Carbon Nanocomposites-based Electrochemical Sensors and Biosensors for Biomedical Diagnostics
- Authors: Kannan P.1, Maduraiveeran G.2
-
Affiliations:
- College of Biological, Chemical Sciences and Engineering, Jiaxing University
- Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology
- Issue: Vol 31, No 25 (2024)
- Pages: 3870-3881
- Section: Anti-Infectives and Infectious Diseases
- URL: https://rjeid.com/0929-8673/article/view/644878
- DOI: https://doi.org/10.2174/0929867330666230425163520
- ID: 644878
Cite item
Full Text
Abstract
Detection of emergent biomolecules or biomarkers remains crucial for early diagnosis in advancing healthcare monitoring and biomedicine. The possibility for rapid detection, real-time monitoring, high sensitivity, low detection limit, good selectivity, and low cost is central, among other significant issues for advancing point-of-care diagnosis. Carbon-based nanocomposites have been employed as sensing materials for various biomarkers due to their high surface-to-volume ratio, high electrical conductivity, chemical stability, and biocompatibility. The carbon nanomaterials, such as carbon nanotubes (CNTs), graphene (GR), carbon quantum dots (CQDs), carbon fibres (CFs), and their nanocomposites have broadly integrated with numerous sensing electrode materials for the detection of biomarkers under various experimental settings. The present review includes the recent advances in the development of carbon nanomaterials-based electrochemical sensors and biosensors for biomedical applications. The preparation, electrode preparation, effective utilization of carbon-derived nanomaterials, and their sensing performances towards numerous biomarkers have been highlighted. The state-of-the-merit, challenges, and prospects for designing carbon nanocomposites-based electrochemical sensor/biosensor platforms for biomedical diagnostics have also been described.
About the authors
Palanisamy Kannan
College of Biological, Chemical Sciences and Engineering, Jiaxing University
Author for correspondence.
Email: info@benthamscience.net
Govindhan Maduraiveeran
Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology
Author for correspondence.
Email: info@benthamscience.net
References
- Tvorynska, S.; Barek, J.; Josypcuk, B. Influence of different covalent immobilization protocols on electroanalytical performance of laccase-based biosensors. Bioelectrochemistry, 2022, 148, 108223. doi: 10.1016/j.bioelechem.2022.108223 PMID: 35973323
- Torrente-Rodríguez, R.M.; Montero-Calle, A.; San Bartolomé, C.; Cano, O.; Vázquez, M.; Iglesias-Caballero, M.; Corral-Lugo, A.; McConnell, M.J.; Pascal, M.; Mas, V.; Pingarrón, J.M.; Barderas, R.; Campuzano, S. Towards control and oversight of SARS-CoV-2 diagnosis and monitoring through multiplexed quantitative electroanalytical immune response biosensors. Angew. Chem., 2022, 134(28), e202203662. doi: 10.1002/ange.202203662 PMID: 35941922
- Singh, S.; Numan, A.; Cinti, S. Electrochemical nano biosensors for the detection of extracellular vesicles exosomes: From the benchtop to everywhere? Biosens. Bioelectron., 2022, 216, , 114635. doi: 10.1016/j.bios.2022.114635 PMID: 35988430
- Zhang, Z.; Sen, P.; Adhikari, B.R.; Li, Y.; Soleymani, L. Development of nucleic-acid-based electrochemical biosensors for clinical applications. Angew Chem Int Ed Engl, 2022, 61, e202212496.
