PaSTe. Blockade of the Lipid Phenotype of Prostate Cancer as Metabolic Therapy: A Theoretical Proposal
- Authors: Romo-Perez A.1, Domínguez-Gómez G.2, Chávez-Blanco A.2, González-Fierro A.2, Correa-Basurto J.3, Dueñas-González A.2
-
Affiliations:
- Instituto de Química, Universidad Nacional Autónoma de México
- Subdirección de Investigación Básica, Instituto Nacional de Cancerologia
- Escuela Superior de Medicina,, Instituto Politécnico Nacional
- Issue: Vol 31, No 22 (2024)
- Pages: 3265-3285
- Section: Anti-Infectives and Infectious Diseases
- URL: https://rjeid.com/0929-8673/article/view/644760
- DOI: https://doi.org/10.2174/0929867330666230607104441
- ID: 644760
Cite item
Full Text
Abstract
Background:Prostate cancer is the most frequently diagnosed malignancy in 112 countries and is the leading cause of death in eighteen. In addition to continuing research on prevention and early diagnosis, improving treatments and making them more affordable is imperative. In this sense, the therapeutic repurposing of low-cost and widely available drugs could reduce global mortality from this disease. The malignant metabolic phenotype is becoming increasingly important due to its therapeutic implications. Cancer generally is characterized by hyperactivation of glycolysis, glutaminolysis, and fatty acid synthesis. However, prostate cancer is particularly lipidic; it exhibits increased activity in the pathways for synthesizing fatty acids, cholesterol, and fatty acid oxidation (FAO).
Objective:Based on a literature review, we propose the PaSTe regimen (Pantoprazole, Simvastatin, Trimetazidine) as a metabolic therapy for prostate cancer. Pantoprazole and simvastatin inhibit the enzymes fatty acid synthase (FASN) and 3-hydroxy-3-methylglutaryl- coenzyme A reductase (HMGCR), therefore, blocking the synthesis of fatty acids and cholesterol, respectively. In contrast, trimetazidine inhibits the enzyme 3-β-Ketoacyl- CoA thiolase (3-KAT), an enzyme that catalyzes the oxidation of fatty acids (FAO). It is known that the pharmacological or genetic depletion of any of these enzymes has antitumor effects in prostatic cancer.
Results:Based on this information, we hypothesize that the PaSTe regimen will have increased antitumor effects and may impede the metabolic reprogramming shift. Existing knowledge shows that enzyme inhibition occurs at molar concentrations achieved in plasma at standard doses of these drugs.
Conclusion:We conclude that this regimen deserves to be preclinically evaluated because of its clinical potential for the treatment of prostate cancer.
About the authors
Adriana Romo-Perez
Instituto de Química, Universidad Nacional Autónoma de México
Email: info@benthamscience.net
Guadalupe Domínguez-Gómez
Subdirección de Investigación Básica, Instituto Nacional de Cancerologia
Email: info@benthamscience.net
Alma Chávez-Blanco
Subdirección de Investigación Básica, Instituto Nacional de Cancerologia
Email: info@benthamscience.net
Aurora González-Fierro
Subdirección de Investigación Básica, Instituto Nacional de Cancerologia
Email: info@benthamscience.net
José Correa-Basurto
Escuela Superior de Medicina,, Instituto Politécnico Nacional
Email: info@benthamscience.net
Alfonso Dueñas-González
Subdirección de Investigación Básica, Instituto Nacional de Cancerologia
Author for correspondence.
Email: info@benthamscience.net
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
- Gandaglia, G.; Leni, R.; Bray, F.; Fleshner, N.; Freedland, S.J.; Kibel, A.; Stattin, P.; Van Poppel, H.; La Vecchia, C. Epidemiology and prevention of prostate cancer. Eur Urol Oncol., 2021, 4, 877-892. doi: 10.1016/j.euo.2021.09.006
- Tabayoyong, W.; Abouassaly, R. Prostate cancer screening and the associated controversy. Surg. Clin. North Am., 2015, 95(5), 1023-1039. doi: 10.1016/j.suc.2015.05.001 PMID: 26315521
- Prostate Cancer Treatment (PDQ®): Health Professional Version In: PDQ Cancer Information Summaries; National Cancer Institute (US): Bethesda (MD), 2002.
- Prager, G.W.; Braga, S.; Bystricky, B.; Qvortrup, C.; Criscitiello, C.; Esin, E.; Sonke, G.S.; Martínez, G.; Frenel, J.S.; Karamouzis, M.; Strijbos, M.; Yazici, O.; Bossi, P.; Banerjee, S.; Troiani, T.; Eniu, A.; Ciardiello, F.; Tabernero, J.; Zielinski, C.C.; Casali, P.G.; Cardoso, F.; Douillard, J.Y.; Jezdic, S.; McGregor, K.; Bricalli, G.; Vyas, M.; Ilbawi, A. Global cancer control: Responding to the growing burden, rising costs and inequalities in access. ESMO Open, 2018, 3(2), e000285. doi: 10.1136/esmoopen-2017-000285 PMID: 29464109
- Yousuf, Z.S. Financial toxicity of cancer care: Its time to intervene. J. Natl. Cancer Inst., 2016, 108(5), djv370. doi: 10.1093/jnci/djv370 PMID: 26657334
- Ramsey, S.D.; Bansal, A.; Fedorenko, C.R.; Blough, D.K.; Overstreet, K.A.; Shankaran, V.; Newcomb, P. Financial insolvency as a risk factor for early mortality among patients with cancer. J. Clin. Oncol., 2016, 34(9), 980-986. doi: 10.1200/JCO.2015.64.6620 PMID: 26811521
- Jayadevappa, R.; Schwartz, J.S.; Chhatre, S.; Gallo, J.J.; Wein, A.J.; Malkowicz, S.B. The burden of out-of-pocket and indirect costs of prostate cancer. Prostate, 2010, 70(11), 1255-1264. doi: 10.1002/pros.21161 PMID: 20658653
- Gordon, L.G.; Walker, S.M.; Mervin, M.C.; Lowe, A.; Smith, D.P.; Gardiner, R.A.; Chambers, S.K. Financial toxicity: A potential side effect of prostate cancer treatment among Australian men. Eur. J. Cancer Care, 2017, 26(1), e12392. doi: 10.1111/ecc.12392 PMID: 26423576
- Housser, E.; Mathews, M.; LeMessurier, J.; Young, S.; Hawboldt, J.; West, R. Responses by breast and prostate cancer patients to out-of-pocket costs in Newfoundland and Labrador. Curr. Oncol., 2013, 20(3), 158-165. doi: 10.3747/co.20.1197 PMID: 23737684
- Koskinen, J.P.; Färkkilä, N.; Sintonen, H.; Saarto, T.; Taari, K.; Roine, R.P. The association of financial difficulties and out-of-pocket payments with health-related quality of life among breast, prostate and colorectal cancer patients. Acta Oncol., 2019, 58(7), 1062-1068. doi: 10.1080/0284186X.2019.1592218 PMID: 30943813
- Xu, W.Y.; Retchin, S.M.; Seiber, E.E.; Li, Y. Income-based disparities in financial burdens of medical spending under the affordable care act in families with individuals having chronic conditions. Inquiry, 2019, 56, 0046958019871815. doi: 10.1177/0046958019871815 PMID: 31455121
- Howard, D.H.; Quek, R.G.W.; Fox, K.M.; Arondekar, B.; Filson, C.P. The value of new drugs for advanced prostate cancer. Cancer, 2021, 127(18), 3457-3465. doi: 10.1002/cncr.33662 PMID: 34062620
- E.O.-O. and M. Roser. OurWorldInData.org; Financ Healthc, 2017.
