Carbon Nanocomposites-based Electrochemical Sensors and Biosensors for Biomedical Diagnostics


Cite item

Full Text

Abstract

Detection of emergent biomolecules or biomarkers remains crucial for early diagnosis in advancing healthcare monitoring and biomedicine. The possibility for rapid detection, real-time monitoring, high sensitivity, low detection limit, good selectivity, and low cost is central, among other significant issues for advancing point-of-care diagnosis. Carbon-based nanocomposites have been employed as sensing materials for various biomarkers due to their high surface-to-volume ratio, high electrical conductivity, chemical stability, and biocompatibility. The carbon nanomaterials, such as carbon nanotubes (CNTs), graphene (GR), carbon quantum dots (CQDs), carbon fibres (CFs), and their nanocomposites have broadly integrated with numerous sensing electrode materials for the detection of biomarkers under various experimental settings. The present review includes the recent advances in the development of carbon nanomaterials-based electrochemical sensors and biosensors for biomedical applications. The preparation, electrode preparation, effective utilization of carbon-derived nanomaterials, and their sensing performances towards numerous biomarkers have been highlighted. The state-of-the-merit, challenges, and prospects for designing carbon nanocomposites-based electrochemical sensor/biosensor platforms for biomedical diagnostics have also been described.

About the authors

Palanisamy Kannan

College of Biological, Chemical Sciences and Engineering, Jiaxing University

Author for correspondence.
Email: info@benthamscience.net

Govindhan Maduraiveeran

Materials Electrochemistry Laboratory, Department of Chemistry, SRM Institute of Science and Technology

Author for correspondence.
Email: info@benthamscience.net

References

  1. Tvorynska, S.; Barek, J.; Josypcuk, B. Influence of different covalent immobilization protocols on electroanalytical performance of laccase-based biosensors. Bioelectrochemistry, 2022, 148, 108223. doi: 10.1016/j.bioelechem.2022.108223 PMID: 35973323
  2. Torrente-Rodríguez, R.M.; Montero-Calle, A.; San Bartolomé, C.; Cano, O.; Vázquez, M.; Iglesias-Caballero, M.; Corral-Lugo, A.; McConnell, M.J.; Pascal, M.; Mas, V.; Pingarrón, J.M.; Barderas, R.; Campuzano, S. Towards control and oversight of SARS-CoV-2 diagnosis and monitoring through multiplexed quantitative electroanalytical immune response biosensors. Angew. Chem., 2022, 134(28), e202203662. doi: 10.1002/ange.202203662 PMID: 35941922
  3. Singh, S.; Numan, A.; Cinti, S. Electrochemical nano biosensors for the detection of extracellular vesicles exosomes: From the benchtop to everywhere? Biosens. Bioelectron., 2022, 216, , 114635. doi: 10.1016/j.bios.2022.114635 PMID: 35988430
  4. Zhang, Z.; Sen, P.; Adhikari, B.R.; Li, Y.; Soleymani, L. Development of nucleic-acid-based electrochemical biosensors for clinical applications. Angew Chem Int Ed Engl, 2022, 61, e202212496.