- Negahdary, M.; Barros Azeredo, N.F.; Santos, B.G.; de Oliveira, T.G.; de Oliveira Lins, R.S.; Santos Lima, I.D.; Angnes, L. Electrochemical nanomaterial-based sensors/biosensors for drug monitoring. Curr. Top. Med. Chem., 2022. PMID: 36239731
- Durai, L.; Badhulika, S. Current challenges and developments in perovskite-based electrochemical biosensors for effective theragnostics of neurological disorders. ACS Omega, 2022, 7(44), 39491-39497. doi: 10.1021/acsomega.2c05591 PMID: 36385846
- Mao, B.; Qian, L.; Govindhan, M.; Liu, Z.; Chen, A. Simultaneous electrochemical detection of guanine and adenine using reduced graphene oxide decorated with AuPt nanoclusters. Mikrochim. Acta, 2021, 188(8), 276. doi: 10.1007/s00604-021-04926-7 PMID: 34319444
- Maduraiveeran, G.; Chen, A. Design of an enzyme-mimicking NiO@Au nanocomposite for the sensitive electrochemical detection of lactic acid in human serum and urine. Electrochim. Acta, 2021, 368, , 137612. doi: 10.1016/j.electacta.2020.137612
- Bhattacharya, G.; Fishlock, S.J.; Hussain, S.; Choudhury, S.; Xiang, A.; Kandola, B.; Pritam, A.; Soin, N.; Roy, S.S.; McLaughlin, J.A. Disposable paper-based biosensors: optimizing the electrochemical properties of laser-induced graphene. ACS Appl. Mater. Interfaces, 2022, 14(27), 31109-31120. doi: 10.1021/acsami.2c06350 PMID: 35767835
- Maduraiveeran, G.; Jin, W. Carbon nanomaterials: Synthesis, properties and applications in electrochemical sensors and energy conversion systems. Mater. Sci. Eng. B, 2021, 272, 115341. doi: 10.1016/j.mseb.2021.115341
- Maduraiveeran, G.; Sasidharan, M.; Ganesan, V. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens. Bioelectron., 2018, 103, 113-129. doi: 10.1016/j.bios.2017.12.031 PMID: 29289816
- Cetinkaya, A.; Kaya, S.I.; Ozcelikay, G.; Budak, F.; Ozkan, S.A. Carbon nanomaterials-based novel hybrid platforms for electrochemical sensor applications in drug analysis. Crit. Rev. Anal. Chem., 2022, 1-16. doi: 10.1080/10408347.2022.2109125 PMID: 35943520
- Katowah, D.F.; Mohammed, G.I.; Al-Eryani, D.A.; Sobahi, T.R.; Hussein, M.A. Rapid and sensitive electrochemical sensor of cross-linked polyaniline/oxidized carbon nanomaterials core-shell nanocomposites for determination of 2,4-dichlorophenol. PLoS One, 2020, 15(6), e0234815. doi: 10.1371/journal.pone.0234815 PMID: 32584837
- Malode, S.J.; Shanbhag, M.M.; Kumari, R.; Dkhar, D.S.; Chandra, P.; Shetti, N.P. Biomass-derived carbon nanomaterials for sensor applications. J. Pharm. Biomed. Anal., 2023, 222, 115102. doi: 10.1016/j.jpba.2022.115102 PMID: 36283325
- Zheng, S.; Tian, Y.; Ouyang, J.; Shen, Y.; Wang, X.; Luan, J. Carbon nanomaterials for drug delivery and tissue engineering. Front Chem., 2022, 10, 990362. doi: 10.3389/fchem.2022.990362 PMID: 36171994
- Song, H.; Huo, M.; Zhou, M.; Chang, H.; Li, J.; Zhang, Q.; Fang, Y.; Wang, H.; Zhang, D. Carbon nanomaterials-based electrochemical sensors for heavy metal detection. Crit. Rev. Anal. Chem., 2022, 1-20. doi: 10.1080/10408347.2022.2151832 PMID: 36463557