- Allemani, C.; Matsuda, T.; Di Carlo, V.; Harewood, R.; Matz, M.; Nikić, M.; Bonaventure, A.; Valkov, M.; Johnson, C.J.; Estève, J.; Ogunbiyi, O.J.; Azevedo e Silva, G.; Chen, W.Q.; Eser, S.; Engholm, G.; Stiller, C.A.; Monnereau, A.; Woods, R.R.; Visser, O.; Lim, G.H.; Aitken, J.; Weir, H.K.; Coleman, M.P.; Bouzbid, S.; Hamdi-Chérif, M.; Zaidi, Z.; Meguenni, K.; Regagba, D.; Bayo, S.; Cheick Bougadari, T.; Manraj, S.S.; Bendahhou, K.; Fabowale, A.; Bradshaw, D.; Somdyala, N.I.M.; Kumcher, I.; Moreno, F.; Calabrano, G.H.; Espinola, S.B.; Carballo, Q.B.; Fita, R.; Diumenjo, M.C.; Laspada, W.D.; Ibañez, S.G.; Lima, C.A.; De Souza, P.C.F.; Del Pino, K.; Laporte, C.; Curado, M.P.; de Oliveira, J.C.; Veneziano, C.L.A.; Veneziano, D.B.; Latorre, M.R.D.O.; Tanaka, L.F.; Rebelo, M.S.; Santos, M.O.; Galaz, J.C.; Aparicio Aravena, M.; Sanhueza Monsalve, J.; Herrmann, D.A.; Vargas, S.; Herrera, V.M.; Uribe, C.J.; Bravo, L.E.; Garcia, L.S.; Arias-Ortiz, N.E.; Morantes, D.; Jurado, D.M.; Yépez Chamorro, M.C.; Delgado, S.; Ramirez, M.; Galán Alvarez, Y.H.; Torres, P.; Martínez-Reyes, F.; Jaramillo, L.; Quinto, R.; Castillo, J.; Mendoza, M.; Cueva, P.; Yépez, J.G.; Bhakkan, B.; Deloumeaux, J.; Joachim, C.; Macni, J.; Carrillo, R.; Shalkow Klincovstein, J.; Rivera Gomez, R.; Poquioma, E.; Tortolero-Luna, G.; Zavala, D.; Alonso, R.; Barrios, E.; Eckstrand, A.; Nikiforuk, C.; Noonan, G.; Turner, D.; Kumar, E.; Zhang, B.; McCrate, F.R.; Ryan, S.; MacIntyre, M.; Saint-Jacques, N.; Nishri, D.E.; McClure, C.A.; Vriends, K.A.; Kozie, S.; Stuart-Panko, H.; Freeman, T.; George, J.T.; Brockhouse, J.T.; OBrien, D.K.; Holt, A.; Almon, L.; Kwong, S.; Morris, C.; Rycroft, R.; Mueller, L.; Phillips, C.E.; Brown, H.; Cromartie, B.; Schwartz, A.G.; Vigneau, F.; Levin, G.M.; Wohler, B.; Bayakly, R.; Ward, K.C.; Gomez, S.L.; McKinley, M.; Cress, R.; Green, M.D.; Miyagi, K.; Ruppert, L.P.; Lynch, C.F.; Huang, B.; Tucker, T.C.; Deapen, D.; Liu, L.; Hsieh, M.C.; Wu, X.C.; Schwenn, M.; Gershman, S.T.; Knowlton, R.C.; Alverson, G.; Copeland, G.E.; Bushhouse, S.; Rogers, D.B.; Jackson-Thompson, J.; Lemons, D.; Zimmerman, H.J.; Hood, M.; Roberts-Johnson, J.; Rees, J.R.; Riddle, B.; Pawlish, K.S.; Stroup, A.; Key, C.; Wiggins, C.; Kahn, A.R.; Schymura, M.J.; Radhakrishnan, S.; Rao, C.; Giljahn, L.K.; Slocumb, R.M.; Espinoza, R.E.; Khan, F.; Aird, K.G.; Beran, T.; Rubertone, J.J.; Slack, S.J.; Garcia, L.; Rousseau, D.L.; Janes, T.A.; Schwartz, S.M.; Bolick, S.W.; Hurley, D.M.; Whiteside, M.A.; Miller-Gianturco, P.; Williams, M.A.; Herget, K.; Sweeney, C.; Johnson, A.T.; Keitheri Cheteri, M.B.; Migliore Santiago, P.; Blankenship, S.E.; Farley, S.; Borchers, R.; Malicki, R.; Espinoza, J.R.; Grandpre, J.; Wilson, R.; Edwards, B.K.; Mariotto, A.; Lei, Y.; Wang, N.; Chen, J.S.; Zhou, Y.; He, Y.T.; Song, G.H.; Gu, X.P.; Mei, D.; Mu, H.J.; Ge, H.M.; Wu, T.H.; Li, Y.Y.; Zhao, D.L.; Jin, F.; Zhang, J.H.; Zhu, F.D.; Junhua, Q.; Yang, Y.L.; Jiang, C.X.; Biao, W.; Wang, J.; Li, Q.L.; Yi, H.; Zhou, X.; Dong, J.; Li, W.; Fu, F.X.; Liu, S.Z.; Chen, J.G.; Zhu, J.; Li, Y.H.; Lu, Y.Q.; Fan, M.; Huang, S.Q.; Guo, G.P.; Zhaolai, H.; Wei, K.; Zeng, H.; Demetriou, A.V.; Mang, W.K.; Ngan, K.C.; Kataki, A.C.; Krishnatreya, M.; Jayalekshmi, P.A.; Sebastian, P.; Nandakumar, A.; Malekzadeh, R.; Roshandel, G.; Keinan-Boker, L.; Silverman, B.G.; Ito, H.; Nakagawa, H.; Sato, M.; Tobori, F.; Nakata, I.; Teramoto, N.; Hattori, M.; Kaizaki, Y.; Moki, F.; Sugiyama, H.; Utada, M.; Nishimura, M.; Yoshida, K.; Kurosawa, K.; Nemoto, Y.; Narimatsu, H.; Sakaguchi, M.; Kanemura, S.; Naito, M.; Narisawa, R.; Miyashiro, I.; Nakata, K.; Sato, S.; Yoshii, M.; Oki, I.; Fukushima, N.; Shibata, A.; Iwasa, K.; Ono, C.; Nimri, O.; Jung, K.W.; Won, Y.J.; Alawadhi, E.; Elbasmi, A.; Ab Manan, A.; Adam, F.; Sanjaajmats, E.; Tudev, U.; Ochir, C.; Al Khater, A.M.; El Mistiri, M.M.; Teo, Y.Y.; Chiang, C.J.; Lee, W.C.; Buasom, R.; Sangrajrang, S.; Kamsa-ard, S.; Wiangnon, S.; Daoprasert, K.; Pongnikorn, D.; Leklob, A.; Sangkitipaiboon, S.; Geater, S.L.; Sriplung, H.; Ceylan, O.; Kög, I.; Dirican, O.; Köse, T.; Gurbuz, T.; Karaşahin, F.E.; Turhan, D.; Aktaş, U.; Halat, Y.; Yakut, C.I.; Altinisik, M.; Cavusoglu, Y.; Türkköylü, A.; Üçüncü, N.; Hackl, M.; Zborovskaya, A.A.; Aleinikova, O.V.; Henau, K.; Van Eycken, L.; Valerianova, Z.; Yordanova, M.R.; ekerija, M.; Duek, L.; Zvolský, M.; Storm, H.; Innos, K.; Mägi, M.; Malila, N.; Seppä, K.; Jégu, J.; Velten, M.; Cornet, E.; Troussard, X.; Bouvier, A.M.; Guizard, A.V.; Bouvier, V.; Launoy, G.; Arveux, P.; Maynadié, M.; Mounier, M.; Woronoff, A.S.; Daoulas, M.; Robaszkiewicz, M.; Clavel, J.; Goujon, S.; Lacour, B.; Baldi, I.; Pouchieu, C.; Amadeo, B.; Coureau, G.; Orazio, S.; Preux, P.M.; Rharbaoui, F.; Marrer, E.; Trétarre, B.; Colonna, M.; Delafosse, P.; Ligier, K.; Plouvier, S.; Cowppli-Bony, A.; Molinié, F.; Bara, S.; Ganry, O.; Lapôtre-Ledoux, B.; Grosclaude, P.; Bossard, N.; Uhry, Z.; Bray, F.; Piñeros, M.; Stabenow, R.; Wilsdorf-Köhler, H.; Eberle, A.; Luttmann, S.; Löhden, I.; Nennecke, A.L.; Kieschke, J.; Sirri, E.; Emrich, K.; Zeissig, S.R.; Holleczek, B.; Eisemann, N.; Katalinic, A.; Asquez, R.A.; Kumar, V.; Petridou, E.; Ólafsdóttir, E.J.; Tryggvadóttir, L.; Clough-Gorr, K.; Walsh, P.M.; Sundseth, H.; Mazzoleni, G.; Vittadello, F.; Coviello, E.; Cuccaro, F.; Galasso, R.; Sampietro, G.; Giacomin, A.; Magoni, M.; Ardizzone, A.; DArgenzio, A.; Castaing, M.; Grosso, G.; Lavecchia, A.M.; Sutera Sardo, A.; Gola, G.; Gatti, L.; Ricci, P.; Ferretti, S.; Serraino, D.; Zucchetto, A.; Celesia, M.V.; Filiberti, R.A.; Pannozzo, F.; Melcarne, A.; Quarta, F.; Russo, A.G.; Carrozzi, G.; Cirilli, C.; Cavalieri dOro, L.; Rognoni, M.; Fusco, M.; Vitale, M.F.; Usala, M.; Cusimano, R.; Mazzucco, W.; Michiara, M.; Sgargi, P.; Boschetti, L.; Borciani, E.; Seghini, P.; Maule, M.M.; Merletti, F.; Tumino, R.; Mancuso, P.; Vicentini, M.; Cassetti, T.; Sassatelli, R.; Falcini, F.; Giorgetti, S.; Caiazzo, A.L.; Cavallo, R.; Cesaraccio, R.; Pirino, D.R.; Contrino, M.L.; Tisano, F.; Fanetti, A.C.; Maspero, S.; Carone, S.; Mincuzzi, A.; Candela, G.; Scuderi, T.; Gentilini, M.A.; Piffer, S.; Rosso, S.; Barchielli, A.; Caldarella, A.; Bianconi, F.; Stracci, F.; Contiero, P.; Tagliabue, G.; Rugge, M.; Zorzi, M.; Beggiato, S.; Brustolin, A.; Berrino, F.; Gatta, G.; Sant, M.; Buzzoni, C.; Mangone, L.; Capocaccia, R.; De