  5. Negahdary, M.; Barros Azeredo, N.F.; Santos, B.G.; de Oliveira, T.G.; de Oliveira Lins, R.S.; Santos Lima, I.D.; Angnes, L. Electrochemical nanomaterial-based sensors/biosensors for drug monitoring. Curr. Top. Med. Chem., 2022. PMID: 36239731
  6. Durai, L.; Badhulika, S. Current challenges and developments in perovskite-based electrochemical biosensors for effective theragnostics of neurological disorders. ACS Omega, 2022, 7(44), 39491-39497. doi: 10.1021/acsomega.2c05591 PMID: 36385846
  7. Mao, B.; Qian, L.; Govindhan, M.; Liu, Z.; Chen, A. Simultaneous electrochemical detection of guanine and adenine using reduced graphene oxide decorated with AuPt nanoclusters. Mikrochim. Acta, 2021, 188(8), 276. doi: 10.1007/s00604-021-04926-7 PMID: 34319444
  8. Maduraiveeran, G.; Chen, A. Design of an enzyme-mimicking NiO@Au nanocomposite for the sensitive electrochemical detection of lactic acid in human serum and urine. Electrochim. Acta, 2021, 368, , 137612. doi: 10.1016/j.electacta.2020.137612
  9. Bhattacharya, G.; Fishlock, S.J.; Hussain, S.; Choudhury, S.; Xiang, A.; Kandola, B.; Pritam, A.; Soin, N.; Roy, S.S.; McLaughlin, J.A. Disposable paper-based biosensors: optimizing the electrochemical properties of laser-induced graphene. ACS Appl. Mater. Interfaces, 2022, 14(27), 31109-31120. doi: 10.1021/acsami.2c06350 PMID: 35767835
  10. Maduraiveeran, G.; Jin, W. Carbon nanomaterials: Synthesis, properties and applications in electrochemical sensors and energy conversion systems. Mater. Sci. Eng. B, 2021, 272, 115341. doi: 10.1016/j.mseb.2021.115341
  11. Maduraiveeran, G.; Sasidharan, M.; Ganesan, V. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens. Bioelectron., 2018, 103, 113-129. doi: 10.1016/j.bios.2017.12.031 PMID: 29289816
  12. Cetinkaya, A.; Kaya, S.I.; Ozcelikay, G.; Budak, F.; Ozkan, S.A. Carbon nanomaterials-based novel hybrid platforms for electrochemical sensor applications in drug analysis. Crit. Rev. Anal. Chem., 2022, 1-16. doi: 10.1080/10408347.2022.2109125 PMID: 35943520
  13. Katowah, D.F.; Mohammed, G.I.; Al-Eryani, D.A.; Sobahi, T.R.; Hussein, M.A. Rapid and sensitive electrochemical sensor of cross-linked polyaniline/oxidized carbon nanomaterials core-shell nanocomposites for determination of 2,4-dichlorophenol. PLoS One, 2020, 15(6), e0234815. doi: 10.1371/journal.pone.0234815 PMID: 32584837
  14. Malode, S.J.; Shanbhag, M.M.; Kumari, R.; Dkhar, D.S.; Chandra, P.; Shetti, N.P. Biomass-derived carbon nanomaterials for sensor applications. J. Pharm. Biomed. Anal., 2023, 222, 115102. doi: 10.1016/j.jpba.2022.115102 PMID: 36283325
  15. Zheng, S.; Tian, Y.; Ouyang, J.; Shen, Y.; Wang, X.; Luan, J. Carbon nanomaterials for drug delivery and tissue engineering. Front Chem., 2022, 10, 990362. doi: 10.3389/fchem.2022.990362 PMID: 36171994
  16. Song, H.; Huo, M.; Zhou, M.; Chang, H.; Li, J.; Zhang, Q.; Fang, Y.; Wang, H.; Zhang, D. Carbon nanomaterials-based electrochemical sensors for heavy metal detection. Crit. Rev. Anal. Chem., 2022, 1-20. doi: 10.1080/10408347.2022.2151832 PMID: 36463557