- Mondal, J.; An, J.M.; Surwase, S.S.; Chakraborty, K.; Sutradhar, S.C.; Hwang, J.; Lee, J.; Lee, Y.K. Carbon nanotube and its derived nanomaterials based high performance biosensing platform. Biosensors, 2022, 12(9), 731. doi: 10.3390/bios12090731 PMID: 36140116
- Liu, Z.; Ling, Q.; Cai, Y.; Xu, L.; Su, J.; Yu, K.; Wu, X.; Xu, J.; Hu, B.; Wang, X. Synthesis of carbon-based nanomaterials and their application in pollution management. Nanoscale Adv., 2022, 4(5), 1246-1262. doi: 10.1039/D1NA00843A PMID: 36133685
- Liao, Z.; Zi, Y.; Zhou, C.; Zeng, W.; Luo, W.; Zeng, H.; Xia, M.; Luo, Z. Recent advances in the synthesis, characterization, and application of carbon nanomaterials for the removal of endocrine-disrupting chemicals: A review. Int. J. Mol. Sci., 2022, 23(21), 13148. doi: 10.3390/ijms232113148 PMID: 36361935
- Govindhan, M.; Amiri, M.; Chen, A. Au nanoparticle/graphene nanocomposite as a platform for the sensitive detection of NADH in human urine. Biosens. Bioelectron., 2015, 66, 474-480. doi: 10.1016/j.bios.2014.12.012 PMID: 25499660
- Adhikari, B.R.; Govindhan, M.; Chen, A. Sensitive detection of acetaminophen with graphene-based electrochemical sensor. Electrochim. Acta, 2015, 162, 198-204. doi: 10.1016/j.electacta.2014.10.028
- Adhikari, B.R.; Govindhan, M.; Chen, A. Carbonnanomaterials based electrochemical sensors/biosensors for the sensitive detection of pharmaceutical and biological compounds. Sensors, 2015, 15(9), 22490-22508. doi: 10.3390/s150922490 PMID: 26404304
- Kaur, H.; Siwal, S.S.; Chauhan, G.; Saini, A.K.; Kumari, A.; Thakur, V.K. Recent advances in electrochemical-based sensors amplified with carbon-based nanomaterials (CNMs) for sensing pharmaceutical and food pollutants. Chemosphere, 2022, 304, 135182. doi: 10.1016/j.chemosphere.2022.135182 PMID: 35667504
- Hu, J.; Zhang, Z. Application of electrochemical sensors based on carbon nanomaterials for detection of flavonoids. Nanomaterials, 2020, 10(10), 2020. doi: 10.3390/nano10102020 PMID: 33066360
- Cernat, A.; Tertiş, M.; Săndulescu, R.; Bedioui, F.; Cristea, A.; Cristea, C. Electrochemical sensors based on carbon nanomaterials for acetaminophen detection: A review. Anal. Chim. Acta, 2015, 886, 16-28. doi: 10.1016/j.aca.2015.05.044 PMID: 26320632
- Li, Y.; Han, X.; Mu, X.; Wang, Y.; Shi, C.; Ma, C. Single-walled carbon nanotubes-based RNA protection and extraction improves RT-qPCR sensitivity for SARS-CoV-2 detection. Anal. Chim. Acta, 2023, 1238, 340639. doi: 10.1016/j.aca.2022.340639 PMID: 36464451
- Wardani, N.I.; Kangkamano, T.; Wannapob, R.; Kanatharana, P.; Thavarungkul, P.; Limbut, W. Electrochemical sensor based on molecularly imprinted polymer cryogel and multiwalled carbon nanotubes for direct insulin detection. Talanta, 2023, 254, 124137. doi: 10.1016/j.talanta.2022.124137 PMID: 36463801