Angelis, R.; Zanetti, R.; Maurina, A.; Pildava, S.; Lipunova, N.; Vincerevskiené, I.; Agius, D.; Calleja, N.; Siesling, S.; Larønningen, S.; Møller, B.; Dyzmann-Sroka, A.; Trojanowski, M.; Góźdź, S.; Mężyk, R.; Mierzwa, T.; Molong, L.; Rachtan, J.; Szewczyk, S.; Błaszczyk, J.; Kępska, K.; Kościańska, B.; Tarocińska, K.; Zwierko, M.; Drosik, K.; Maksimowicz, K.M.; Purwin-Porowska, E.; Reca, E.; Wójcik-Tomaszewska, J.; Tukiendorf, A.; Grądalska-Lampart, M.; Radziszewska, A.U.; Gos, A.; Talerczyk, M.; Wyborska, M.; Didkowska, J.A.; Wojciechowska, U.; Bielska-Lasota, M.; Forjaz de Lacerda, G.; Rego, R.A.; Bastos, J.; Silva, M.A.; Antunes, L.; Laranja Pontes, J.; Mayer-da-Silva, A.; Miranda, A.; Blaga, L.M.; Coza, D.; Gusenkova, L.; Lazarevich, O.; Prudnikova, O.; Vjushkov, D.M.; Egorova, A.G.; Orlov, A.E.; Kudyakov, L.A.; Pikalova, L.V.; Adamcik, J.; Safaei Diba, C.; Primic-akelj, M.; Zadnik, V.; Larrañaga, N.; Lopez de Munain, A.; Herrera, A.A.; Redondas, R.; Marcos-Gragera, R.; Vilardell Gil, M.L.; Molina, E.; Sánchez Perez, M.J.; Franch Sureda, P.; Ramos Montserrat, M.; Chirlaque, M.D.; Navarro, C.; Ardanaz, E.E.; Guevara, M.M.; Fernández-Delgado, R.; Peris-Bonet, R.; Carulla, M.; Galceran, J.; Alberich, C.; Vicente-Raneda, M.; Khan, S.; Pettersson, D.; Dickman, P.; Avelina, I.; Staehelin, K.; Camey, B.; Bouchardy, C.; Schaffar, R.; Frick, H.; Herrmann, C.; Bulliard, J.L.; Maspoli-Conconi, M.; Kuehni, C.E.; Redmond, S.M.; Bordoni, A.; Ortelli, L.; Chiolero, A.; Konzelmann, I.; Matthes, K.L.; Rohrmann, S.; Broggio, J.; Rashbass, J.; Fitzpatrick, D.; Gavin, A.; Clark, D.I.; Deas, A.J.; Huws, D.W.; White, C.; Montel, L.; Rachet, B.; Turculet, A.D.; Stephens, R.; Chalker, E.; Phung, H.; Walton, R.; You, H.; Guthridge, S.; Johnson, F.; Gordon, P.; DOnise, K.; Priest, K.; Stokes, B.C.; Venn, A.; Farrugia, H.; Thursfield, V.; Dowling, J.; Currow, D.; Hendrix, J.; Lewis, C. Global surveillance of trends in cancer survival 200014 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet, 2018, 391(10125), 1023-1075. doi: 10.1016/S0140-6736(17)33326-3 PMID: 29395269
- Gonzalez-Fierro, A.; Dueñas-González, A. Drug repurposing for cancer therapy, easier said than done. Semin. Cancer Biol., 2021, 68, 123-131. doi: 10.1016/j.semcancer.2019.12.012 PMID: 31877340
- Tallman, M.; Lo-Coco, F.; Barnes, G.; Kruse, M.; Wildner, R.; Martin, M.; Mueller, U.; Tang, B. Cost-effectiveness analysis of treating acute promyelocytic leukemia patients with arsenic trioxide and retinoic acid in the United States. Clin. Lymphoma Myeloma Leuk, 2015, 15(2015), 771-777. doi: 10.1016/j.clml.2015.07.634
- Zhang, Y.; Yang, J.M. Altered energy metabolism in cancer. Cancer Biol. Ther., 2013, 14(2), 81-89. doi: 10.4161/cbt.22958 PMID: 23192270
- Pascale, R.M.; Calvisi, D.F.; Simile, M.M.; Feo, C.F.; Feo, F. The warburg effect 97 years after its discovery. Cancers, 2020, 12(10), 2819. doi: 10.3390/cancers12102819 PMID: 33008042
- Seyfried, T.N.; Arismendi-Morillo, G.; Mukherjee, P.; Chinopoulos, C. On the origin of ATP synthesis in cancer. iScience, 2020, 23(11), 101761. doi: 10.1016/j.isci.2020.101761 PMID: 33251492
- de la Cruz-López, K.G.; Castro-Muñoz, L.J.; Reyes-Hernández, D.O.; García-Carrancá, A.; Manzo-Merino, J. Lactate in the regulation of tumor microenvironment and therapeutic approaches. Front. Oncol., 2019, 9, 1143. doi: 10.3389/fonc.2019.01143 PMID: 31737570
- Kodama, M.; Nakayama, K.I. A second Warburg-like effect in cancer metabolism: The metabolic shift of glutamine-derived nitrogen. BioEssays, 2020, 42(12), 2000169. doi: 10.1002/bies.202000169 PMID: 33165972
- Alfarouk, K.O.; Ahmed, S.B.M.; Elliott, R.L.; Benoit, A.; Alqahtani, S.S.; Ibrahim, M.E.; Bashir, A.H.H.; Alhoufie, S.T.S.; Elhassan, G.O.; Wales, C.C.; Schwartz, L.H.; Ali, H.S.; Ahmed, A.; Forde, P.F.; Devesa, J.; Cardone, R.A.; Fais, S.; Harguindey, S.; Reshkin, S.J. The pentose phosphate pathway dynamics in cancer and its dependency on intracellular pH. Metabolites, 2020, 10(7), 285. doi: 10.3390/metabo10070285 PMID: 32664469
- Matés, J.M.; Campos-Sandoval, J.A.; de los Santos-Jiménez, J.; Márquez, J. Glutaminases regulate glutathione and oxidative stress in cancer. Arch. Toxicol., 2020, 94(8), 2603-2623. doi: 10.1007/s00204-020-02838-8 PMID: 32681190
- Yoo, H.C.; Yu, Y.C.; Sung, Y.; Han, J.M. Glutamine reliance in cell metabolism. Exp. Mol. Med., 2020, 52(9), 1496-1516. doi: 10.1038/s12276-020-00504-8 PMID: 32943735
- Zhu, L.; Ploessl, K.; Zhou, R.; Mankoff, D.; Kung, H.F. Metabolic imaging of glutamine in cancer. J. Nucl. Med., 2017, 58(4), 533-537. doi: 10.2967/jnumed.116.182345 PMID: 28232608
- Medes, G.; Thomas, A.; Weinhouse, S. Metabolism of neoplastic tissue. IV. A study of lipid synthesis in neoplastic tissue slices in vitro. Cancer Res., 1953, 13(1), 27-29. PMID: 13032945
- Pizer, E.S.; Kurman, R.J.; Pasternack, G.R.; Kuhajda, F.P. Expression of fatty acid synthase is closely linked to proliferation and stromal decidualization in cycling endometrium. Int. J. Gynecol. Pathol., 1997, 16(1), 45-51. doi: 10.1097/00004347-199701000-00008 PMID: 8986532
- Maningat, P.D.; Sen, P.; Rijnkels, M.; Sunehag, A.L.; Hadsell, D.L.; Bray, M.; Haymond, M.W. Gene expression in the human mammary epithelium during lactation: the milk fat globule transcriptome. Physiol. Genomics, 2009, 37(1), 12-22. doi: 10.1152/physiolgenomics.90341.2008 PMID: 19018045
- Nagarajan, S.R.; Butler, L.M.; Hoy, A.J. The diversity and breadth of cancer cell fatty acid metabolism. Cancer Metab., 2021, 9(1), 2. doi: 10.1186/s40170-020-00237-2 PMID: 33413672
- Balaban, S.; Nassar, Z.D.; Zhang, A.Y.; Hosseini-Beheshti, E.; Centenera, M.M.; Schreuder, M.; Lin, H.M.; Aishah, A.; Varney, B.; Liu-Fu, F.; Lee, L.S.; Nagarajan, S.R.; Shearer, R.F.; Hardie, R.A.; Raftopulos, N.L.; Kakani, M.S.; Saunders, D.N.; Holst, J.; Horvath, L.G.; Butler, L.M.; Hoy, A.J. Extracellular fatty acids are the major contributor to lipid synthesis in prostate cancer. Mol. Cancer Res., 2019, 17(4), 949-962. doi: 10.1158/1541-7786.MCR-18-0347 PMID: 30647103
- Vance, D.V.E. Biochemistry of Lipids, Lipoproteins and Membranes, 4th ed.; , 2022.