  17. Mondal, J.; An, J.M.; Surwase, S.S.; Chakraborty, K.; Sutradhar, S.C.; Hwang, J.; Lee, J.; Lee, Y.K. Carbon nanotube and its derived nanomaterials based high performance biosensing platform. Biosensors, 2022, 12(9), 731. doi: 10.3390/bios12090731 PMID: 36140116
  18. Liu, Z.; Ling, Q.; Cai, Y.; Xu, L.; Su, J.; Yu, K.; Wu, X.; Xu, J.; Hu, B.; Wang, X. Synthesis of carbon-based nanomaterials and their application in pollution management. Nanoscale Adv., 2022, 4(5), 1246-1262. doi: 10.1039/D1NA00843A PMID: 36133685
  19. Liao, Z.; Zi, Y.; Zhou, C.; Zeng, W.; Luo, W.; Zeng, H.; Xia, M.; Luo, Z. Recent advances in the synthesis, characterization, and application of carbon nanomaterials for the removal of endocrine-disrupting chemicals: A review. Int. J. Mol. Sci., 2022, 23(21), 13148. doi: 10.3390/ijms232113148 PMID: 36361935
  20. Govindhan, M.; Amiri, M.; Chen, A. Au nanoparticle/graphene nanocomposite as a platform for the sensitive detection of NADH in human urine. Biosens. Bioelectron., 2015, 66, 474-480. doi: 10.1016/j.bios.2014.12.012 PMID: 25499660
  21. Adhikari, B.R.; Govindhan, M.; Chen, A. Sensitive detection of acetaminophen with graphene-based electrochemical sensor. Electrochim. Acta, 2015, 162, 198-204. doi: 10.1016/j.electacta.2014.10.028
  22. Adhikari, B.R.; Govindhan, M.; Chen, A. Carbonnanomaterials based electrochemical sensors/biosensors for the sensitive detection of pharmaceutical and biological compounds. Sensors, 2015, 15(9), 22490-22508. doi: 10.3390/s150922490 PMID: 26404304
  23. Kaur, H.; Siwal, S.S.; Chauhan, G.; Saini, A.K.; Kumari, A.; Thakur, V.K. Recent advances in electrochemical-based sensors amplified with carbon-based nanomaterials (CNMs) for sensing pharmaceutical and food pollutants. Chemosphere, 2022, 304, 135182. doi: 10.1016/j.chemosphere.2022.135182 PMID: 35667504
  24. Hu, J.; Zhang, Z. Application of electrochemical sensors based on carbon nanomaterials for detection of flavonoids. Nanomaterials, 2020, 10(10), 2020. doi: 10.3390/nano10102020 PMID: 33066360
  25. Cernat, A.; Tertiş, M.; Săndulescu, R.; Bedioui, F.; Cristea, A.; Cristea, C. Electrochemical sensors based on carbon nanomaterials for acetaminophen detection: A review. Anal. Chim. Acta, 2015, 886, 16-28. doi: 10.1016/j.aca.2015.05.044 PMID: 26320632
  26. Li, Y.; Han, X.; Mu, X.; Wang, Y.; Shi, C.; Ma, C. Single-walled carbon nanotubes-based RNA protection and extraction improves RT-qPCR sensitivity for SARS-CoV-2 detection. Anal. Chim. Acta, 2023, 1238, 340639. doi: 10.1016/j.aca.2022.340639 PMID: 36464451
  27. Wardani, N.I.; Kangkamano, T.; Wannapob, R.; Kanatharana, P.; Thavarungkul, P.; Limbut, W. Electrochemical sensor based on molecularly imprinted polymer cryogel and multiwalled carbon nanotubes for direct insulin detection. Talanta, 2023, 254, 124137. doi: 10.1016/j.talanta.2022.124137 PMID: 36463801