- Christensen, E.E.; Amin, M.; Tumiel, T.M.; Krauss, T.D. Localizedcharge on surfactant-wrapped single-walled carbon nanotubes. J. Phys. Chem. Lett., 2022, 13(46), 10705-10712. doi: 10.1021/acs.jpclett.2c02650 PMID: 36367529
- Li, Y.; Tang, J.; Lin, Y.; Li, J.; Yang, Y.; Zhao, P.; Fei, J.; Xie, Y. Ultrasensitive determination of natural flavonoid rutin using an electrochemical sensor based on metal-organic framework CAU−1/acidified carbon nanotubes composites. Molecules, 2022, 27(22), 7761. doi: 10.3390/molecules27227761 PMID: 36431862
- Lee, J.; Lee, Y.; Lim, J.S.; Kim, S.W.; Jang, H.; Seo, B.; Joo, S.H.; Sa, Y.J. Discriminating active sites for the electrochemical synthesis of H2O2 by molecular functionalisation of carbon nanotubes. Nanoscale, 2022, 15(1), 195-203. doi: 10.1039/D2NR04652K PMID: 36477469
- Ahmad, H.; Khan, R.A.; Koo, B.H.; Alsalme, A. Systematic study of physicochemical and electrochemical properties of carbon nanomaterials. RSC Advances, 2022, 12(24), 15593-15600. doi: 10.1039/D2RA02533G PMID: 35685184
- Barrejón, M.; Arellano, L.M.; DSouza, F.; Langa, F. Bidirectional charge-transfer behavior in carbon-based hybrid nanomaterials. Nanoscale, 2019, 11(32), 14978-14992. doi: 10.1039/C9NR04388H PMID: 31372604
- Araby, S.; Meng, Q.; Zhang, L.; Zaman, I.; Majewski, P.; Ma, J. Elastomeric composites based on carbon nanomaterials. Nanotechnology, 2015, 26(11), 112001. doi: 10.1088/0957-4484/26/11/112001 PMID: 25705981
- Yoshida, Y. Carbon nanomaterials in analytical chemistry. Anal. Sci., 2018, 34(3), 257-258. doi: 10.2116/analsci.34.257 PMID: 29526890
- Xu, Y.; Chen, P.; Peng, H. Generating electricity from water through carbon nanomaterials. Chemistry, 2018, 24(24), 6287-6294. doi: 10.1002/chem.201704638 PMID: 29315891
- Nasir, S.; Hussein, M.; Zainal, Z.; Yusof, N. Carbon-based nanomaterials/allotropes: A glimpse of their synthesis, properties and some applications. Materials, 2018, 11(2), 295. doi: 10.3390/ma11020295 PMID: 29438327
- Abu Nayem, S.M.; Shaheen Shah, S.; Sultana, N.; Abdul Aziz, M.; Saleh Ahammad, A.J. Electrochemical sensing platforms of dihydroxybenzene: Part 2 nanomaterials excluding carbon nanotubes and graphene. Chem. Rec., 2021, 21(5), 1073-1097. doi: 10.1002/tcr.202100044 PMID: 33855801
- Solid carbon, springy and light. Nature, 2013, 494(7438), 404. doi: 10.1038/494404a PMID: 23446383
- Zhou, J.; Xia, Y.; Zou, Z.; Yang, Q.; Jiang, X.; Xiong, X. Microplasma-enabled carbon dots composited with multi-walled carbon nanotubes for dopamine detection. Anal. Chim. Acta, 2023, 1237, 340631. doi: 10.1016/j.aca.2022.340631 PMID: 36442944
- Karimi-Maleh, H.; Orooji, Y.; Yola, M.L. Pharmaceutical and personal care products (PPCPs) treatment and sensing by 2D carbon nanomaterials; challenges and perspectives. Chemosphere, 2023, 311(Pt 1), 136967. doi: 10.1016/j.chemosphere.2022.136967 PMID: 36273610
- Zhu, X.; Yan, X.; Yang, S.; Wang, Y.; Wang, S.; Tian, Y. DNA-mediated assembly of carbon nanomaterials. Chempluschem, 2022, 87, e202200089.