- Guerra, B.; Recio, C.; Aranda-Tavío, H.; Guerra-Rodríguez, M.; García-Castellano, J.M.; Fernández-Pérez, L. The mevalonate pathway, a metabolic target in cancer therapy. Front Oncol., 2021, 11, 626971. doi: 10.3389/fonc.2021.626971
- Göbel, A.; Rauner, M.; Hofbauer, L.C.; Rachner, T.D. Cholesterol and beyond - The role of the mevalonate pathway in cancer biology. Biochim Biophys Acta - Rev Cancer., 2020, 1873(2020), 188351. doi: 10.1016/j.bbcan.2020.188351
- De Oliveira, M.P.; Liesa, M. The role of mitochondrial fat oxidation in cancer cell proliferation and survival. Cells, 2020, 9(2020), 2600. doi: 10.3390/cells9122600
- Qu, Q.; Zeng, F.; Liu, X.; Wang, Q.J.; Deng, F. Fatty acid oxidation and carnitine palmitoyltransferase I: Emerging therapeutic targets in cancer. Cell Death Dis., 2016, 7(5), e2226-e2226. doi: 10.1038/cddis.2016.132 PMID: 27195673
- Carracedo, A.; Cantley, L.C.; Pandolfi, P.P. Cancer metabolism: Fatty acid oxidation in the limelight. Nat. Rev. Cancer, 2013, 13(4), 227-232. doi: 10.1038/nrc3483 PMID: 23446547
- Kwee, S.A.; Lim, J. Metabolic positron emission tomography imaging of cancer: Pairing lipid metabolism with glycolysis. World J. Radiol., 2016, 8(11), 851-856. doi: 10.4329/wjr.v8.i11.851 PMID: 27928466
- Menendez, J.A.; Lupu, R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer, 2007, 7(10), 763-777. doi: 10.1038/nrc2222 PMID: 17882277
- Swinnen, J.V.; Brusselmans, K.; Verhoeven, G. Increased lipogenesis in cancer cells: New players, novel targets. Curr. Opin. Clin. Nutr. Metab. Care, 2006, 9(4), 358-365. doi: 10.1097/01.mco.0000232894.28674.30 PMID: 16778563
- Labbé, D.P.; Zadra, G.; Yang, M.; Reyes, J.M.; Lin, C.Y.; Cacciatore, S.; Ebot, E.M.; Creech, A.L.; Giunchi, F.; Fiorentino, M.; Elfandy, H.; Syamala, S.; Karoly, E.D.; Alshalalfa, M.; Erho, N.; Ross, A.; Schaeffer, E.M.; Gibb, E.A.; Takhar, M.; Den, R.B.; Lehrer, J.; Karnes, R.J.; Freedland, S.J.; Davicioni, E.; Spratt, D.E.; Ellis, L.; Jaffe, J.D.; DʼAmico, A.V.; Kantoff, P.W.; Bradner, J.E.; Mucci, L.A.; Chavarro, J.E.; Loda, M.; Brown, M. High-fat diet fuels prostate cancer progression by rewiring the metabolome and amplifying the MYC program. Nat. Commun., 2019, 10(1), 4358. doi: 10.1038/s41467-019-12298-z PMID: 31554818
- Purcell, S.A.; Oliveira, C.L.P.; Mackenzie, M.; Robson, P.; Lewis, J.; Prado, C.M. Body composition and prostate cancer risk: A systematic review of observational studies. Adv. Nutr., 2021. doi: 10.1093/advances/nmab153 PMID: 34918023
- Van Blarigan, E.L.; Kenfield, S.A.; Yang, M.; Sesso, H.D.; Ma, J.; Stampfer, M.J.; Chan, J.M.; Chavarro, J.E. Fat intake after prostate cancer diagnosis and mortality in the physicians health study. Cancer Causes Control, 2015, 26(8), 1117-1126. doi: 10.1007/s10552-015-0606-4 PMID: 26047644
- Kuhajda, F.P.; Jenner, K.; Wood, F.D.; Hennigar, R.A.; Jacobs, L.B.; Dick, J.D.; Pasternack, G.R. Fatty acid synthesis: A potential selective target for antineoplastic therapy. Proc. Natl. Acad. Sci., 1994, 91(14), 6379-6383. doi: 10.1073/pnas.91.14.6379 PMID: 8022791
- Fhu, C.W.; Ali, A. Fatty acid synthase: An emerging target in cancer. Mol, 2020, 25(2020), 3935. doi: 10.3390/molecules25173935
- Fiorentino, M.; Zadra, G.; Palescandolo, E.; Fedele, G.; Bailey, D.; Fiore, C.; Nguyen, P.L.; Migita, T.; Zamponi, R.; Di Vizio, D.; Priolo, C.; Sharma, C.; Xie, W.; Hemler, M.E.; Mucci, L.; Giovannucci, E.; Finn, S.; Loda, M. Overexpression of fatty acid synthase is associated with palmitoylation of Wnt1 and cytoplasmic stabilization of β- catenin in prostate cancer. Lab. Invest., 2008, 88(12), 1340-1348. doi: 10.1038/labinvest.2008.97 PMID: 18838960
- Migita, T.; Ruiz, S.; Fornari, A.; Fiorentino, M.; Priolo, C.; Zadra, G.; Inazuka, F.; Grisanzio, C.; Palescandolo, E.; Shin, E.; Fiore, C.; Xie, W.; Kung, A.L.; Febbo, P.G.; Subramanian, A.; Mucci, L.; Ma, J.; Signoretti, S.; Stampfer, M.; Hahn, W.C.; Finn, S.; Loda, M. Fatty acid synthase: A metabolic enzyme and candidate oncogene in prostate cancer. J. Natl. Cancer Inst., 2009, 101(7), 519-532. doi: 10.1093/jnci/djp030 PMID: 19318631
- Hsieh, A.C.; Small, E.J.; Ryan, C.J. Androgen-response elements in hormone-refractory prostate cancer: Implications for treatment development. Lancet Oncol., 2007, 8(10), 933-939. doi: 10.1016/S1470-2045(07)70316-9 PMID: 17913662
- Shah, U.; Dhir, R.; Gollin, S.; Chandran, U.; Lewis, D.; Acquafondata, M.; Pflug, B. Fatty acid synthase gene overexpression and copy number gain in prostate adenocarcinoma. Hum. Pathol., 2006, 37(4), 401-409. doi: 10.1016/j.humpath.2005.11.022
- Antonarakis, E.S.; Armstrong, A.J.; Dehm, S.M.; Luo, J. Androgen receptor variant-driven prostate cancer: clinical implications and therapeutic targeting. Prostate Cancer Prostatic Dis., 2016, 19(3), 231-241. doi: 10.1038/pcan.2016.17 PMID: 27184811
- Ettinger, S.L.; Sobel, R.; Whitmore, T.G.; Akbari, M.; Bradley, D.R.; Gleave, M.E.; Nelson, C.C. Dysregulation of sterol response element-binding proteins and downstream effectors in prostate cancer during progression to androgen independence. Cancer Res., 2004, 64(6), 2212-2221. doi: 10.1158/0008-5472.CAN-2148-2 PMID: 15026365
- Chen, M.; Zhang, J.; Sampieri, K.; Clohessy, J.G.; Mendez, L.; Gonzalez-Billalabeitia, E.; Liu, X.S.; Lee, Y.R.; Fung, J.; Katon, J.M.; Menon, A.V.; Webster, K.A.; Ng, C.; Palumbieri, M.D.; Diolombi, M.S.; Breitkopf, S.B.; Teruya-Feldstein, J.; Signoretti, S.; Bronson, R.T.; Asara, J.M.; Castillo-Martin, M.; Cordon-Cardo, C.; Pandolfi, P.P. An aberrant SREBP-dependent lipogenic program promotes metastatic prostate cancer. Nat. Genet., 2018, 50(2), 206-218. doi: 10.1038/s41588-017-0027-2 PMID: 29335545
- Zadra, G.; Photopoulos, C.; Loda, M. The fat side of prostate cancer. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2013, 1831(10), 1518-1532. doi: 10.1016/j.bbalip.2013.03.010 PMID: 23562839
- Wang, J.; Li, Y. CD36 tango in cancer: Signaling pathways and functions. Theranostics, 2019, 9(17), 4893-4908. doi: 10.7150/thno.36037 PMID: 31410189