  28. Christensen, E.E.; Amin, M.; Tumiel, T.M.; Krauss, T.D. Localizedcharge on surfactant-wrapped single-walled carbon nanotubes. J. Phys. Chem. Lett., 2022, 13(46), 10705-10712. doi: 10.1021/acs.jpclett.2c02650 PMID: 36367529
  29. Li, Y.; Tang, J.; Lin, Y.; Li, J.; Yang, Y.; Zhao, P.; Fei, J.; Xie, Y. Ultrasensitive determination of natural flavonoid rutin using an electrochemical sensor based on metal-organic framework CAU−1/acidified carbon nanotubes composites. Molecules, 2022, 27(22), 7761. doi: 10.3390/molecules27227761 PMID: 36431862
  30. Lee, J.; Lee, Y.; Lim, J.S.; Kim, S.W.; Jang, H.; Seo, B.; Joo, S.H.; Sa, Y.J. Discriminating active sites for the electrochemical synthesis of H2O2 by molecular functionalisation of carbon nanotubes. Nanoscale, 2022, 15(1), 195-203. doi: 10.1039/D2NR04652K PMID: 36477469
  31. Ahmad, H.; Khan, R.A.; Koo, B.H.; Alsalme, A. Systematic study of physicochemical and electrochemical properties of carbon nanomaterials. RSC Advances, 2022, 12(24), 15593-15600. doi: 10.1039/D2RA02533G PMID: 35685184
  32. Barrejón, M.; Arellano, L.M.; D’Souza, F.; Langa, F. Bidirectional charge-transfer behavior in carbon-based hybrid nanomaterials. Nanoscale, 2019, 11(32), 14978-14992. doi: 10.1039/C9NR04388H PMID: 31372604
  33. Araby, S.; Meng, Q.; Zhang, L.; Zaman, I.; Majewski, P.; Ma, J. Elastomeric composites based on carbon nanomaterials. Nanotechnology, 2015, 26(11), 112001. doi: 10.1088/0957-4484/26/11/112001 PMID: 25705981
  34. Yoshida, Y. Carbon nanomaterials in analytical chemistry. Anal. Sci., 2018, 34(3), 257-258. doi: 10.2116/analsci.34.257 PMID: 29526890
  35. Xu, Y.; Chen, P.; Peng, H. Generating electricity from water through carbon nanomaterials. Chemistry, 2018, 24(24), 6287-6294. doi: 10.1002/chem.201704638 PMID: 29315891
  36. Nasir, S.; Hussein, M.; Zainal, Z.; Yusof, N. Carbon-based nanomaterials/allotropes: A glimpse of their synthesis, properties and some applications. Materials, 2018, 11(2), 295. doi: 10.3390/ma11020295 PMID: 29438327
  37. Abu Nayem, S.M.; Shaheen Shah, S.; Sultana, N.; Abdul Aziz, M.; Saleh Ahammad, A.J. Electrochemical sensing platforms of dihydroxybenzene: Part 2 – nanomaterials excluding carbon nanotubes and graphene. Chem. Rec., 2021, 21(5), 1073-1097. doi: 10.1002/tcr.202100044 PMID: 33855801
  38. Solid carbon, springy and light. Nature, 2013, 494(7438), 404. doi: 10.1038/494404a PMID: 23446383
  39. Zhou, J.; Xia, Y.; Zou, Z.; Yang, Q.; Jiang, X.; Xiong, X. Microplasma-enabled carbon dots composited with multi-walled carbon nanotubes for dopamine detection. Anal. Chim. Acta, 2023, 1237, 340631. doi: 10.1016/j.aca.2022.340631 PMID: 36442944
  40. Karimi-Maleh, H.; Orooji, Y.; Yola, M.L. Pharmaceutical and personal care products (PPCPs) treatment and sensing by 2D carbon nanomaterials; challenges and perspectives. Chemosphere, 2023, 311(Pt 1), 136967. doi: 10.1016/j.chemosphere.2022.136967 PMID: 36273610
  41. Zhu, X.; Yan, X.; Yang, S.; Wang, Y.; Wang, S.; Tian, Y. DNA-mediated assembly of carbon nanomaterials. Chempluschem, 2022, 87, e202200089.
