Current Computational Methods for Protein-peptide Complex Structure Prediction
- Authors: Yang C.1, Xu X.2, Xiang C.3
-
Affiliations:
- Department of Chemistry, New York University
- Dalton Cardiovascular Research Center,, University of Missouri
- School of Computer Science and Technology, Aba Teachers University
- Issue: Vol 31, No 26 (2024)
- Pages: 4058-4078
- Section: Anti-Infectives and Infectious Diseases
- URL: https://rjeid.com/0929-8673/article/view/644928
- DOI: https://doi.org/10.2174/0109298673263447230920151524
- ID: 644928
Cite item
Full Text
Abstract
Peptide-mediated protein-protein interactions (PPIs) play an important role in various biological processes. The development of peptide-based drugs to modulate PPIs has attracted increasing attention due to the advantages of high specificity and low toxicity. In the development of peptide-based drugs, one of the most important steps is to determine the interaction details between the peptide and the target protein. In addition to experimental methods, recently developed computational methods provide a cost-effective way for studying protein-peptide interactions. In this article, we carefully reviewed recently developed protein-peptide docking methods, which were classified into three groups: template-based docking, template-free docking, and hybrid method. Then, we presented available benchmarking sets and evaluation metrics for assessing protein-peptide docking performance. Furthermore, we discussed the use of molecular dynamics simulations, as well as deep learning approaches in protein-peptide complex prediction.
About the authors
Chao Yang
Department of Chemistry, New York University
Author for correspondence.
Email: info@benthamscience.net
Xianjin Xu
Dalton Cardiovascular Research Center,, University of Missouri
Email: info@benthamscience.net
Changcheng Xiang
School of Computer Science and Technology, Aba Teachers University
Email: info@benthamscience.net
References
- Wells, J.A.; McClendon, C.L. Reaching for high-hanging fruit in drug discovery at proteinprotein interfaces. Nature, 2007, 450(7172), 1001-1009. doi: 10.1038/nature06526 PMID: 18075579
- Stelzl, U.; Worm, U.; Lalowski, M.; Haenig, C.; Brembeck, F.H.; Goehler, H.; Stroedicke, M.; Zenkner, M.; Schoenherr, A.; Koeppen, S.; Timm, J.; Mintzlaff, S.; Abraham, C.; Bock, N.; Kietzmann, S.; Goedde, A.; Toksöz, E.; Droege, A.; Krobitsch, S.; Korn, B.; Birchmeier, W.; Lehrach, H.; Wanker, E.E. A human protein-protein interaction network: A resource for annotating the proteome. Cell, 2005, 122(6), 957-968. doi: 10.1016/j.cell.2005.08.029 PMID: 16169070
- Rual, J.F.; Venkatesan, K.; Hao, T.; Hirozane-Kishikawa, T.; Dricot, A.; Li, N.; Berriz, G.F.; Gibbons, F.D.; Dreze, M.; Ayivi-Guedehoussou, N.; Klitgord, N.; Simon, C.; Boxem, M.; Milstein, S.; Rosenberg, J.; Goldberg, D.S.; Zhang, L.V.; Wong, S.L.; Franklin, G.; Li, S.; Albala, J.S.; Lim, J.; Fraughton, C.; Llamosas, E.; Cevik, S.; Bex, C.; Lamesch, P.; Sikorski, R.S.; Vandenhaute, J.; Zoghbi, H.Y.; Smolyar, A.; Bosak, S.; Sequerra, R.; Doucette-Stamm, L.; Cusick, M.E.; Hill, D.E.; Roth, F.P.; Vidal, M. Towards a proteome-scale map of the human proteinprotein interaction network. Nature, 2005, 437(7062), 1173-1178. doi: 10.1038/nature04209 PMID: 16189514
- Arkin, M.R.; Whitty, A. The road less traveled: Modulating signal transduction enzymes by inhibiting their proteinprotein interactions. Curr. Opin. Chem. Biol., 2009, 13(3), 284-290. doi: 10.1016/j.cbpa.2009.05.125 PMID: 19553156
- Nero, T.L.; Morton, C.J.; Holien, J.K.; Wielens, J.; Parker, M.W. Oncogenic protein interfaces: Small molecules, big challenges. Nat. Rev. Cancer, 2014, 14(4), 248-262. doi: 10.1038/nrc3690 PMID: 24622521
- Ideker, T.; Sharan, R. Protein networks in disease. Genome Res., 2008, 18(4), 644-652. doi: 10.1101/gr.071852.107 PMID: 18381899
- Petsalaki, E.; Russell, R.B. Peptide-mediated interactions in biological systems: New discoveries and applications. Curr. Opin. Biotechnol., 2008, 19(4), 344-350. doi: 10.1016/j.copbio.2008.06.004 PMID: 18602004
- Hershberger, S.; Lee, S.G.; Chmielewski, J. Scaffolds for blocking protein-protein interactions. Curr. Top. Med. Chem., 2007, 7(10), 928-942. doi: 10.2174/156802607780906726 PMID: 17508924
- Zhou, P.; Wang, C.; Ren, Y.; Yang, C.; Tian, F. Computational peptidology: A new and promising approach to therapeutic peptide design. Curr. Med. Chem., 2013, 20(15), 1985-1996. doi: 10.2174/0929867311320150005 PMID: 23317161
- Eichler, J. Peptides as protein binding site mimetics. Curr. Opin. Chem. Biol., 2008, 12(6), 707-713. doi: 10.1016/j.cbpa.2008.09.023 PMID: 18935974
- London, N.; Raveh, B.; Movshovitz-Attias, D.; Schueler-Furman, O. Can self-inhibitory peptides be derived from the interfaces of globular protein-protein interactions? Proteins, 2010, 78(15), 3140-3149. doi: 10.1002/prot.22785 PMID: 20607702