- Amiri, M.; Yousefnia, S.; Seyed Forootan, F.; Peymani, M.; Ghaedi, K.; Nasr Esfahani, M.H. Diverse roles of fatty acid binding proteins (FABPs) in development and pathogenesis of cancers. Gene, 2018, 676, 171-183. doi: 10.1016/j.gene.2018.07.035 PMID: 30021130
- Anderson, C.M.; Stahl, A. SLC27 fatty acid transport proteins. Mol. Aspects Med., 2013, 34(2-3), 516-528. doi: 10.1016/j.mam.2012.07.010 PMID: 23506886
- Liu, Y.; Zuckier, L.S.; Ghesani, N.V. Dominant uptake of fatty acid over glucose by prostate cells: A potential new diagnostic and therapeutic approach. Anticancer Res., 2010, 30(2), 369-374. PMID: 20332441
- Tang, N-T.; D Snook, R.; Brown, M.D.; Haines, B.A.; Ridley, A.; Gardner, P.; Denbigh, J.L. Fatty-acid uptake in prostate cancer cells using dynamic microfluidic raman technology. Molecules, 2020, 25(7), 1652. doi: 10.3390/molecules25071652 PMID: 32260207
- Tousignant, K.D.; Rockstroh, A.; Taherian Fard, A.; Lehman, M.L.; Wang, C.; McPherson, S.J.; Philp, L.K.; Bartonicek, N.; Dinger, M.E.; Nelson, C.C.; Sadowski, M.C. Lipid uptake is an androgen-enhanced lipid supply pathway associated with prostate cancer disease progression and bone metastasis. Mol Cancer Res., 2019, 17(2019), 1166-1179. doi: 10.1158/1541-7786.MCR-18-1147
- Watt, M.J.; Clark, A.K.; Selth, L.A.; Haynes, V.R.; Lister, N.; Rebello, R.; Porter, L.H.; Niranjan, B.; Whitby, S.T.; Lo, J.; Huang, C.; Schittenhelm, R.B.; Anderson, K.E.; Furic, L.; Wijayaratne, P.R.; Matzaris, M.; Montgomery, M.K.; Papargiris, M.; Norden, S.; Febbraio, M.; Risbridger, G.P.; Frydenberg, M.; Nomura, D.K.; Taylor, R.A. Suppressing fatty acid uptake has therapeutic effects in preclinical models of prostate cancer. Sci. Transl. Med., 2019, 11(478), eaau5758. doi: 10.1126/scitranslmed.aau5758 PMID: 30728288
- Butler, L.M.; Perone, Y.; Dehairs, J.; Lupien, L.E.; de Laat, V.; Talebi, A.; Loda, M.; Kinlaw, W.B.; Swinnen, J.V. Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv. Drug Deliv. Rev., 2020, 159, 245-293. doi: 10.1016/j.addr.2020.07.013 PMID: 32711004
- Brohée, L.; Demine, S.; Willems, J.; Arnould, T.; Colige, A.C.; Deroanne, C.F. Lipin-1 regulates cancer cell phenotype and is a potential target to potentiate rapamycin treatment. Oncotarget, 2015, 6(13), 11264-11280. doi: 10.18632/oncotarget.3595 PMID: 25834103
- Challapalli, A.; Trousil, S.; Hazell, S.; Kozlowski, K.; Gudi, M.; Aboagye, E.O.; Mangar, S. Exploiting altered patterns of choline kinase-alpha expression on human prostate tissue to prognosticate prostate cancer. J. Clin. Pathol., 2015, 68(9), 703-709. doi: 10.1136/jclinpath-2015-202859 PMID: 26041862
- Ramírez de Molina, A.; Gallego-Ortega, D.; Sarmentero, J.; Bañez-Coronel, M.; Martín-Cantalejo, Y.; Lacal, J.C. Choline kinase is a novel oncogene that potentiates RhoA-induced carcinogenesis. Cancer Res., 2005, 65(13), 5647-5653. doi: 10.1158/0008-5472.CAN-04-4416 PMID: 15994937
- Daaka, Y. G proteins in cancer: The prostate cancer paradigm. Sci. STKE, 2004, 2004(216), re2. doi: 10.1126/stke.2162004re2 PMID: 14734786
- Koizumi, A.; Narita, S.; Nakanishi, H.; Ishikawa, M.; Eguchi, S.; Kimura, H.; Takasuga, S.; Huang, M.; Inoue, T.; Sasaki, J.; Yoshioka, T.; Habuchi, T.; Sasaki, T. Increased fatty acyl saturation of phosphatidylinositol phosphates in prostate cancer progression. Sci. Rep., 2019, 9(1), 13257. doi: 10.1038/s41598-019-49744-3 PMID: 31520002
- Ingram, L.M.; Finnerty, M.C.; Mansoura, M.; Chou, C.W.; Cummings, B.S. Identification of lipidomic profiles associated with drug-resistant prostate cancer cells. Lipids Health Dis., 2021, 20(1), 15. doi: 10.1186/s12944-021-01437-5 PMID: 33596934
- Resh, M.D. Fatty acylation of proteins: The long and the short of it. Prog. Lipid Res., 2016, 63, 120-131. doi: 10.1016/j.plipres.2016.05.002 PMID: 27233110
- Goligorsky, M.S.; Li, H.; Brodsky, S.; Chen, J. Relationships between caveolae and eNOS: Everything in proximity and the proximity of everything. Am. J. Physiol. Renal Physiol., 2002, 283(1), F1-F10. doi: 10.1152/ajprenal.00377.2001 PMID: 12060581
- Li, T.; Li, D.; Sha, J.; Sun, P.; Huang, Y. MicroRNA-21 directly targets MARCKS and promotes apoptosis resistance and invasion in prostate cancer cells. Biochem. Biophys. Res. Commun., 2009, 383(3), 280-285. doi: 10.1016/j.bbrc.2009.03.077 PMID: 19302977
- Tan, Y.; Sementino, E.; Liu, Z.; Cai, K.Q.; Testa, J.R. Wnt signaling mediates oncogenic synergy between Akt and Dlx5 in T-cell lymphomagenesis by enhancing cholesterol synthesis. Sci. Rep., 2020, 10(1), 15837. doi: 10.1038/s41598-020-72822-w PMID: 32985581
- Kim, S.; Yang, X.; Li, Q.; Wu, M.; Costyn, L.; Beharry, Z.; Bartlett, M.G.; Cai, H. Myristoylation of Src kinase mediates Src-induced and high-fat dietaccelerated prostate tumor progression in mice. J. Biol. Chem., 2017, 292(45), 18422-18433. doi: 10.1074/jbc.M117.798827 PMID: 28939770
- Yang, X.; Ma, Y.; Li, N.; Cai, H.; Bartlett, M.G. Development of a method for the determination of Acyl-CoA compounds by liquid chromatography mass spectrometry to probe the metabolism of fatty acids. Anal Chem., 2017, 89(2017), 813-821. doi: 10.1021/acs.analchem.6b03623
- Fhu, C.W.; Ali, A. Protein lipidation by palmitoylation and myristoylation in cancer. Front. Cell Dev. Biol., 2021, 9, 673647. doi: 10.3389/fcell.2021.673647 PMID: 34095144
- Kurayoshi, M.; Yamamoto, H.; Izumi, S.; Kikuchi, A. Post-translational palmitoylation and glycosylation of Wnt-5a are necessary for its signalling. Biochem. J., 2007, 402(3), 515-523. doi: 10.1042/BJ20061476 PMID: 17117926
- Goodwin, J.S.; Drake, K.R.; Rogers, C.; Wright, L.; Lippincott-Schwartz, J.; Philips, M.R.; Kenworthy, A.K. Depalmitoylated Ras traffics to and from the Golgi complex via a nonvesicular pathway. J. Cell Biol., 2005, 170(2), 261-272. doi: 10.1083/jcb.200502063 PMID: 16027222
- Cuiffo, B.; Ren, R. Palmitoylation of oncogenic NRAS is essential for leukemogenesis. Blood, 2010, 115(17), 3598-3605. doi: 10.1182/blood-2009-03-213876 PMID: 20200357