  42. Zhou, Z.; Wang, L.; Wang, J.; Liu, C.; Xu, T.; Zhang, X. Machine learning with neural networks to enhance selectivity of nonenzymatic electrochemical biosensors in multianalyte mixtures. ACS Appl. Mater. Interfaces, 2022, 14(47), 52684-52690. doi: 10.1021/acsami.2c17593 PMID: 36397204
  43. Zhao, X.; Sun, S.; Yang, F.; Li, Y. Atomic-scale evidence of catalyst evolution for the structure-controlled growth of single-walled carbon nanotubes. Acc. Chem. Res., 2022, 55(23), 3334-3344. doi: 10.1021/acs.accounts.2c00592 PMID: 36384282
  44. Saravanan, K.R.A.; Prabu, N.; Sasidharan, M.; Maduraiveeran, G. Nitrogen-self doped activated carbon nanosheets derived from peanut shells for enhanced hydrogen evolution reaction. Appl. Surf. Sci., 2019, 489, 725-733. doi: 10.1016/j.apsusc.2019.06.040
  45. Govindhan, M.; Adhikari, B.R.; Chen, A. Nanomaterials-based electrochemical detection of chemical contaminants. RSC Advances, 2014, 4(109), 63741-63760. doi: 10.1039/C4RA10399H
  46. Xia, H.; Gu, T.; Fan, R.; Zeng, J. Comparative investigation of bioflavonoid electrocatalysis in 1D, 2D, and 3D carbon nanomaterials for simultaneous detection of naringin and hesperidin in fruits. RSC Advances, 2022, 12(11), 6409-6415. doi: 10.1039/D1RA07217J PMID: 35424592
  47. Silva, R.M.S.; Santos, A.M.; Wong, A.; Fatibello-Filho, O.; Moraes, F.C.; Farias, M.A.S. Determination of ofloxacin in the presence of dopamine, paracetamol, and caffeine using a glassy carbon electrode based on carbon nanomaterials and gold nanoparticles. Anal. Methods, 2022, 14(39), 3859-3866. doi: 10.1039/D2AY01177H PMID: 36129055
  48. Stegarescu, A.; Lung, I.; Ciorita, A.; Kacso, I.; Opris, O.; Soran, M.L.; Soran, A. The antibacterial properties of nanocomposites based on carbon nanotubes and metal oxides functionalized with azithromycin and ciprofloxacin. Nanomaterials, 2022, 12(23), 4115.
  49. Pargoletti, E.; Cappelletti, G. Breakthroughs in the design of novel carbon-based metal oxides nanocomposites for VOCs gas sensing. Nanomaterials, 2020, 10(8), 1485. doi: 10.3390/nano10081485 PMID: 32751173
  50. Li, J.; Tang, S.; Lu, L.; Zeng, H.C. Preparation of nanocomposites of metals, metal oxides, and carbon nanotubes via self-assembly. J. Am. Chem. Soc., 2007, 129(30), 9401-9409. doi: 10.1021/ja071122v PMID: 17616130
  51. Ramya, M.; Kumar, P.S.; Rangasamy, G.; Shankar, V.U.; Rajesh, G.; Nirmala, K. Experimental investigation of the electrochemical detection of sulfamethoxazole using copper oxide-MoS2 modified glassy carbon electrodes. Environ. Res., 2023, 216(Pt 1), 114463. doi: 10.1016/j.envres.2022.114463 PMID: 36208779
  52. Zhou, Y.; Wan, Y.; He, M.; Li, Y.; Wu, Q.; Yao, H. Determination of EGFR-overexpressing tumor cells by magnetic gold-decorated graphene oxide nanocomposites based impedance sensor. Anal. Biochem., 2022, 643, 114544. doi: 10.1016/j.ab.2021.114544 PMID: 34973938
  53. Zhao, P.; Huang, L.; Wang, H.; Wang, C.; Chen, J.; Yang, P.; Ni, M.; Chen, C.; Li, C.; Xie, Y.; Fei, J. An ultrasensitive high-performance baicalin sensor based on C3N4-SWCNTs/reduced graphene oxide/cyclodextrin metal-organic framework nanocomposite. Sens. Actuators B Chem., 2022, 350, 130853. doi: 10.1016/j.snb.2021.130853 PMID: 36320347