- Zhou, Z.; Wang, L.; Wang, J.; Liu, C.; Xu, T.; Zhang, X. Machine learning with neural networks to enhance selectivity of nonenzymatic electrochemical biosensors in multianalyte mixtures. ACS Appl. Mater. Interfaces, 2022, 14(47), 52684-52690. doi: 10.1021/acsami.2c17593 PMID: 36397204
- Zhao, X.; Sun, S.; Yang, F.; Li, Y. Atomic-scale evidence of catalyst evolution for the structure-controlled growth of single-walled carbon nanotubes. Acc. Chem. Res., 2022, 55(23), 3334-3344. doi: 10.1021/acs.accounts.2c00592 PMID: 36384282
- Saravanan, K.R.A.; Prabu, N.; Sasidharan, M.; Maduraiveeran, G. Nitrogen-self doped activated carbon nanosheets derived from peanut shells for enhanced hydrogen evolution reaction. Appl. Surf. Sci., 2019, 489, 725-733. doi: 10.1016/j.apsusc.2019.06.040
- Govindhan, M.; Adhikari, B.R.; Chen, A. Nanomaterials-based electrochemical detection of chemical contaminants. RSC Advances, 2014, 4(109), 63741-63760. doi: 10.1039/C4RA10399H
- Xia, H.; Gu, T.; Fan, R.; Zeng, J. Comparative investigation of bioflavonoid electrocatalysis in 1D, 2D, and 3D carbon nanomaterials for simultaneous detection of naringin and hesperidin in fruits. RSC Advances, 2022, 12(11), 6409-6415. doi: 10.1039/D1RA07217J PMID: 35424592
- Silva, R.M.S.; Santos, A.M.; Wong, A.; Fatibello-Filho, O.; Moraes, F.C.; Farias, M.A.S. Determination of ofloxacin in the presence of dopamine, paracetamol, and caffeine using a glassy carbon electrode based on carbon nanomaterials and gold nanoparticles. Anal. Methods, 2022, 14(39), 3859-3866. doi: 10.1039/D2AY01177H PMID: 36129055
- Stegarescu, A.; Lung, I.; Ciorita, A.; Kacso, I.; Opris, O.; Soran, M.L.; Soran, A. The antibacterial properties of nanocomposites based on carbon nanotubes and metal oxides functionalized with azithromycin and ciprofloxacin. Nanomaterials, 2022, 12(23), 4115.
- Pargoletti, E.; Cappelletti, G. Breakthroughs in the design of novel carbon-based metal oxides nanocomposites for VOCs gas sensing. Nanomaterials, 2020, 10(8), 1485. doi: 10.3390/nano10081485 PMID: 32751173
- Li, J.; Tang, S.; Lu, L.; Zeng, H.C. Preparation of nanocomposites of metals, metal oxides, and carbon nanotubes via self-assembly. J. Am. Chem. Soc., 2007, 129(30), 9401-9409. doi: 10.1021/ja071122v PMID: 17616130
- Ramya, M.; Kumar, P.S.; Rangasamy, G.; Shankar, V.U.; Rajesh, G.; Nirmala, K. Experimental investigation of the electrochemical detection of sulfamethoxazole using copper oxide-MoS2 modified glassy carbon electrodes. Environ. Res., 2023, 216(Pt 1), 114463. doi: 10.1016/j.envres.2022.114463 PMID: 36208779
- Zhou, Y.; Wan, Y.; He, M.; Li, Y.; Wu, Q.; Yao, H. Determination of EGFR-overexpressing tumor cells by magnetic gold-decorated graphene oxide nanocomposites based impedance sensor. Anal. Biochem., 2022, 643, 114544. doi: 10.1016/j.ab.2021.114544 PMID: 34973938
- Zhao, P.; Huang, L.; Wang, H.; Wang, C.; Chen, J.; Yang, P.; Ni, M.; Chen, C.; Li, C.; Xie, Y.; Fei, J. An ultrasensitive high-performance baicalin sensor based on C3N4-SWCNTs/reduced graphene oxide/cyclodextrin metal-organic framework nanocomposite. Sens. Actuators B Chem., 2022, 350, 130853. doi: 10.1016/j.snb.2021.130853 PMID: 36320347