- Azbazdar, Y.; Ozalp, O.; Sezgin, E.; Veerapathiran, S.; Duncan, A.L.; Sansom, M.S.P.; Eggeling, C.; Wohland, T.; Karaca, E.; Ozhan, G. More favorable palmitic acid over palmitoleic acid modification of Wnt3 ensures its localization and activity in plasma membrane domains. Front. Cell Dev. Biol., 2019, 7, 281. doi: 10.3389/fcell.2019.00281 PMID: 31803740
- Price, D.T.; Coleman, R.E.; Liao, R.P.; Robertson, C.N.; Polascik, T.J.; Degrado, T.R. Comparison of 18 Ffluorocholine and 18 Ffluorodeoxyglucose for positron emission tomography of androgen dependent and androgen independent prostate cancer. J. Urol., 2002, 168(1), 273-280. doi: 10.1016/S0022-5347(05)64906-3 PMID: 12050555
- Liu, Y. Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer. Prostate Cancer Prostatic Dis., 2006, 9(3), 230-234. doi: 10.1038/sj.pcan.4500879 PMID: 16683009
- Zha, S.; Ferdinandusse, S.; Denis, S.; Wanders, R.J.; Ewing, C.M.; Luo, J.; De Marzo, A.M.; Isaacs, W.B. Alpha-methylacyl-CoA racemase as an androgen-independent growth modifier in prostate cancer. Cancer Res., 2003, 63(21), 7365-7376. PMID: 14612535
- Lin, J.; Xu, J.; Tian, H.; Gao, X.; Chen, Q.; Gu, Q.; Xu, G.; Song, J.; Zhao, F. Identification of candidate prostate cancer biomarkers in prostate needle biopsy specimens using proteomic analysis. Int. J. Cancer, 2007, 121(12), 2596-2605. doi: 10.1002/ijc.23016 PMID: 17722004
- Nassar, Z.D.; Mah, C.Y.; Dehairs, J.; Burvenich, I.J.G.; Irani, S.; Centenera, M.M.; Helm, M.; Shrestha, R.K.; Moldovan, M.; Don, A.S.; Holst, J.; Scott, A.M.; Horvath, L.G.; Lynn, D.J.; Selth, L.A.; Hoy, A.J.; Swinnen, J.V.; Butler, L.M. Human DECR1 is an androgen-repressed survival factor that regulates PUFA oxidation to protect prostate tumor cells from ferroptosis. eLife, 2020, 9, e54166. doi: 10.7554/eLife.54166 PMID: 32686647
- Schlaepfer, I.R.; Rider, L.; Rodrigues, L.U.; Gijón, M.A.; Pac, C.T.; Romero, L.; Cimic, A.; Sirintrapun, S.J.; Glodé, L.M.; Eckel, R.H.; Cramer, S.D. Lipid catabolism via CPT1 as a therapeutic target for prostate cancer. Mol. Cancer Ther., 2014, 13(10), 2361-2371. doi: 10.1158/1535-7163.MCT-14-0183 PMID: 25122071
- Iglesias-Gato, D.; Thysell, E.; Tyanova, S.; Crnalic, S.; Santos, A.; Lima, T.S.; Geiger, T.; Cox, J.; Widmark, A.; Bergh, A.; Mann, M.; Flores-Morales, A.; Wikström, P. The proteome of prostate cancer bone metastasis reveals heterogeneity with prognostic implications. Clin. Cancer Res., 2018, 24(2018), 5433-5444. doi: 10.1158/1078-0432.CCR-18-1229
- Ren, S.; Shao, Y.; Zhao, X.; Hong, C.S.; Wang, F.; Lu, X.; Li, J.; Ye, G.; Yan, M.; Zhuang, Z.; Xu, C.; Xu, G.; Sun, Y. Integration of metabolomics and transcriptomics reveals major metabolic pathways and potential biomarker involved in prostate cancer. Mol. Cell. Proteomics, 2016, 15(1), 154-163. doi: 10.1074/mcp.M115.052381 PMID: 26545398
- Andersen, M.K.; Høiem, T.S.; Claes, B.S.R.; Balluff, B.; Martin-Lorenzo, M.; Richardsen, E.; Krossa, S.; Bertilsson, H.; Heeren, R.M.A.; Rye, M.B.; Giskeødegård, G.F.; Bathen, T.F.; Tessem, M.B. Spatial differentiation of metabolism in prostate cancer tissue by MALDI-TOF MSI. Cancer Metab., 2021, 9(1), 9. doi: 10.1186/s40170-021-00242-z PMID: 33514438
- Xue, L.; Qi, H.; Zhang, H.; Ding, L.; Huang, Q.; Zhao, D.; Wu, B.J.; Li, X. Targeting SREBP-2-regulated mevalonate metabolism for cancer therapy. Front. Oncol., 2020, 10, 1510. doi: 10.3389/fonc.2020.01510 PMID: 32974183
- Pelton, K.; Freeman, M.R.; Solomon, K.R. Cholesterol and prostate cancer. Curr. Opin. Pharmacol., 2012, 12(6), 751-759. doi: 10.1016/j.coph.2012.07.006 PMID: 22824430
- Eberlé, D.; Hegarty, B.; Bossard, P.; Ferré, P.; Foufelle, F. SREBP transcription factors: Master regulators of lipid homeostasis. Biochimie, 2004, 86(11), 839-848. doi: 10.1016/j.biochi.2004.09.018 PMID: 15589694
- Li, X.; Wu, J.B.; Li, Q.; Shigemura, K.; Chung, L.W.K.; Huang, W.C. SREBP-2 promotes stem cell-like properties and metastasis by transcriptional activation of c-Myc in prostate cancer. Oncotarget, 2016, 7(11), 12869-12884. doi: 10.18632/oncotarget.7331 PMID: 26883200
- Chandra, N.C.; Singh, G.; Sankanagoudar, S.; Dogra, P. Interlink between cholesterol & cell cycle in prostate carcinoma. Indian J. Med. Res., 2017, 146(S8), 38. doi: 10.4103/ijmr.IJMR_1639_15 PMID: 29578193
- Staubach, S.; Hanisch, F.G. Lipid rafts: Signaling and sorting platforms of cells and their roles in cancer. Expert Rev. Proteomics, 2011, 8(2), 263-277. doi: 10.1586/epr.11.2 PMID: 21501018
- Oh, H.Y.; Lee, E.J.; Yoon, S.; Chung, B.H.; Cho, K.S.; Hong, S.J. Cholesterol level of lipid raft microdomains regulates apoptotic cell death in prostate cancer cells through EGFR-mediated Akt and ERK signal transduction. Prostate, 2007, 67(10), 1061-1069. doi: 10.1002/pros.20593 PMID: 17469127
- Karpen, H.E.; Bukowski, J.T.; Hughes, T.; Gratton, J.P.; Sessa, W.C.; Gailani, M.R. The sonic hedgehog receptor patched associates with caveolin-1 in cholesterol-rich microdomains of the plasma membrane. J. Biol. Chem., 2001, 276(22), 19503-19511. doi: 10.1074/jbc.M010832200 PMID: 11278759
- Hyuga, T.; Alcantara, M.; Kajioka, D.; Haraguchi, R.; Suzuki, K.; Miyagawa, S.; Kojima, Y.; Hayashi, Y.; Yamada, G. Hedgehog signaling for urogenital organogenesis and prostate cancer: An implication for the epithelialmesenchyme interaction (EMI). Int. J. Mol. Sci., 2019, 21(1), 58. doi: 10.3390/ijms21010058 PMID: 31861793
- Chen, P.; Zhang, Y.; Xue, B.; Xu, G. Association of Caveolin-1 expression with prostate cancer: A systematic review and meta-analysis. Front. Oncol., 2021, 10, 562774. doi: 10.3389/fonc.2020.562774 PMID: 33489874
- Williams, T.M.; Hassan, G.S.; Li, J.; Cohen, A.W.; Medina, F.; Frank, P.G.; Pestell, R.G.; Di Vizio, D.; Loda, M.; Lisanti, M.P. Caveolin-1 promotes tumor progression in an autochthonous mouse model of prostate cancer: genetic ablation of Cav-1 delays advanced prostate tumor development in tramp mice. J. Biol. Chem., 2005, 280(26), 25134-25145. doi: 10.1074/jbc.M501186200 PMID: 15802273
- Montgomery, R.B.; Mostaghel, E.A.; Vessella, R.; Hess, D.L.; Kalhorn, T.F.; Higano, C.S.; True, L.D.; Nelson, P.S. Maintenance of intratumoral androgens in metastatic prostate cancer: a mechanism for castration-resistant tumor growth. Cancer Res., 2008, 68(11), 4447-4454. doi: 10.1158/0008-5472.CAN-08-0249 PMID: 18519708