  54. Mehmandoust, M.; Soylak, M.; Erk, N. Innovative molecularly imprinted electrochemical sensor for the nanomolar detection of Tenofovir as an anti-HIV drug. Talanta, 2023, 253, 123991. doi: 10.1016/j.talanta.2022.123991 PMID: 36228557
  55. Maduraiveeran, G. Metal nanocomposites based electrochemical sensor platform for few emerging biomarkers. Curr. Anal. Chem., 2022, 18(5), 509-517. doi: 10.2174/1573411016999201117094213
  56. Arivazhagan, M.; Kannan, P.; Maduraiveeran, G. Gold nanoclusters dispersed on gold dendrite-based carbon fibre microelectrodes for the sensitive detection of nitric oxide in human serum Biosensors, 2022, 12, 1128. doi: 10.3390/bios12121128
  57. Mohammadinejad, A.; Abouzari-Lotf, E.; Aleyaghoob, G.; Rezayi, M.; Kazemi Oskuee, R. Application of a transition metal oxide/carbon-based nanocomposite for designing a molecularly imprinted poly (l-cysteine) electrochemical sensor for curcumin. Food Chem., 2022, 386, 132845. doi: 10.1016/j.foodchem.2022.132845 PMID: 35381537
  58. Khosravi, F.; Rahaie, M.; Ghaani, M.R.; Azimzadeh, M.; Mostafavi, E. Ultrasensitive electrochemical miR-155 nanocomposite biosensor based on functionalized/conjugated graphene materials and gold nanostars. Sens. Actuators B Chem., 2023, 375, 132877. doi: 10.1016/j.snb.2022.132877
  59. Hu, Y.; Hojamberdiev, M.; Geng, D. Recent advances in enzyme-free electrochemical hydrogen peroxide sensors based on carbon hybrid nanocomposites. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2021, 9(22), 6970-6990. doi: 10.1039/D1TC01053K
  60. Zhao, C.; Man, T.; Cao, Y.; Weiss, P.S.; Monbouquette, H.G.; Andrews, A.M. Flexible and implantable polyimide aptamer-field-effect transistor biosensors. ACS Sens., 2022, 7(12), 3644-3653. doi: 10.1021/acssensors.2c01909 PMID: 36399772
  61. Wang, P.; Luo, B.; Liu, K.; Wang, C.; Dong, H.; Wang, X.; Hou, P.; Li, A. A novel COOH–GO–COOH–MWNT/pDA/AuNPs based electrochemical aptasensor for detection of AFB 1. RSC Advances, 2022, 12(43), 27940-27947. doi: 10.1039/D2RA03883H PMID: 36320289
  62. Wang, J.; Zhang, D.; Xu, K.; Hui, N.; Wang, D. Electrochemical assay of acetamiprid in vegetables based on nitrogen-doped graphene/polypyrrole nanocomposites. Mikrochim. Acta, 2022, 189(10), 395. doi: 10.1007/s00604-022-05490-4 PMID: 36169733
  63. Vasudevan, M.; Perumal, V.; Karuppanan, S.; Ovinis, M.; Bothi Raja, P.; Gopinath, S.C.B.; Immanuel Edison, T.N.J. A comprehensive review on biopolymer mediated nanomaterial composites and their applications in electrochemical sensors. Crit. Rev. Anal. Chem., 2022, 1-24. doi: 10.1080/10408347.2022.2135090 PMID: 36288094
  64. Chokkareddy, R.; Redhi, G.G.; Karthick, T. A lignin polymer nanocomposite based electrochemical sensor for the sensitive detection of chlorogenic acid in coffee samples. Heliyon, 2019, 5(3), e01457. doi: 10.1016/j.heliyon.2019.e01457 PMID: 30976709
  65. Chakkarapani, L.D.; Arumugam, S.; Brandl, M. Layer-by-layer sensor architecture of polymers and nanoparticles for electrochemical detection of uric acid in human urine samples. Mater. Today Chem., 2021, 22, 100561. doi: 10.1016/j.mtchem.2021.100561