- Mehmandoust, M.; Soylak, M.; Erk, N. Innovative molecularly imprinted electrochemical sensor for the nanomolar detection of Tenofovir as an anti-HIV drug. Talanta, 2023, 253, 123991. doi: 10.1016/j.talanta.2022.123991 PMID: 36228557
- Maduraiveeran, G. Metal nanocomposites based electrochemical sensor platform for few emerging biomarkers. Curr. Anal. Chem., 2022, 18(5), 509-517. doi: 10.2174/1573411016999201117094213
- Arivazhagan, M.; Kannan, P.; Maduraiveeran, G. Gold nanoclusters dispersed on gold dendrite-based carbon fibre microelectrodes for the sensitive detection of nitric oxide in human serum Biosensors, 2022, 12, 1128. doi: 10.3390/bios12121128
- Mohammadinejad, A.; Abouzari-Lotf, E.; Aleyaghoob, G.; Rezayi, M.; Kazemi Oskuee, R. Application of a transition metal oxide/carbon-based nanocomposite for designing a molecularly imprinted poly (l-cysteine) electrochemical sensor for curcumin. Food Chem., 2022, 386, 132845. doi: 10.1016/j.foodchem.2022.132845 PMID: 35381537
- Khosravi, F.; Rahaie, M.; Ghaani, M.R.; Azimzadeh, M.; Mostafavi, E. Ultrasensitive electrochemical miR-155 nanocomposite biosensor based on functionalized/conjugated graphene materials and gold nanostars. Sens. Actuators B Chem., 2023, 375, 132877. doi: 10.1016/j.snb.2022.132877
- Hu, Y.; Hojamberdiev, M.; Geng, D. Recent advances in enzyme-free electrochemical hydrogen peroxide sensors based on carbon hybrid nanocomposites. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2021, 9(22), 6970-6990. doi: 10.1039/D1TC01053K
- Zhao, C.; Man, T.; Cao, Y.; Weiss, P.S.; Monbouquette, H.G.; Andrews, A.M. Flexible and implantable polyimide aptamer-field-effect transistor biosensors. ACS Sens., 2022, 7(12), 3644-3653. doi: 10.1021/acssensors.2c01909 PMID: 36399772
- Wang, P.; Luo, B.; Liu, K.; Wang, C.; Dong, H.; Wang, X.; Hou, P.; Li, A. A novel COOHGOCOOHMWNT/pDA/AuNPs based electrochemical aptasensor for detection of AFB 1. RSC Advances, 2022, 12(43), 27940-27947. doi: 10.1039/D2RA03883H PMID: 36320289
- Wang, J.; Zhang, D.; Xu, K.; Hui, N.; Wang, D. Electrochemical assay of acetamiprid in vegetables based on nitrogen-doped graphene/polypyrrole nanocomposites. Mikrochim. Acta, 2022, 189(10), 395. doi: 10.1007/s00604-022-05490-4 PMID: 36169733
- Vasudevan, M.; Perumal, V.; Karuppanan, S.; Ovinis, M.; Bothi Raja, P.; Gopinath, S.C.B.; Immanuel Edison, T.N.J. A comprehensive review on biopolymer mediated nanomaterial composites and their applications in electrochemical sensors. Crit. Rev. Anal. Chem., 2022, 1-24. doi: 10.1080/10408347.2022.2135090 PMID: 36288094
- Chokkareddy, R.; Redhi, G.G.; Karthick, T. A lignin polymer nanocomposite based electrochemical sensor for the sensitive detection of chlorogenic acid in coffee samples. Heliyon, 2019, 5(3), e01457. doi: 10.1016/j.heliyon.2019.e01457 PMID: 30976709
- Chakkarapani, L.D.; Arumugam, S.; Brandl, M. Layer-by-layer sensor architecture of polymers and nanoparticles for electrochemical detection of uric acid in human urine samples. Mater. Today Chem., 2021, 22, 100561. doi: 10.1016/j.mtchem.2021.100561