- Mostaghel, E.A.; Page, S.T.; Lin, D.W.; Fazli, L.; Coleman, I.M.; True, L.D.; Knudsen, B.; Hess, D.L.; Nelson, C.C.; Matsumoto, A.M.; Bremner, W.J.; Gleave, M.E.; Nelson, P.S. Intraprostatic androgens and androgen-regulated gene expression persist after testosterone suppression: therapeutic implications for castration-resistant prostate cancer. Cancer Res., 2007, 67(10), 5033-5041. doi: 10.1158/0008-5472.CAN-06-3332 PMID: 17510436
- Locke, J.A.; Guns, E.S.; Lubik, A.A.; Adomat, H.H.; Hendy, S.C.; Wood, C.A.; Ettinger, S.L.; Gleave, M.E.; Nelson, C.C. Androgen levels increase by intratumoral de novo steroidogenesis during progression of castration-resistant prostate cancer. Cancer Res., 2008, 68(15), 6407-6415. doi: 10.1158/0008-5472.CAN-07-5997 PMID: 18676866
- Dillard, P.R.; Lin, M.F.; Khan, S.A. Androgen-independent prostate cancer cells acquire the complete steroidogenic potential of synthesizing testosterone from cholesterol. Mol. Cell. Endocrinol., 2008, 295(1-2), 115-120. doi: 10.1016/j.mce.2008.08.013 PMID: 18782595
- Griffiths, M.; Keast, D.; Crawford, M.; Palmer, T.N.; Patrick, G. The role of glutamine and glucose analogues in metabolic inhibition of human myeloid leukaemia in vitro. Int. J. Biochem., 1993, 25(12), 1749-1755. doi: 10.1016/0020-711X(88)90303-5 PMID: 8138012
- Meijer, T.W.H.; Peeters, W.J.M.; Dubois, L.J.; van Gisbergen, M.W.; Biemans, R.; Venhuizen, J.H.; Span, P.N.; Bussink, J. Targeting glucose and glutamine metabolism combined with radiation therapy in non-small cell lung cancer. Lung Cancer, 2018, 126, 32-40. doi: 10.1016/j.lungcan.2018.10.016 PMID: 30527190
- Sun, L.; Yin, Y.; Clark, L.H.; Sun, W.; Sullivan, S.A.; Tran, A.Q.; Han, J.; Zhang, L.; Guo, H.; Madugu, E.; Pan, T.; Jackson, A.L.; Kilgore, J.; Jones, H.M.; Gilliam, T.P.; Zhou, C.; Bae-Jump, V.L. Dual inhibition of glycolysis and glutaminolysis as a therapeutic strategy in the treatment of ovarian cancer. Oncotarget, 2017, 8(38), 63551-63561. doi: 10.18632/oncotarget.18854 PMID: 28969010
- Wu, H.; Li, Z.; Yang, P.; Zhang, L.; Fan, Y.; Li, Z. PKM2 depletion induces the compensation of glutaminolysis through β-catenin/c-Myc pathway in tumor cells. Cell. Signal., 2014, 26(11), 2397-2405. doi: 10.1016/j.cellsig.2014.07.024 PMID: 25041845
- Schlaepfer, I.R.; Glodé, L.M.; Hitz, C.A.; Pac, C.T.; Boyle, K.E.; Maroni, P.; Deep, G.; Agarwal, R.; Lucia, S.M.; Cramer, S.D.; Serkova, N.J.; Eckel, R.H. Inhibition of lipid oxidation increases glucose metabolism and enhances 2-Deoxy-2-18FFluoro-d-glucose uptake in prostate cancer mouse xenografts. Mol. Imaging Biol., 2015, 17(4), 529-538. doi: 10.1007/s11307-014-0814-4 PMID: 25561013
- Cardoso, H.J.; Figueira, M.I.; Vaz, C.V.; Carvalho, T.M.A.; Brás, L.A.; Madureira, P.A.; Oliveira, P.J.; Sardão, V.A.; Socorro, S. Glutaminolysis is a metabolic route essential for survival and growth of prostate cancer cells and a target of 5α-dihydrotestosterone regulation. Cell Oncol., 2021, 44(2), 385-403. doi: 10.1007/s13402-020-00575-9 PMID: 33464483
- Cervantes-Madrid, D.; Dominguez-Gomez, G.; Gonzalez-Fierro, A.; Perez-Cardenas, E.; Taja-Chayeb, L.; Trejo-Becerril, C.; Duenas-Gonzalez, A. Feasibility and antitumor efficacy in vivo, of simultaneously targeting glycolysis, glutaminolysis and fatty acid synthesis using lonidamine, 6-diazo-5-oxo-L-norleucine and orlistat in colon cancer. Oncol. Lett., 2017, 13(3), 1905-1910. doi: 10.3892/ol.2017.5615 PMID: 28454342
- Kendir, C.; van den Akker, M.; Vos, R.; Metsemakers, J. Cardiovascular disease patients have increased risk for comorbidity: A cross-sectional study in the Netherlands. Eur. J. Gen. Pract., 2018, 24(1), 45-50. doi: 10.1080/13814788.2017.1398318 PMID: 29168400
- Singh, S.; Karthikeyan, C.; Moorthy, N.S.H.N. Recent advances in the development of fatty acid synthase inhibitors as anticancer agents. Mini Rev. Med. Chem., 2020, 20(18), 1820-1837. doi: 10.2174/1389557520666200811100845 PMID: 32781957
- Fako, V.E.; Wu, X.; Pflug, B.; Liu, J.Y.; Zhang, J.T. Repositioning proton pump inhibitors as anticancer drugs by targeting the thioesterase domain of human fatty acid synthase. J. Med. Chem., 2015, 58(2), 778-784. doi: 10.1021/jm501543u PMID: 25513712
- Fitton, A.; Wiseman, L. Pantoprazole. Drugs, 1996, 51(3), 460-482. doi: 10.2165/00003495-199651030-00012 PMID: 8882382
- Patel, K.J.; Lee, C.; Tan, Q.; Tannock, I.F. Use of the proton pump inhibitor pantoprazole to modify the distribution and activity of doxorubicin: A potential strategy to improve the therapy of solid tumors. Clin. Cancer Res., 2013, 19(24), 6766-6776. doi: 10.1158/1078-0432.CCR-13-0128 PMID: 24141627
- Brana, I.; Ocana, A.; Chen, E.X.; Razak, A.R.A.; Haines, C.; Lee, C.; Douglas, S.; Wang, L.; Siu, L.L.; Tannock, I.F.; Bedard, P.L. A phase I trial of pantoprazole in combination with doxorubicin in patients with advanced solid tumors: evaluation of pharmacokinetics of both drugs and tissue penetration of doxorubicin. Invest. New Drugs, 2014, 32(6), 1269-1277. doi: 10.1007/s10637-014-0159-5 PMID: 25213162
- Tan, Q.; Joshua, A.M.; Saggar, J.K.; Yu, M.; Wang, M.; Kanga, N.; Zhang, J.Y.; Chen, X.; Wouters, B.G.; Tannock, I.F. Effect of pantoprazole to enhance activity of docetaxel against human tumour xenografts by inhibiting autophagy. Br. J. Cancer, 2015, 112(5), 832-840. doi: 10.1038/bjc.2015.17 PMID: 25647012
- Hansen, A.R.; Tannock, I.F.; Templeton, A.; Chen, E.; Evans, A.; Knox, J.; Prawira, A.; Sridhar, S.S.; Tan, S.; Vera-Badillo, F.; Wang, L.; Wouters, B.G.; Joshua, A.M. Pantoprazole affecting docetaxel resistance pathways via autophagy (PANDORA): Phase II trial of high dose pantoprazole (Autophagy Inhibitor) with docetaxel in metastatic castration-resistant prostate cancer (mCRPC). Oncologist, 2019, 24(9), 1188-1194. doi: 10.1634/theoncologist.2018-0621 PMID: 30952818