- Bruzzoni-Giovanelli, H.; Alezra, V.; Wolff, N.; Dong, C.Z.; Tuffery, P.; Rebollo, A. Interfering peptides targeting proteinprotein interactions: The next generation of drugs? Drug Discov. Today, 2018, 23(2), 272-285. doi: 10.1016/j.drudis.2017.10.016 PMID: 29097277
- Dagliyan, O.; Proctor, E.A.; DAuria, K.M.; Ding, F.; Dokholyan, N.V. Structural and dynamic determinants of protein-peptide recognition. Structure, 2011, 19(12), 1837-1845. doi: 10.1016/j.str.2011.09.014 PMID: 22153506
- Wójcik, P.; Berlicki, Ł. Peptide-based inhibitors of proteinprotein interactions. Bioorg. Med. Chem. Lett., 2016, 26(3), 707-713. doi: 10.1016/j.bmcl.2015.12.084 PMID: 26764190
- Nevola, L.; Giralt, E. Modulating proteinprotein interactions: The potential of peptides. Chem. Commun., 2015, 51(16), 3302-3315. doi: 10.1039/C4CC08565E PMID: 25578807
- Cunningham, A.D.; Qvit, N.; Mochly-Rosen, D. Peptides and peptidomimetics as regulators of proteinprotein interactions. Curr. Opin. Struct. Biol., 2017, 44, 59-66. doi: 10.1016/j.sbi.2016.12.009 PMID: 28063303
- Wang, X.; Ni, D.; Liu, Y.; Lu, S. Rational design of peptide-based inhibitors disrupting protein-protein interactions. Front Chem., 2021, 9, 682675. doi: 10.3389/fchem.2021.682675 PMID: 34017824
- Corbi-Verge, C.; Kim, P.M. Motif mediated protein-protein interactions as drug targets. Cell Commun. Signal., 2016, 14(1), 8. doi: 10.1186/s12964-016-0131-4 PMID: 26936767
- Sun, H.; Stuckey, J.A.; Nikolovska-Coleska, Z.; Qin, D.; Meagher, J.L.; Qiu, S.; Lu, J.; Yang, C.Y.; Saito, N.G.; Wang, S. Structure-based design, synthesis, evaluation, and crystallographic studies of conformationally constrained Smac mimetics as inhibitors of the X-linked inhibitor of apoptosis protein (XIAP). J. Med. Chem., 2008, 51(22), 7169-7180. doi: 10.1021/jm8006849 PMID: 18954041
- Stewart-Ornstein, J.; Iwamoto, Y.; Miller, M.A.; Prytyskach, M.A.; Ferretti, S.; Holzer, P.; Kallen, J.; Furet, P.; Jambhekar, A.; Forrester, W.C.; Weissleder, R.; Lahav, G. p53 dynamics vary between tissues and are linked with radiation sensitivity. Nat. Commun., 2021, 12(1), 898. doi: 10.1038/s41467-021-21145-z PMID: 33563973
- Furet, P.; Bordas, V.; Le Douget, M.; Salem, B.; Mesrouze, Y.; Imbach-Weese, P.; Sellner, H.; Voegtle, M.; Soldermann, N.; Chapeau, E.; Wartmann, M.; Scheufler, C.; Fernandez, C.; Kallen, J.; Guagnano, V.; Chène, P.; Schmelzle, T. The first class of small molecules potently disrupting the YAP-TEAD interaction by direct competition. ChemMedChem, 2022, 17(19), e202200303. doi: 10.1002/cmdc.202200303 PMID: 35950546
- Ciemny, M.; Kurcinski, M.; Kamel, K.; Kolinski, A.; Alam, N.; Schueler-Furman, O.; Kmiecik, S. Proteinpeptide docking: Opportunities and challenges. Drug Discov. Today, 2018, 23(8), 1530-1537. doi: 10.1016/j.drudis.2018.05.006 PMID: 29733895
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461. PMID: 19499576
- Verdonk, M.L.; Cole, J.C.; Hartshorn, M.J.; Murray, C.W.; Taylor, R.D. Improved protein-ligand docking using GOLD. Proteins, 2003, 52(4), 609-623. doi: 10.1002/prot.10465 PMID: 12910460
- Jain, A.N. Surflex-Dock 2.1: Robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search. J. Comput. Aided Mol. Des., 2007, 21(5), 281-306. doi: 10.1007/s10822-007-9114-2 PMID: 17387436
- Su, M.; Yang, Q.; Du, Y.; Feng, G.; Liu, Z.; Li, Y.; Wang, R. Comparative assessment of scoring functions: The CASF-2016 update. J. Chem. Inf. Model., 2019, 59(2), 895-913. doi: 10.1021/acs.jcim.8b00545 PMID: 30481020
- Hauser, A.S.; Windshügel, B. LEADS-PEP: A benchmark data set for assessment of peptide docking performance. J. Chem. Inf. Model., 2016, 56(1), 188-200. doi: 10.1021/acs.jcim.5b00234 PMID: 26651532
- Alam, N.; Goldstein, O.; Xia, B.; Porter, K.A.; Kozakov, D.; Schueler-Furman, O. High-resolution global peptide-protein docking using fragments-based PIPER-FlexPepDock. PLOS Comput. Biol., 2017, 13(12), e1005905. doi: 10.1371/journal.pcbi.1005905 PMID: 29281622
- Xu, X.; Zou, X. Predicting proteinpeptide complex structures by accounting for peptide flexibility and the physicochemical environment. J. Chem. Inf. Model., 2022, 62(1), 27-39. doi: 10.1021/acs.jcim.1c00836 PMID: 34931833
- Trellet, M.; Melquiond, A.S.J.; Bonvin, A.M.J.J. A unified conformational selection and induced fit approach to protein-peptide docking. PLoS One, 2013, 8(3), e58769. doi: 10.1371/journal.pone.0058769 PMID: 23516555
- Geng, C.; Narasimhan, S.; Rodrigues, J.P.; Bonvin, A.M. Information-driven, ensemble flexible peptide docking using HADDOCK. Methods. Mol. Biol., 2017, 109-138.
- Trellet, M.; Melquiond, A.S.; Bonvin, A.M. Information- driven modeling of protein-peptide complexes. In: Methods. Mol. Biol; , 2015; pp. 221-239.