  66. Sulym, I.; Cetinkaya, A.; Yence, M.; Çorman, M.E.; Uzun, L.; Ozkan, S.A. Novel electrochemical sensor based on molecularly imprinted polymer combined with L-His-MWCNTs@PDMS-5 nanocomposite for selective and sensitive assay of tetracycline. Electrochim. Acta, 2022, 430, 141102. doi: 10.1016/j.electacta.2022.141102
  67. Thangamani, G.J.; Deshmukh, K.; Kovářík, T.; Nambiraj, N.A.; Ponnamma, D.; Sadasivuni, K.K.; Khalil, H.P.S.A.; Pasha, S.K.K. Graphene oxide nanocomposites based room temperature gas sensors: A review. Chemosphere, 2021, 280, 130641. doi: 10.1016/j.chemosphere.2021.130641 PMID: 33964741
  68. Dalkiran, B.; Brett, C.M.A. Polyphenazine and polytriphenylmethane redox polymer/nanomaterial–based electrochemical sensors and biosensors: A review. Mikrochim. Acta, 2021, 188(5), 178. doi: 10.1007/s00604-021-04821-1 PMID: 33913010
  69. Turco, A.; Corvaglia, S.; Pompa, P.P.; Malitesta, C. An innovative and simple all electrochemical approach to functionalize electrodes with a carbon nanotubes/polypyrrole molecularly imprinted nanocomposite and its application for sulfamethoxazole analysis. J. Colloid Interface Sci., 2021, 599, 676-685. doi: 10.1016/j.jcis.2021.04.133 PMID: 33979749
  70. Jamei, H.R.; Rezaei, B.; Ensafi, A.A. Ultra-sensitive and selective electrochemical biosensor with aptamer recognition surface based on polymer quantum dots and C60/MWCNTs- polyethylenimine nanocomposites for analysis of thrombin protein. Bioelectrochemistry, 2021, 138, 107701. doi: 10.1016/j.bioelechem.2020.107701 PMID: 33254052
  71. Chaudhary, V.; Khanna, V.; Ahmed Awan, H.T.; Singh, K.; Khalid, M.; Mishra, Y.K.; Bhansali, S.; Li, C.Z.; Kaushik, A. Towards hospital-on-chip supported by 2D MXenes-based 5th generation intelligent biosensors. Biosens. Bioelectron., 2023, 220, 114847. doi: 10.1016/j.bios.2022.114847 PMID: 36335709
  72. Zhu, M.; Xu, F.; Miao, S.; Xie, C.; Li, H.; Li, S.; Xia, F. Incorporation of a multi-valent aptamer into electrochemical biosensors to achieve an improved performance for thrombin analysis in blood serum. ChemPlusChem, 2022, 87(11), e202200325. doi: 10.1002/cplu.202200325 PMID: 36410784
  73. Mehmandoust, M.; Pourhakkak, P.; Hasannia, F.; Özalp, Ö.; Soylak, M.; Erk, N. A reusable and sensitive electrochemical sensor for determination of Allura red in the presence of Tartrazine based on functionalized nanodiamond@SiO2@TiO2; an electrochemical and molecular docking investigation. Food Chem. Toxicol., 2022, 164, 113080. doi: 10.1016/j.fct.2022.113080 PMID: 35490856
  74. Karimian, R.; Afshar, V. Electrochemical determination of purine and pyrimidine bases using a 1,10-phenanthroline–Fe3O4 nanoparticles–graphene oxide–chitosan nanocomposite. Anal. Methods, 2022, 14(38), 3790-3797. doi: 10.1039/D2AY01069K PMID: 36124906
  75. Johnson, D.; Kim, U.; Mobed-Miremadi, M. Nanocomposite films as electrochemical sensors for detection of catalase activity. Front. Mol. Biosci., 2022, 9, 972008. doi: 10.3389/fmolb.2022.972008 PMID: 36225256
  76. Kalyani, T.; Sangili, A.; Nanda, A.; Prakash, S.; Kaushik, A.; Kumar Jana, S. Bio-nanocomposite based highly sensitive and label-free electrochemical immunosensor for endometriosis diagnostics application. Bioelectrochemistry, 2021, 139, 107740. doi: 10.1016/j.bioelechem.2021.107740 PMID: 33524653