- Sulym, I.; Cetinkaya, A.; Yence, M.; Çorman, M.E.; Uzun, L.; Ozkan, S.A. Novel electrochemical sensor based on molecularly imprinted polymer combined with L-His-MWCNTs@PDMS-5 nanocomposite for selective and sensitive assay of tetracycline. Electrochim. Acta, 2022, 430, 141102. doi: 10.1016/j.electacta.2022.141102
- Thangamani, G.J.; Deshmukh, K.; Kovářík, T.; Nambiraj, N.A.; Ponnamma, D.; Sadasivuni, K.K.; Khalil, H.P.S.A.; Pasha, S.K.K. Graphene oxide nanocomposites based room temperature gas sensors: A review. Chemosphere, 2021, 280, 130641. doi: 10.1016/j.chemosphere.2021.130641 PMID: 33964741
- Dalkiran, B.; Brett, C.M.A. Polyphenazine and polytriphenylmethane redox polymer/nanomaterialbased electrochemical sensors and biosensors: A review. Mikrochim. Acta, 2021, 188(5), 178. doi: 10.1007/s00604-021-04821-1 PMID: 33913010
- Turco, A.; Corvaglia, S.; Pompa, P.P.; Malitesta, C. An innovative and simple all electrochemical approach to functionalize electrodes with a carbon nanotubes/polypyrrole molecularly imprinted nanocomposite and its application for sulfamethoxazole analysis. J. Colloid Interface Sci., 2021, 599, 676-685. doi: 10.1016/j.jcis.2021.04.133 PMID: 33979749
- Jamei, H.R.; Rezaei, B.; Ensafi, A.A. Ultra-sensitive and selective electrochemical biosensor with aptamer recognition surface based on polymer quantum dots and C60/MWCNTs- polyethylenimine nanocomposites for analysis of thrombin protein. Bioelectrochemistry, 2021, 138, 107701. doi: 10.1016/j.bioelechem.2020.107701 PMID: 33254052
- Chaudhary, V.; Khanna, V.; Ahmed Awan, H.T.; Singh, K.; Khalid, M.; Mishra, Y.K.; Bhansali, S.; Li, C.Z.; Kaushik, A. Towards hospital-on-chip supported by 2D MXenes-based 5th generation intelligent biosensors. Biosens. Bioelectron., 2023, 220, 114847. doi: 10.1016/j.bios.2022.114847 PMID: 36335709
- Zhu, M.; Xu, F.; Miao, S.; Xie, C.; Li, H.; Li, S.; Xia, F. Incorporation of a multi-valent aptamer into electrochemical biosensors to achieve an improved performance for thrombin analysis in blood serum. ChemPlusChem, 2022, 87(11), e202200325. doi: 10.1002/cplu.202200325 PMID: 36410784
- Mehmandoust, M.; Pourhakkak, P.; Hasannia, F.; Özalp, Ö.; Soylak, M.; Erk, N. A reusable and sensitive electrochemical sensor for determination of Allura red in the presence of Tartrazine based on functionalized nanodiamond@SiO2@TiO2; an electrochemical and molecular docking investigation. Food Chem. Toxicol., 2022, 164, 113080. doi: 10.1016/j.fct.2022.113080 PMID: 35490856
- Karimian, R.; Afshar, V. Electrochemical determination of purine and pyrimidine bases using a 1,10-phenanthrolineFe3O4 nanoparticlesgraphene oxidechitosan nanocomposite. Anal. Methods, 2022, 14(38), 3790-3797. doi: 10.1039/D2AY01069K PMID: 36124906
- Johnson, D.; Kim, U.; Mobed-Miremadi, M. Nanocomposite films as electrochemical sensors for detection of catalase activity. Front. Mol. Biosci., 2022, 9, 972008. doi: 10.3389/fmolb.2022.972008 PMID: 36225256
- Kalyani, T.; Sangili, A.; Nanda, A.; Prakash, S.; Kaushik, A.; Kumar Jana, S. Bio-nanocomposite based highly sensitive and label-free electrochemical immunosensor for endometriosis diagnostics application. Bioelectrochemistry, 2021, 139, 107740. doi: 10.1016/j.bioelechem.2021.107740 PMID: 33524653