- de Vries, S.J.; Rey, J.; Schindler, C.E.M.; Zacharias, M.; Tuffery, P. The pepATTRACT web server for blind, large-scale peptideprotein docking. Nucleic Acids Res., 2017, 45(W1), W361-W364. doi: 10.1093/nar/gkx335 PMID: 28460116
- Khramushin, A.; Ben-Aharon, Z.; Tsaban, T.; Varga, J.K.; Avraham, O.; Schueler-Furman, O. Matching protein surface structural patches for high-resolution blind peptide docking. Proc. Natl. Acad. Sci., 2022, 119(18), e2121153119. doi: 10.1073/pnas.2121153119 PMID: 35482919
- Chen, J.N.; Jiang, F.; Wu, Y.D. Accurate prediction for proteinpeptide binding based on high-temperature molecular dynamics simulations. J. Chem. Theory Comput., 2022, 18(10), 6386-6395. doi: 10.1021/acs.jctc.2c00743 PMID: 36149394
- Tsaban, T.; Varga, J.K.; Avraham, O.; Ben-Aharon, Z.; Khramushin, A.; Schueler-Furman, O. Harnessing protein folding neural networks for peptideprotein docking. Nat. Commun., 2022, 13(1), 176. doi: 10.1038/s41467-021-27838-9 PMID: 35013344
- Evans, R.; ONeill, M.; Pritzel, A.; Antropova, N.; Senior, A.; Green, T.; ídek, A.; Bates, R.; Blackwell, S.; Yim, J. Protein complex prediction with AlphaFold-Multimer. BioRxiv, 2021, 2021.2010.
- Shanker, S.; Sanner, M.F. Predicting proteinpeptide interactions: Benchmarking deep learning techniques and a comparison with focused docking. J. Chem. Inf. Model., 2023, 63(10), 3158-3170. doi: 10.1021/acs.jcim.3c00602 PMID: 37167566
- Santos, K.B.; Guedes, I.A.; Karl, A.L.M.; Dardenne, L.E. Highly flexible ligand docking: Benchmarking of the DockThor program on the LEADS-PEP proteinpeptide data set. J. Chem. Inf. Model., 2020, 60(2), 667-683. doi: 10.1021/acs.jcim.9b00905 PMID: 31922754
- Vanhee, P.; van der Sloot, A.M.; Verschueren, E.; Serrano, L.; Rousseau, F.; Schymkowitz, J. Computational design of peptide ligands. Trends Biotechnol., 2011, 29(5), 231-239. doi: 10.1016/j.tibtech.2011.01.004 PMID: 21316780
- Stein, A.; Pache, R.A.; Bernadó, P.; Pons, M.; Aloy, P. Dynamic interactions of proteins in complex networks: A more structured view. FEBS J., 2009, 276(19), 5390-5405. doi: 10.1111/j.1742-4658.2009.07251.x PMID: 19712106
- Lee, H.; Heo, L.; Lee, M.S.; Seok, C. GalaxyPepDock: A proteinpeptide docking tool based on interaction similarity and energy optimization. Nucleic Acids Res., 2015, 43(W1), W431-W435. doi: 10.1093/nar/gkv495 PMID: 25969449
- Johansson-Åkhe, I.; Mirabello, C.; Wallner, B. InterPep2: Global peptideprotein docking using interaction surface templates. Bioinformatics, 2020, 36(8), 2458-2465. doi: 10.1093/bioinformatics/btaa005 PMID: 31917413
- London, N.; Raveh, B.; Cohen, E.; Fathi, G.; Schueler-Furman, O. Rosetta flexpepdock web server-high resolution modeling of peptideprotein interactions. Nucleic Acids Res., 2011, 39(Web Server issue)(2), W249-W253. doi: 10.1093/nar/gkr431 PMID: 21622962
- Raveh, B.; London, N.; Zimmerman, L.; Schueler-Furman, O. Rosetta FlexPepDock ab-initio: Simultaneous folding, docking and refinement of peptides onto their receptors. PLoS One, 2011, 6(4), e18934. doi: 10.1371/journal.pone.0018934 PMID: 21572516
- Donsky, E.; Wolfson, H.J. PepCrawler: A fast RRT-based algorithm for high-resolution refinement and binding affinity estimation of peptide inhibitors. Bioinformatics, 2011, 27(20), 2836-2842. doi: 10.1093/bioinformatics/btr498 PMID: 21880702
- Zhang, Y.; Sanner, M.F. AutoDock CrankPep: Combining folding and docking to predict proteinpeptide complexes. Bioinformatics, 2019, 35(24), 5121-5127. doi: 10.1093/bioinformatics/btz459 PMID: 31161213
- Yan, C.; Xu, X.; Zou, X. Fully blind docking at the atomic level for protein-peptide complex structure prediction. Structure, 2016, 24(10), 1842-1853. doi: 10.1016/j.str.2016.07.021 PMID: 27642160
- Xu, X.; Yan, C.; Zou, X. MDockPeP: An ab-initio proteinpeptide docking server. J. Comput. Chem., 2018, 39(28), 2409-2413. doi: 10.1002/jcc.25555 PMID: 30368849
- Zhou, P.; Li, B.; Yan, Y.; Jin, B.; Wang, L.; Huang, S.Y. Hierarchical flexible peptide docking by conformer generation and ensemble docking of peptides. J. Chem. Inf. Model., 2018, 58(6), 1292-1302. doi: 10.1021/acs.jcim.8b00142 PMID: 29738247
- Zhou, P.; Jin, B.; Li, H.; Huang, S.Y. HPEPDOCK: A web server for blind peptideprotein docking based on a hierarchical algorithm. Nucleic Acids Res., 2018, 46(W1), W443-W450. doi: 10.1093/nar/gky357 PMID: 29746661