  77. Huang, H.; Feng, W.; Chen, Y. Two-dimensional biomaterials: Material science, biological effect and biomedical engineering applications. Chem. Soc. Rev., 2021, 50(20), 11381-11485. doi: 10.1039/D0CS01138J PMID: 34661206
  78. Lou, B.S.; Rajaji, U.; Chen, S.M.; Chen, T.W. A simple sonochemical assisted synthesis of NiMoO4/chitosan nanocomposite for electrochemical sensing of amlodipine in pharmaceutical and serum samples. Ultrason. Sonochem., 2020, 64, 104827. doi: 10.1016/j.ultsonch.2019.104827 PMID: 31953007
  79. Khalaf, N.; Ahamad, T.; Naushad, M.; Al-hokbany, N.; Al-Saeedi, S.I.; Almotairi, S.; Alshehri, S.M. Chitosan polymer complex derived nanocomposite (AgNPs/NSC) for electrochemical non-enzymatic glucose sensor. Int. J. Biol. Macromol., 2020, 146, 763-772. doi: 10.1016/j.ijbiomac.2019.11.193 PMID: 31778696
  80. Kaur, R.; Rana, S.; Lalit, K.; Singh, P.; Kaur, K. Electrochemical detection of methyl parathion via a novel biosensor tailored on highly biocompatible electrochemically reduced graphene oxide-chitosan-hemoglobin coatings. Biosens. Bioelectron., 2020, 167, 112486. doi: 10.1016/j.bios.2020.112486 PMID: 32841783
  81. Hatamie, A.; He, X.; Zhang, X.W.; Oomen, P.E.; Ewing, A.G. Advances in nano/microscale electrochemical sensors and biosensors for analysis of single vesicles, a key nanoscale organelle in cellular communication. Biosens. Bioelectron., 2023, 220, 114899. doi: 10.1016/j.bios.2022.114899 PMID: 36399941
  82. Ahangari, A.; Mahmoodi, P.; Mohammadzadeh, A. Advanced nano biosensors for rapid detection of zoonotic bacteria. Biotechnol. Bioeng., 2023, 120(1), 41-56. doi: 10.1002/bit.28266 PMID: 36253878
  83. Baghayeri, M.; Veisi, H. Fabrication of a facile electrochemical biosensor for hydrogen peroxide using efficient catalysis of hemoglobin on the porous Pd@Fe3O4-MWCNT nanocomposite. Biosens. Bioelectron., 2015, 74, 190-198. doi: 10.1016/j.bios.2015.06.016 PMID: 26143458
  84. Feng, Y.G.; Zhu, J.H.; Wang, A.J.; Mei, L.P.; Luo, X.; Feng, J.J. AuPt nanocrystals/polydopamine supported on open-pored hollow carbon nanospheres for a dual-signaling electrochemical ratiometric immunosensor towards h-FABP detection. Sens. Actuators B Chem., 2021, 346, 130501. doi: 10.1016/j.snb.2021.130501
  85. Kumar, T.H.V.; Srinivasan, S.; Krishnan, V.; Vaidyanathan, R.; Babu, K.A.; Natarajan, S.; Veerapandian, M. Peptide-based direct electrochemical detection of receptor binding domains of SARS-CoV-2 spike protein in pristine samples. Sens. Actuators B Chem., 2023, 377, 133052. doi: 10.1016/j.snb.2022.133052 PMID: 36438197
  86. Shahrubudin, N.; Lee, T.C.; Ramlan, R. An overview on 3d printing technology: technological, materials, and applications. Procedia Manuf., 2019, 35, 1286-1296. doi: 10.1016/j.promfg.2019.06.089
  87. Muñoz, J.; Oliver-De La Cruz, J.; Forte, G.; Pumera, M. Graphene-based 3D-Printed nanocomposite bioelectronics for monitoring breast cancer cell adhesion. Biosens. Bioelectron., 2023, 226, 115113. doi: 10.1016/j.bios.2023.115113 PMID: 36764127

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers