.M. Chasing immune checkpoint inhibitors in ovarian cancer: Novel combinations and biomarker discovery. Cancers, 2023, 15(12), 3220. doi: 10.3390/cancers15123220 PMID: 37370830
- Cucolo, L.; Chen, Q.; Qiu, J.; Yu, Y.; Klapholz, M.; Budinich, K.A.; Zhang, Z.; Shao, Y.; Brodsky, I.E.; Jordan, M.S.; Gilliland, D.G.; Zhang, N.R.; Shi, J.; Minn, A.J. The interferon-stimulated gene RIPK1 regulates cancer cell intrinsic and extrinsic resistance to immune checkpoint blockade. Immunity, 2022, 55(4), 671-685.e10. doi: 10.1016/j.immuni.2022.03.007 PMID: 35417675
- Song, J.; Yang, R.; Wei, R.; Du, Y.; He, P.; Liu, X. Pan- cancer analysis reveals RIPK2 predicts prognosis and promotes immune therapy resistance via triggering cytotoxic T lymphocytes dysfunction. Mol. Med., 2022, 28(1), 47. doi: 10.1186/s10020-022-00475-8 PMID: 35508972
- Le, D.T.; Durham, J.N.; Smith, K.N.; Wang, H.; Bartlett, B.R.; Aulakh, L.K.; Lu, S.; Kemberling, H.; Wilt, C.; Luber, B.S.; Wong, F.; Azad, N.S.; Rucki, A.A.; Laheru, D.; Donehower, R.; Zaheer, A.; Fisher, G.A.; Crocenzi, T.S.; Lee, J.J.; Greten, T.F.; Duffy, A.G.; Ciombor, K.K.; Eyring, A.D.; Lam, B.H.; Joe, A.; Kang, S.P.; Holdhoff, M.; Danilova, L.; Cope, L.; Meyer, C.; Zhou, S.; Goldberg, R.M.; Armstrong, D.K.; Bever, K.M.; Fader, A.N.; Taube, J.; Housseau, F.; Spetzler, D.; Xiao, N.; Pardoll, D.M.; Papadopoulos, N.; Kinzler, K.W.; Eshleman, J.R.; Vogelstein, B.; Anders, R.A.; Diaz, L.A., Jr Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science, 2017, 357(6349), 409-413. doi: 10.1126/science.aan6733 PMID: 28596308
- Wang, H.; Fang, L.; Jiang, J.; Kuang, Y.; Wang, B.; Shang, X.; Han, P.; Li, Y.; Liu, M.; Zhang, Z.; Li, P. The cisplatin-induced lncRNA PANDAR dictates the chemoresistance of ovarian cancer via regulating SFRS2-mediated p53 phosphorylation. Cell Death Dis., 2018, 9(11), 1103. doi: 10.1038/s41419-018-1148-y PMID: 30375398
- Dai, C.; Xu, P.; Liu, S.; Xu, S.; Xu, J.; Fu, Z.; Cao, J.; Lv, M.; Zhou, J.; Liu, G.; Zhang, H.; Jia, X. Long noncoding RNA ZEB1-AS1 affects paclitaxel and cisplatin resistance by regulating MMP19 in epithelial ovarian cancer cells. Arch. Gynecol. Obstet., 2021, 303(5), 1271-1281. doi: 10.1007/s00404-020-05858-y PMID: 33151424
- Fathi, M.; Barar, J.; Erfan-Niya, H.; Omidi, Y. Methotrexate-conjugated chitosan-grafted pH- and thermo-responsive magnetic nanoparticles for targeted therapy of ovarian cancer. Int. J. Biol. Macromol., 2020, 154, 1175-1184. doi: 10.1016/j.ijbiomac.2019.10.272 PMID: 31730949
- Han, Z.; Shi, L. Long non-coding RNA LUCAT1 modulates methotrexate resistance in osteosarcoma via miR-200c/ABCB1 axis. Biochem. Biophys. Res. Commun., 2018, 495(1), 947-953. doi: 10.1016/j.bbrc.2017.11.121 PMID: 29170124
- Yuan, Z.; Zhang, Y.; Cao, D.; Shen, K.; Li, Q.; Zhang, G.; Wu, X.; Cui, M.; Yue, Y.; Cheng, W.; Wang, L.; Qu, P.; Tao, G.; Hou, J.; Sun, L.; Meng, Y.; Li, G.; Li, C.; Shi, H.; Chen, Y. Pegylated liposomal doxorubicin in patients with epithelial ovarian cancer. J. Ovarian Res., 2021, 14(1), 12. doi: 10.1186/s13048-020-00736-2 PMID: 33423683
- Chen, Q.; Yang, H.; Zhu, X.; Xiong, S.; Chi, H.; Xu, W. Integrative analysis of the doxorubicin-associated lncrnamrna network identifies chemoresistance-associated lnc-TRDMT1-5 as a biomarker of breast cancer progression. Front. Genet., 2020, 11, 566. doi: 10.3389/fgene.2020.00566 PMID: 32547604
- Hong, S.H.; Lee, S.; Kim, H.G.; Lee, H.J.; Jung, K.H.; Lee, S.C.; Lee, N.R.; Yun, J.; Woo, I.S.; Park, K.H.; Kim, K.; Kim, H.Y.; Rha, S.Y.; Byun, J.H. Phase II study of gemcitabine and vinorelbine as second- or third-line therapy in patients with primary refractory or platinum-resistant recurrent ovarian and primary peritoneal cancer by the Korean cancer study group (KCSG)_KCSG GY10-10. Gynecol. Oncol., 2015, 136(2), 212-217. doi: 10.1016/j.ygyno.2014.11.017 PMID: 25462205
- Rothenberg, M.L.; Liu, P.Y.; Wilczynski, S.; Nahhas, W.A.; Winakur, G.L.; Jiang, C.S.; Moinpour, C.M.; Lyons, B.; Weiss, G.R.; Essell, J.H.; Smith, H.O.; Markman, M.; Alberts, D.S. Phase II trial of vinorelbine for relapsed ovarian cancer: A Southwest Oncology Group study. Gynecol. Oncol., 2004, 95(3), 506-512. doi: 10.1016/j.ygyno.2004.09.004 PMID: 15581954
- Ma, J.; Fan, Z.; Tang, Q.; Xia, H.; Zhang, T.; Bi, F. Aspirin attenuates YAP and β-catenin expression by promoting β-TrCP to overcome docetaxel and vinorelbine resistance in triple-negative breast cancer. Cell Death Dis., 2020, 11(7), 530. doi: 10.1038/s41419-020-2719-2 PMID: 32661222
- Tamari, S.; Menju, T.; Toyazaki, T.; Miyamoto, H.; Chiba, N.; Noguchi, M.; Ishikawa, H.; Miyata, R.; Kayawake, H.; Tanaka, S.; Yamada, Y.; Yutaka, Y.; Nakajima, D.; Ohsumi, A.; Hamaji, M.; Date, H. Nrf2/p-Fyn/ABCB1 axis accompanied by p-Fyn nuclear accumulation plays pivotal roles in vinorelbine resistance in non-small cell lung cancer. Oncol. Rep., 2022, 48(4), 171. doi: 10.3892/or.2022.8386 PMID: 35959810
- Busacca, S.; ORegan, L.; Singh, A.; Sharkey, A.J.; Dawson, A.G.; Dzialo, J.; Parsons, A.; Kumar, N.; Schunselaar, L.M.; Guppy, N.; Nakas, A.; Sheaff, M.; Mansfield, A.S.; Janes, S.M.; Baas, P.; Fry, A.M.; Fennell, D.A. BRCA1/MAD2L1 deficiency disrupts the spindle assembly checkpoint to confer vinorelbine resistance in mesothelioma. Mol. Cancer Ther., 2021, 20(2), 379-388. doi: 10.1158/1535-7163.MCT-20-0363 PMID: 33158996
- Guan, L.Y.; Lu, Y. New developments in molecular targeted therapy of ovarian cancer. Discov. Med., 2018, 26(144), 219-229. PMID: 30695681
Supplementary files