- Yan, Y.; Zhang, D.; Huang, S.Y. Efficient conformational ensemble generation of protein-bound peptides. J. Cheminform., 2017, 9(1), 59. doi: 10.1186/s13321-017-0246-7 PMID: 29168051
- Kurcinski, M.; Jamroz, M.; Blaszczyk, M.; Kolinski, A.; Kmiecik, S. CABS-dock web server for the flexible docking of peptides to proteins without prior knowledge of the binding site. Nucleic Acids Res., 2015, 43(W1), W419-W424. doi: 10.1093/nar/gkv456 PMID: 25943545
- Blaszczyk, M.; Kurcinski, M.; Kouza, M.; Wieteska, L.; Debinski, A.; Kolinski, A.; Kmiecik, S. Modeling of proteinpeptide interactions using the CABS-dock web server for binding site search and flexible docking. Methods, 2016, 93, 72-83. doi: 10.1016/j.ymeth.2015.07.004 PMID: 26165956
- Das, A.A.; Sharma, O.P.; Kumar, M.S.; Krishna, R.; Mathur, P.P. PepBind: A comprehensive database and computational tool for analysis of protein-peptide interactions. Genomics Proteomics Bioinformatics, 2013, 11(4), 241-246. doi: 10.1016/j.gpb.2013.03.002 PMID: 23896518
- Zhang, Y.; Skolnick, J. Scoring function for automated assessment of protein structure template quality. Proteins, 2004, 57(4), 702-710. doi: 10.1002/prot.20264 PMID: 15476259
- Trabuco, L.G.; Lise, S.; Petsalaki, E.; Russell, R.B. PepSite: Prediction of peptide-binding sites from protein surfaces. Nucleic Acids Res., 2012, 40(W1), W423-W427. doi: 10.1093/nar/gks398 PMID: 22600738
- Yan, C.; Zou, X. Predicting peptide binding sites on protein surfaces by clustering chemical interactions. J. Comput. Chem., 2015, 36(1), 49-61. doi: 10.1002/jcc.23771 PMID: 25363279
- Gainza, P.; Sverrisson, F.; Monti, F.; Rodolà, E.; Boscaini, D.; Bronstein, M.M.; Correia, B.E. Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning. Nat. Methods, 2020, 17(2), 184-192. doi: 10.1038/s41592-019-0666-6 PMID: 31819266
- Rooklin, D.; Wang, C.; Katigbak, J.; Arora, P.S.; Zhang, Y. AlphaSpace: Fragment-centric topographical mapping to target proteinprotein interaction interfaces. J. Chem. Inf. Model., 2015, 55(8), 1585-1599. doi: 10.1021/acs.jcim.5b00103 PMID: 26225450
- Gront, D.; Kulp, D.W.; Vernon, R.M.; Strauss, C.E.M.; Baker, D. Generalized fragment picking in Rosetta: Design, protocols and applications. PLoS One, 2011, 6(8), e23294. doi: 10.1371/journal.pone.0023294 PMID: 21887241
- Andrusier, N.; Nussinov, R.; Wolfson, H.J. FireDock: Fast interaction refinement in molecular docking. Proteins, 2007, 69(1), 139-159. doi: 10.1002/prot.21495 PMID: 17598144
- Pierce, B.G.; Wiehe, K.; Hwang, H.; Kim, B.H.; Vreven, T.; Weng, Z. ZDOCK server: Interactive docking prediction of proteinprotein complexes and symmetric multimers. Bioinformatics, 2014, 30(12), 1771-1773. doi: 10.1093/bioinformatics/btu097 PMID: 24532726
- Garzon, J.I.; Lopéz-Blanco, J.R.; Pons, C.; Kovacs, J.; Abagyan, R.; Fernandez-Recio, J.; Chacon, P. FRODOCK: A new approach for fast rotational proteinprotein docking. Bioinformatics, 2009, 25(19), 2544-2551. doi: 10.1093/bioinformatics/btp447 PMID: 19620099
- Weng, G.; Wang, E.; Wang, Z.; Liu, H.; Zhu, F.; Li, D.; Hou, T. HawkDock: A web server to predict and analyze the proteinprotein complex based on computational docking and MM/GBSA. Nucleic Acids Res., 2019, 47(W1), W322-W330. doi: 10.1093/nar/gkz397 PMID: 31106357
- Weng, G.; Gao, J.; Wang, Z.; Wang, E.; Hu, X.; Yao, X.; Cao, D.; Hou, T. Comprehensive evaluation of fourteen docking programs on proteinpeptide complexes. J. Chem. Theory Comput., 2020, 16(6), 3959-3969. doi: 10.1021/acs.jctc.9b01208 PMID: 32324992
- McGuffin, L.J.; Bryson, K.; Jones, D.T. The PSIPRED protein structure prediction server. Bioinformatics, 2000, 16(4), 404-405. doi: 10.1093/bioinformatics/16.4.404 PMID: 10869041
- Kozakov, D.; Brenke, R.; Comeau, S.R.; Vajda, S. PIPER: An FFT-based protein docking program with pairwise potentials. Proteins, 2006, 65(2), 392-406. doi: 10.1002/prot.21117 PMID: 16933295
- Schindler, C.E.M.; de Vries, S.J.; Zacharias, M. iATTRACT: Simultaneous global and local interface optimization for protein-protein docking refinement. Proteins, 2015, 83(2), 248-258. doi: 10.1002/prot.24728 PMID: 25402278
- Case, D.A.; Cheatham, T.E., III; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M., Jr; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber biomolecular simulation programs. J. Comput. Chem., 2005, 26(16), 1668-1688. doi: 10.1002/jcc.20290 PMID: 16200636
- Webb, B.; Sali, A. Comparative protein structure modeling using modeller. Curr. Protoc. Bioinformatics., 2016, 54(1), 5.6. 1-5.6.
- Huang, S.Y.; Zou, X. An iterative knowledge-based scoring function for protein-protein recognition. Proteins, 2008, 72(2), 557-579. doi: 10.1002/prot.21949 PMID: 18247354
- Chaudhury, S.; Lyskov, S.; Gray, J.J. PyRosetta: A script-based interface for implementing molecular modeling algorithms using Rosetta. Bioinformatics, 2010, 26(5), 689-691. doi: 10.1093/bioinformatics/btq007 PMID: 20061306
- Zhou, J.; Grigoryan, G. Rapid search for tertiary fragments reveals protein sequence-structure relationships. Protein Sci., 2015, 24(4), 508-524. doi: 10.1002/pro.2610 PMID: 25420575
- Kuhlman, B.; Dantas, G.; Ireton, G.C.; Varani, G.; Stoddard, B.L.; Baker, D. Design of a novel globular protein fold with atomic-level accuracy. Science, 2003, 302(5649), 1364-1368. doi: 10.1126/science.1089427 PMID: 14631033
- London, N.; Movshovitz-Attias, D.; Schueler-Furman, O. The structural basis of peptide-protein binding strategies. Structure, 2010, 18(2), 188-199. doi: 10.1016/j.str.2009.11.012 PMID: 20159464
- Xu, X.; Zou, X. PepPro: A nonredundant structure data set for benchmarking peptideprotein computational docking. J. Comput. Chem., 2020, 41(4), 362-369. doi: 10.1002/jcc.26114 PMID: 31793016
- Wen, Z.; He, J.; Tao, H.; Huang, S.Y. PepBDB: A comprehensive structural database of biological peptideprotein interactions. Bioinformatics, 2019, 35(1), 175-177. doi: 10.1093/bioinformatics/bty579 PMID: 29982280
- Martins, P.M.; Santos, L.H.; Mariano, D.; Queiroz, F.C.; Bastos, L.L.; Gomes, I.S.; Fischer, P.H.C.; Rocha, R.E.O.; Silveira, S.A.; de Lima, L.H.F.; de Magalhães, M.T.Q.; Oliveira, M.G.A.; de Melo-Minardi, R.C. Propedia: A database for proteinpeptide identification based on a hybrid clustering algorithm. BMC Bioinformatics, 2021, 22(1), 1-20. doi: 10.1186/s12859-020-03881-z PMID: 33388027
- Orengo, C.A.; Michie, A.D.; Jones, S.; Jones, D.T.; Swindells, M.B.; Thornton, J.M. CATH: A hierarchic classification of protein domain structures. Structure, 1997, 5(8), 1093-1109. doi: 10.1016/S0969-2126(97)00260-8 PMID: 9309224
- Liu, Z.; Su, M.; Han, L.; Liu, J.; Yang, Q.; Li, Y.; Wang, R. Forging the basis for developing proteinligand interaction scoring functions. Acc. Chem. Res., 2017, 50(2), 302-309. doi: 10.1021/acs.accounts.6b00491 PMID: 28182403
- Burley, S.K.; Berman, H.M.; Kleywegt, G.J.; Markley, J.L.; Nakamura, H.; Velankar, S. Protein Data Bank (PDB): The single global macromolecular structure archive. Prot. Crystall. Meth. Prot., 2017, 627-641.
- Lei, Y.; Li, S.; Liu, Z.; Wan, F.; Tian, T.; Li, S.; Zhao, D.; Zeng, J. A deep-learning framework for multi-level peptideprotein interaction prediction. Nat. Commun., 2021, 12(1), 5465. doi: 10.1038/s41467-021-25772-4 PMID: 34526500
- Fukunaga, I.; Sawada, R.; Shibata, T.; Kaitoh, K.; Sakai, Y.; Yamanishi, Y. Prediction of the health effects of food peptides and elucidation of the mode-of-action using multi-task graph convolutional neural network. Mol. Inform., 2020, 39(1-2), 1900134. doi: 10.1002/minf.201900134 PMID: 31778042
- Cock, P.J.A.; Antao, T.; Chang, J.T.; Chapman, B.A.; Cox, C.J.; Dalke, A.; Friedberg, I.; Hamelryck, T.; Kauff, F.; Wilczynski, B.; de Hoon, M.J.L. Biopython: Freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics, 2009, 25(11), 1422-1423. doi: 10.1093/bioinformatics/btp163 PMID: 19304878
- Méndez, R.; Leplae, R.; De Maria, L.; Wodak, S.J. Assessment of blind predictions of protein-protein interactions: Current status of docking methods. Proteins, 2003, 52(1), 51-67. doi: 10.1002/prot.10393 PMID: 12784368
- Basu, S.; Wallner, B.; Dock, Q. A quality measure for protein-protein docking models. PLoS One, 2016, 11(8), e0161879. doi: 10.1371/journal.pone.0161879 PMID: 27560519
- Lensink, M.F.; Nadzirin, N.; Velankar, S.; Wodak, S.J. Modeling protein-protein, protein-peptide, and protein-oligosaccharide complexes: CAPRI 7th edition. Proteins: Struct. Funct. Bioinform., 2020, 88(8), 916-938.