- Huang, H.; Feng, W.; Chen, Y. Two-dimensional biomaterials: Material science, biological effect and biomedical engineering applications. Chem. Soc. Rev., 2021, 50(20), 11381-11485. doi: 10.1039/D0CS01138J PMID: 34661206
- Lou, B.S.; Rajaji, U.; Chen, S.M.; Chen, T.W. A simple sonochemical assisted synthesis of NiMoO4/chitosan nanocomposite for electrochemical sensing of amlodipine in pharmaceutical and serum samples. Ultrason. Sonochem., 2020, 64, 104827. doi: 10.1016/j.ultsonch.2019.104827 PMID: 31953007
- Khalaf, N.; Ahamad, T.; Naushad, M.; Al-hokbany, N.; Al-Saeedi, S.I.; Almotairi, S.; Alshehri, S.M. Chitosan polymer complex derived nanocomposite (AgNPs/NSC) for electrochemical non-enzymatic glucose sensor. Int. J. Biol. Macromol., 2020, 146, 763-772. doi: 10.1016/j.ijbiomac.2019.11.193 PMID: 31778696
- Kaur, R.; Rana, S.; Lalit, K.; Singh, P.; Kaur, K. Electrochemical detection of methyl parathion via a novel biosensor tailored on highly biocompatible electrochemically reduced graphene oxide-chitosan-hemoglobin coatings. Biosens. Bioelectron., 2020, 167, 112486. doi: 10.1016/j.bios.2020.112486 PMID: 32841783
- Hatamie, A.; He, X.; Zhang, X.W.; Oomen, P.E.; Ewing, A.G. Advances in nano/microscale electrochemical sensors and biosensors for analysis of single vesicles, a key nanoscale organelle in cellular communication. Biosens. Bioelectron., 2023, 220, 114899. doi: 10.1016/j.bios.2022.114899 PMID: 36399941
- Ahangari, A.; Mahmoodi, P.; Mohammadzadeh, A. Advanced nano biosensors for rapid detection of zoonotic bacteria. Biotechnol. Bioeng., 2023, 120(1), 41-56. doi: 10.1002/bit.28266 PMID: 36253878
- Baghayeri, M.; Veisi, H. Fabrication of a facile electrochemical biosensor for hydrogen peroxide using efficient catalysis of hemoglobin on the porous Pd@Fe3O4-MWCNT nanocomposite. Biosens. Bioelectron., 2015, 74, 190-198. doi: 10.1016/j.bios.2015.06.016 PMID: 26143458
- Feng, Y.G.; Zhu, J.H.; Wang, A.J.; Mei, L.P.; Luo, X.; Feng, J.J. AuPt nanocrystals/polydopamine supported on open-pored hollow carbon nanospheres for a dual-signaling electrochemical ratiometric immunosensor towards h-FABP detection. Sens. Actuators B Chem., 2021, 346, 130501. doi: 10.1016/j.snb.2021.130501
- Kumar, T.H.V.; Srinivasan, S.; Krishnan, V.; Vaidyanathan, R.; Babu, K.A.; Natarajan, S.; Veerapandian, M. Peptide-based direct electrochemical detection of receptor binding domains of SARS-CoV-2 spike protein in pristine samples. Sens. Actuators B Chem., 2023, 377, 133052. doi: 10.1016/j.snb.2022.133052 PMID: 36438197
- Shahrubudin, N.; Lee, T.C.; Ramlan, R. An overview on 3d printing technology: technological, materials, and applications. Procedia Manuf., 2019, 35, 1286-1296. doi: 10.1016/j.promfg.2019.06.089
- Muñoz, J.; Oliver-De La Cruz, J.; Forte, G.; Pumera, M. Graphene-based 3D-Printed nanocomposite bioelectronics for monitoring breast cancer cell adhesion. Biosens. Bioelectron., 2023, 226, 115113. doi: 10.1016/j.bios.2023.115113 PMID: 36764127
Supplementary files