- Lensink, M.F.; Wodak, S.J. Docking, scoring, and affinity prediction in CAPRI. Proteins, 2013, 81(12), 2082-2095. doi: 10.1002/prot.24428 PMID: 24115211
- Janin, J.; Henrick, K.; Moult, J.; Eyck, L.T.; Sternberg, M.J.E.; Vajda, S.; Vakser, I.; Wodak, S.J. CAPRI: A critical assessment of predicted interactions. Proteins, 2003, 52(1), 2-9. doi: 10.1002/prot.10381 PMID: 12784359
- Janin, J. Assessing predictions of protein-protein interaction: The CAPRI experiment. Protein Sci., 2005, 14(2), 278-283. doi: 10.1110/ps.041081905 PMID: 15659362
- Piana, S.; Klepeis, J.L.; Shaw, D.E. Assessing the accuracy of physical models used in protein-folding simulations: Quantitative evidence from long molecular dynamics simulations. Curr. Opin. Struct. Biol., 2014, 24, 98-105. doi: 10.1016/j.sbi.2013.12.006 PMID: 24463371
- Li, W.; Wang, W.; Takada, S. Energy landscape views for interplays among folding, binding, and allostery of calmodulin domains. Proc. Natl. Acad. Sci., 2014, 111(29), 10550-10555. doi: 10.1073/pnas.1402768111 PMID: 25002491
- Chen, H.F.; Luo, R. Binding induced folding in p53-MDM2 complex. J. Am. Chem. Soc., 2007, 129(10), 2930-2937. doi: 10.1021/ja0678774 PMID: 17302414
- Yang, C.; Zhang, S.; Bai, Z.; Hou, S.; Wu, D.; Huang, J.; Zhou, P. A two-step binding mechanism for the self-binding peptide recognition of target domains. Mol. Biosyst., 2016, 12(4), 1201-1213. doi: 10.1039/C5MB00800J PMID: 26854254
- Ahmad, M.; Gu, W.; Helms, V. Mechanism of fast peptide recognition by SH3 domains. Angew. Chem. Int. Ed., 2008, 47(40), 7626-7630. doi: 10.1002/anie.200801856 PMID: 18752238
- Zou, R.; Zhou, Y.; Wang, Y.; Kuang, G.; Ågren, H.; Wu, J.; Tu, Y. Free energy profile and kinetics of coupled folding and binding of the intrinsically disordered protein p53 with MDM2. J. Chem. Inf. Model., 2020, 60(3), 1551-1558. doi: 10.1021/acs.jcim.9b00920 PMID: 32053358
- Kmiecik, S.; Gront, D.; Kolinski, M.; Wieteska, L.; Dawid, A.E.; Kolinski, A. Coarse-grained protein models and their applications. Chem. Rev., 2016, 116(14), 7898-7936. doi: 10.1021/acs.chemrev.6b00163 PMID: 27333362
- Stone, J.E.; Phillips, J.C.; Freddolino, P.L.; Hardy, D.J.; Trabuco, L.G.; Schulten, K. Accelerating molecular modeling applications with graphics processors. J. Comput. Chem., 2007, 28(16), 2618-2640. doi: 10.1002/jcc.20829 PMID: 17894371
- Anderson, J.A.; Lorenz, C.D.; Travesset, A. General purpose molecular dynamics simulations fully implemented on graphics processing units. J. Comput. Phys., 2008, 227(10), 5342-5359. doi: 10.1016/j.jcp.2008.01.047
- Jones, D.; Allen, J.E.; Yang, Y.; Drew Bennett, W.F.; Gokhale, M.; Moshiri, N.; Rosing, T.S. Accelerators for classical molecular dynamics simulations of biomolecules. J. Chem. Theory Comput., 2022, 18(7), 4047-4069. doi: 10.1021/acs.jctc.1c01214 PMID: 35710099
- Kutzner, C.; Páll, S.; Fechner, M.; Esztermann, A.; de Groot, B.L.; Grubmüller, H. Best bang for your buck: GPU nodes for gromacs biomolecular simulations. Wiley Online Library, 2015.
- Kohnke, B.; Kutzner, C.; Grubmüller, H. A GPU-accelerated fast multipole method for GROMACS: Performance and accuracy. J. Chem. Theory Comput., 2020, 16(11), 6938-6949. doi: 10.1021/acs.jctc.0c00744 PMID: 33084336
- Kutzner, C.; Kniep, C.; Cherian, A.; Nordstrom, L.; Grubmüller, H.; de Groot, B.L.; Gapsys, V. GROMACS in the cloud: A global supercomputer to speed up alchemical drug design. J. Chem. Inf. Model., 2022, 62(7), 1691-1711. doi: 10.1021/acs.jcim.2c00044 PMID: 35353508
- Salomon-Ferrer, R.; Case, D.A.; Walker, R.C. An overview of the Amber biomolecular simulation package. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2013, 3(2), 198-210. doi: 10.1002/wcms.1121
- Salomon-Ferrer, R.; Götz, A.W.; Poole, D.; Le Grand, S.; Walker, R.C. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J. Chem. Theory Comput., 2013, 9(9), 3878-3888. doi: 10.1021/ct400314y PMID: 26592383
- Götz, A.W.; Williamson, M.J.; Xu, D.; Poole, D.; Le Grand, S.; Walker, R.C. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born. J. Chem. Theory Comput., 2012, 8(5), 1542-1555. doi: 10.1021/ct200909j PMID: 22582031
- Phillips, J.C.; Hardy, D.J.; Maia, J.D.C.; Stone, J.E.; Ribeiro, J.V.; Bernardi, R.C.; Buch, R.; Fiorin, G.; Hénin, J.; Jiang, W.; McGreevy, R.; Melo, M.C.R.; Radak, B.K.; Skeel, R.D.; Singharoy, A.; Wang, Y.; Roux, B.; Aksimentiev, A.; Luthey-Schulten, Z.; Kalé, L.V.; Schulten, K.; Chipot, C.; Tajkhorshid, E. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys., 2020, 153(4), 044130. doi: 10.1063/5.0014475 PMID: 32752662
- Eastman, P.; Pande, V.; Open, M.M. A hardware-independent framework for molecular simulations. Comput. Sci. Eng., 2010, 12(4), 34-39. doi: 10.1109/MCSE.2010.27 PMID: 26146490
- Eastman, P.; Swails, J.; Chodera, J.D.; McGibbon, R.T.; Zhao, Y.; Beauchamp, K.A.; Wang, L.P.; Simmonett, A.C.; Harrigan, M.P.; Stern, C.D.; Wiewiora, R.P.; Brooks, B.R.; Pande, V.S. OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLOS Comput. Biol., 2017, 13(7), e1005659. doi: 10.1371/journal.pcbi.1005659 PMID: 28746339
- Bernardi, R.C.; Melo, M.C.R.; Schulten, K. Enhanced sampling techniques in molecular dynamics simulations of biological systems. Biochim. Biophys. Acta, Gen. Subj., 2015, 1850(5), 872-877. doi: 10.1016/j.bbagen.2014.10.019 PMID: 25450171
- Laio, A.; Parrinello, M. Escaping free-energy minima. Proc. Natl. Acad. Sci., 2002, 99(20), 12562-12566. doi: 10.1073/pnas.202427399 PMID: 12271136
- Barducci, A.; Bonomi, M.; Parrinello, M. Metadynamics. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2011, 1(5), 826-843. doi: 10.1002/wcms.31
- Clayton, J.; Baweja, L.; Wereszczynski, J. In Computational Peptide Science: Methods and protocols; Springer, 2022, pp. 151-167. doi: 10.1007/978-1-0716-1855-4_8
- Buchete, N.V.; Hummer, G. Peptide folding kinetics from replica exchange molecular dynamics. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 2008, 77(3), 030902. doi: 10.1103/PhysRevE.77.030902 PMID: 18517321
- Sugita, Y.; Okamoto, Y. Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett., 1999, 314(1-2), 141-151. doi: 10.1016/S0009-2614(99)01123-9
- Torrie, G.M.; Valleau, J.P. Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling. J. Comput. Phys., 1977, 23(2), 187-199. doi: 10.1016/0021-9991(77)90121-8
- Maragliano, L.; Vanden-Eijnden, E. A temperature accelerated method for sampling free energy and determining reaction pathways in rare events simulations. Chem. Phys. Lett., 2006, 426(1-3), 168-175. doi: 10.1016/j.cplett.2006.05.062
- Miao, Y.; Feher, V.A.; McCammon, J.A. Gaussian accelerated molecular dynamics: Unconstrained enhanced sampling and free energy calculation. J. Chem. Theory Comput., 2015, 11(8), 3584-3595. doi: 10.1021/acs.jctc.5b00436 PMID: 26300708
- Miao, Y. McCammon, J.A. Annual reports in computational chemistry; Elsevier, 2017, 13, pp. 231-278.
- Wang, J.; Miao, Y. Peptide gaussian accelerated molecular dynamics (Pep-GaMD): Enhanced sampling and free energy and kinetics calculations of peptide binding. J. Chem. Phys., 2020, 153(15), 154109. doi: 10.1063/5.0021399 PMID: 33092378
- Kang, W.; Jiang, F.; Wu, Y.D. Universal implementation of a residue-specific force field based on CMAP potentials and free energy decomposition. J. Chem. Theory Comput., 2018, 14(8), 4474-4486. doi: 10.1021/acs.jctc.8b00285 PMID: 29906395
- Tang, C.; Iwahara, J.; Clore, G.M. Visualization of transient encounter complexes in proteinprotein association. Nature, 2006, 444(7117), 383-386. doi: 10.1038/nature05201 PMID: 17051159
- Rajamani, D.; Thiel, S.; Vajda, S.; Camacho, C.J. Anchor residues in proteinprotein interactions. Proc. Natl. Acad. Sci., 2004, 101(31), 11287-11292. doi: 10.1073/pnas.0401942101 PMID: 15269345
- Kim, Y.C.; Tang, C.; Clore, G.M.; Hummer, G. Replica exchange simulations of transient encounter complexes in proteinprotein association. Proc. Natl. Acad. Sci., 2008, 105(35), 12855-12860. doi: 10.1073/pnas.0802460105 PMID: 18728193
- Pan, A.C.; Jacobson, D.; Yatsenko, K.; Sritharan, D.; Weinreich, T.M.; Shaw, D.E. Atomic-level characterization of proteinprotein association. Proc. Natl. Acad. Sci., 2019, 116(10), 4244-4249. doi: 10.1073/pnas.1815431116 PMID: 30760596
- Beuming, T.; Farid, R.; Sherman, W. High-energy water sites determine peptide binding affinity and specificity of PDZ domains. Protein Sci., 2009, 18(8), 1609-1619. doi: 10.1002/pro.177 PMID: 19569188
- Ylilauri, M.; Pentikäinen, O.T. MMGBSA as a tool to understand the binding affinities of filamin-peptide interactions. J. Chem. Inf. Model., 2013, 53(10), 2626-2633. doi: 10.1021/ci4002475 PMID: 23988151
- Kötter, A.; Mootz, H.D.; Heuer, A. Standard binding free energy of a SIMSUMO complex. J. Chem. Theory Comput., 2019, 15(11), 6403-6410. doi: 10.1021/acs.jctc.9b00428 PMID: 31525924
- ElSawy, K.M.; Lane, D.P.; Verma, C.S.; Caves, L.S.D. Recognition dynamics of p53 and MDM2: Implications for peptide design. J. Phys. Chem. B, 2016, 120(2), 320-328. doi: 10.1021/acs.jpcb.5b11162 PMID: 26701330
- Ayaz, P.; Lyczek, A.; Paung, Y.; Mingione, V.R.; Iacob, R.E.; de Waal, P.W.; Engen, J.R.; Seeliger, M.A.; Shan, Y.; Shaw, D.E. Structural mechanism of a drug-binding process involving a large conformational change of the protein target. Nat. Commun., 2023, 14(1), 1885. doi: 10.1038/s41467-023-36956-5 PMID: 37019905
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; ídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S.A.A.; Ballard, A.J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A.W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596(7873), 583-589. doi: 10.1038/s41586-021-03819-2 PMID: 34265844
- Baek, M.; DiMaio, F.; Anishchenko, I.; Dauparas, J.; Ovchinnikov, S.; Lee, G.R.; Wang, J.; Cong, Q.; Kinch, L.N.; Schaeffer, R.D.; Millán, C.; Park, H.; Adams, C.; Glassman, C.R.; DeGiovanni, A.; Pereira, J.H.; Rodrigues, A.V.; van Dijk, A.A.; Ebrecht, A.C.; Opperman, D.J.; Sagmeister, T.; Buhlheller, C.; Pavkov-Keller, T.; Rathinaswamy, M.K.; Dalwadi, U.; Yip, C.K.; Burke, J.E.; Garcia, K.C.; Grishin, N.V.; Adams, P.D.; Read, R.J.; Baker, D. Accurate prediction of protein structures and interactions using a three-track neural network. Science, 2021, 373(6557), 871-876. doi: 10.1126/science.abj8754 PMID: 34282049
- Lin, Z.; Akin, H.; Rao, R.; Hie, B.; Zhu, Z.; Lu, W.; dos Santos Costa, A.; Fazel-Zarandi, M.; Sercu, T.; Candido, S. Language models of protein sequences at the scale of evolution enable accurate structure prediction. BioRxiv, 2022.
- Baek, M.; Baker, D. Deep learning and protein structure modeling. Nat. Methods, 2022, 19(1), 13-14. doi: 10.1038/s41592-021-01360-8 PMID: 35017724
- Zhou, X.; Zheng, W.; Li, Y.; Pearce, R.; Zhang, C.; Bell, E.W.; Zhang, G.; Zhang, Y. I-TASSER-MTD: A deep- learning-based platform for multi-domain protein structure and function prediction. Nat. Protoc., 2022, 17(10), 2326-2353. doi: 10.1038/s41596-022-00728-0 PMID: 35931779
- Wang, J.; Lisanza, S.; Juergens, D.; Tischer, D.; Watson, J.L.; Castro, K.M.; Ragotte, R.; Saragovi, A.; Milles, L.F.; Baek, M.; Anishchenko, I.; Yang, W.; Hicks, D.R.; Expòsit, M.; Schlichthaerle, T.; Chun, J.H.; Dauparas, J.; Bennett, N.; Wicky, B.I.M.; Muenks, A.; DiMaio, F.; Correia, B.; Ovchinnikov, S.; Baker, D. Scaffolding protein functional sites using deep learning. Science, 2022, 377(6604), 387-394. doi: 10.1126/science.abn2100 PMID: 35862514
- Zeng, X.; Zhu, S.; Lu, W.; Liu, Z.; Huang, J.; Zhou, Y.; Fang, J.; Huang, Y.; Guo, H.; Li, L.; Trapp, B.D.; Nussinov, R.; Eng, C.; Loscalzo, J.; Cheng, F. Target identification among known drugs by deep learning from heterogeneous networks. Chem. Sci., 2020, 11(7), 1775-1797. doi: 10.1039/C9SC04336E PMID: 34123272
- Sapoval, N.; Aghazadeh, A.; Nute, M.G.; Antunes, D.A.; Balaji, A.; Baraniuk, R.; Barberan, C.J.; Dannenfelser, R.; Dun, C.; Edrisi, M.; Elworth, R.A.L.; Kille, B.; Kyrillidis, A.; Nakhleh, L.; Wolfe, C.R.; Yan, Z.; Yao, V.; Treangen, T.J. Current progress and open challenges for applying deep learning across the biosciences. Nat. Commun., 2022, 13(1), 1728. doi: 10.1038/s41467-022-29268-7 PMID: 35365602
- Unsal, S.; Atas, H.; Albayrak, M.; Turhan, K.; Acar, A.C.; Doğan, T. Learning functional properties of proteins with language models. Nat. Mach. Intell., 2022, 4(3), 227-245. doi: 10.1038/s42256-022-00457-9
- Brandes, N.; Ofer, D.; Peleg, Y.; Rappoport, N.; Linial, M. ProteinBERT: A universal deep-learning model of protein sequence and function. Bioinformatics, 2022, 38(8), 2102-2110. doi: 10.1093/bioinformatics/btac020 PMID: 35020807
- Kryshtafovych, A.; Schwede, T.; Topf, M.; Fidelis, K.; Moult, J. Critical assessment of methods of protein structure prediction (CASP)-Round XIV. Proteins, 2021, 89(12), 1607-1617. doi: 10.1002/prot.26237 PMID: 34533838
- Bennett, N.R.; Coventry, B.; Goreshnik, I.; Huang, B.; Allen, A.; Vafeados, D.; Peng, Y.P.; Dauparas, J.; Baek, M.; Stewart, L.; DiMaio, F.; De Munck, S.; Savvides, S.N.; Baker, D. Improving de novo protein binder design with deep learning. Nat. Commun., 2023, 14(1), 2625. doi: 10.1038/s41467-023-38328-5 PMID: 37149653
- Torres, S.V.; Leung, P.J.; Lutz, I.D.; Venkatesh, P.; Watson, J.L.; Hink, F.; Huynh, H-H.; Yeh, A.H-W.; Juergens, D.; Bennett, N.R. De novo design of high-affinity protein binders to bioactive helical peptides. Biorxiv, 2022, 519862.
- Johansson-Åkhe, I.; Wallner, B. Improving peptide-protein docking with AlphaFold-Multimer using forced sampling. Front. Bioinform., 2022, 2, 959160. doi: 10.3389/fbinf.2022.959160 PMID: 36304330
- Gainza, P.; Wehrle, S.; Van Hall-Beauvais, A.; Marchand, A.; Scheck, A.; Harteveld, Z.; Buckley, S.; Ni, D.; Tan, S.; Sverrisson, F.; Goverde, C.; Turelli, P.; Raclot, C.; Teslenko, A.; Pacesa, M.; Rosset, S.; Georgeon, S.; Marsden, J.; Petruzzella, A.; Liu, K.; Xu, Z.; Chai, Y.; Han, P.; Gao, G.F.; Oricchio, E.; Fierz, B.; Trono, D.; Stahlberg, H.; Bronstein, M.; Correia, B.E. De novo design of protein interactions with learned surface fingerprints. Nature, 2023, 617(7959), 176-184. doi: 10.1038/s41586-023-05993-x PMID: 37100904
- Jiang, Y.; Wang, R.; Feng, J.; Jin, J.; Liang, S.; Li, Z.; Yu, Y.; Ma, A.; Su, R.; Zou, Q.; Ma, Q.; Wei, L. Explainable deep hypergraph learning modeling the peptide secondary structure prediction. Adv. Sci., 2023, 10(11), 2206151. doi: 10.1002/advs.202206151 PMID: 36794291
- Cao, X.; He, W.; Chen, Z.; Li, Y.; Wang, K.; Zhang, H.; Wei, L.; Cui, L.; Su, R.; Wei, L. PSSP-MVIRT: Peptide secondary structure prediction based on a multi-view deep learning architecture. Brief. Bioinform., 2021, 22(6), bbab203. doi: 10.1093/bib/bbab203 PMID: 34117740
- Yu, H.; Zhou, P.; Deng, M.; Shang, Z. Indirect readout in protein-peptide recognition: A different story from classical biomolecular recognition. J. Chem. Inf. Model., 2014, 54(7), 2022-2032. doi: 10.1021/ci5000246 PMID: 24999015
Supplementary files