- Li, Z.; He, P.; Long, Y.; Yuan, G.; Shen, W.; Chen, Z.; Zhang, B.; Wang, Y.; Yue, D.; Seidl, C.; Zhang, X. Drug repurposing of pantoprazole and vitamin C targeting tumor microenvironment conditions improves anticancer effect in metastatic castration-resistant prostate cancer. Front. Oncol., 2021, 11, 660320. doi: 10.3389/fonc.2021.660320 PMID: 34307134
- Kochuparambil, S.T.; Al-Husein, B.; Goc, A.; Soliman, S.; Somanath, P.R. Anticancer efficacy of simvastatin on prostate cancer cells and tumor xenografts is associated with inhibition of Akt and reduced prostate-specific antigen expression. J. Pharmacol. Exp. Ther., 2011, 336(2), 496-505. doi: 10.1124/jpet.110.174870 PMID: 21059805
- Park, Y.H.; Seo, S.Y.; Lee, E.; Ku, J.H.; Kim, H.H.; Kwak, C. Simvastatin induces apoptosis in castrate resistant prostate cancer cells by deregulating nuclear factor-κB pathway. J. Urol., 2013, 189(4), 1547-1552. doi: 10.1016/j.juro.2012.10.030 PMID: 23085058
- Goc, A.; Kochuparambil, S.T.; Al-Husein, B.; Al-Azayzih, A.; Mohammad, S.; Somanath, P.R. Simultaneous modulation of the intrinsic and extrinsic pathways by simvastatin in mediating prostate cancer cell apoptosis. BMC Cancer, 2012, 12(1), 409. doi: 10.1186/1471-2407-12-409 PMID: 22974127
- Oliveira, K.A.P.; Zecchin, K.G.; Alberici, L.C.; Castilho, R.F.; Vercesi, A.E. Simvastatin inducing PC3 prostate cancer cell necrosis mediated by calcineurin and mitochondrial dysfunction. J. Bioenerg. Biomembr., 2008, 40(4), 307-314. doi: 10.1007/s10863-008-9155-9 PMID: 18679777
- Sekine, Y.; Furuya, Y.; Nishii, M.; Koike, H.; Matsui, H.; Suzuki, K. Simvastatin inhibits the proliferation of human prostate cancer PC-3 cells via down-regulation of the insulin-like growth factor 1 receptor. Biochem. Biophys. Res. Commun., 2008, 372(2), 356-361. doi: 10.1016/j.bbrc.2008.05.043 PMID: 18489904
- Furuya, Y.; Sekine, Y.; Kato, H.; Miyazawa, Y.; Koike, H.; Suzuki, K. Low-density lipoprotein receptors play an important role in the inhibition of prostate cancer cell proliferation by statins. Prostate Int., 2016, 4(2), 56-60. doi: 10.1016/j.prnil.2016.02.003 PMID: 27358845
- Murtola, T.J.; Pennanen, P.; Syvälä, H.; Bläuer, M.; Ylikomi, T.; Tammela, T.L.J. Effects of simvastatin, acetylsalicylic acid, and rosiglitazone on proliferation of normal and cancerous prostate epithelial cells at therapeutic concentrations. Prostate, 2009, 69(9), 1017-1023. doi: 10.1002/pros.20951 PMID: 19301305
- Iannelli, F.; Roca, M.S.; Lombardi, R.; Ciardiello, C.; Grumetti, L.; De Rienzo, S.; Moccia, T.; Vitagliano, C.; Sorice, A.; Costantini, S.; Milone, M.R.; Pucci, B.; Leone, A.; Di Gennaro, E.; Mancini, R.; Ciliberto, G.; Bruzzese, F.; Budillon, A. Synergistic antitumor interaction of valproic acid and simvastatin sensitizes prostate cancer to docetaxel by targeting CSCs compartment via YAP inhibition. J. Exp. Clin. Cancer Res., 2020, 39(1), 213. doi: 10.1186/s13046-020-01723-7 PMID: 33032653
- Gordon, J.A.; Midha, A.; Szeitz, A.; Ghaffari, M.; Adomat, H.H.; Guo, Y.; Klassen, T.L.; Guns, E.S.; Wasan, K.M.; Cox, M.E. Oral simvastatin administration delays castration-resistant progression and reduces intratumoral steroidogenesis of LNCaP prostate cancer xenografts. Prostate Cancer Prostatic Dis., 2016, 19(1), 21-27. doi: 10.1038/pcan.2015.37 PMID: 26238234
- Thysell, E.; Surowiec, I.; Hörnberg, E.; Crnalic, S.; Widmark, A.; Johansson, A.I.; Stattin, P.; Bergh, A.; Moritz, T.; Antti, H.; Wikström, P. Metabolomic characterization of human prostate cancer bone metastases reveals increased levels of cholesterol. PLoS One, 2010, 5(12), e14175. doi: 10.1371/journal.pone.0014175 PMID: 21151972
- Nordstrand, A.; Lundholm, M.; Larsson, A.; Lerner, U.H.; Widmark, A.; Wikström, P. Inhibition of the insulin-like growth factor-1 receptor enhances effects of simvastatin on prostate cancer cells in co-culture with bone. Cancer Microenviron., 2013, 6(3), 231-240. doi: 10.1007/s12307-013-0129-z PMID: 23335094
- Murtola, T.J.; Syvälä, H.; Tolonen, T.; Helminen, M.; Riikonen, J.; Koskimäki, J.; Pakarainen, T.; Kaipia, A.; Isotalo, T.; Kujala, P.; Tammela, T.L.J. Atorvastatin versus placebo for prostate cancer before radical prostatectomy-a randomized, double-blind, placebo-controlled clinical trial. Eur. Urol., 2018, 74(6), 697-701. doi: 10.1016/j.eururo.2018.06.037 PMID: 30031572
- Knuuttila, E.; Riikonen, J.; Syvälä, H.; Auriola, S.; Murtola, T.J. Access and concentrations of atorvastatin in the prostate in men with prostate cancer. Prostate, 2019, 79(12), 1427-1434. doi: 10.1002/pros.23863 PMID: 31231865
- Allott, E.H.; Csizmadi, I.; Howard, L.E.; Muller, R.L.; Moreira, D.M.; Andriole, G.L.; Roehrborn, C.G.; Freedland, S.J. Statin use and longitudinal changes in prostate volume; results from the REduction by DUtasteride of prostate Cancer Events (REDUCE) trial. BJU Int., 2020, 125(2), 226-233. doi: 10.1111/bju.14905 PMID: 31479563
- Hamilton, R.J.; Ding, K.; Crook, J.M.; OCallaghan, C.J.; Higano, C.S.; Dearnaley, D.P.; Horwitz, E.M.; Goldenberg, S.L.; Gospodarowicz, M.K.; Klotz, L. The association between statin use and outcomes in patients initiating androgen deprivation therapy. Eur Urol., 2021, 79(2021), 446-452. doi: 10.1016/j.eururo.2020.12.031
- Peltomaa, A.I.; Raittinen, P.; Talala, K.; Taari, K.; Tammela, T.L.J.; Auvinen, A.; Murtola, T.J. Prostate cancer prognosis after initiation of androgen deprivation therapy among statin users. A population-based cohort study. Prostate Cancer Prostatic Dis., 2021, 24(3), 917-924. doi: 10.1038/s41391-021-00351-2 PMID: 33790420
- Moon, S.J.; Lee, S.; Jang, K.; Yu, K.S.; Yim, S.V.; Kim, B.H. Comparative pharmacokinetic and tolerability evaluation of two simvastatin 20 mg formulations in healthy Korean male volunteers. Transl. Clin. Pharmacol., 2017, 25(1), 10-14. doi: 10.12793/tcp.2017.25.1.10 PMID: 32095453
- Rupp, H.; Zarain-Herzberg, A. Therapeutic potential of CPT I inhibitors: cardiac gene transcription as a target. Expert Opin. Investig. Drugs, 2002, 11(3), 345-356. doi: 10.1517/13543784.11.3.345 PMID: 11866664
- Chong, C.R.; Sallustio, B.; Horowitz, J.D. Drugs that affect cardiac metabolism: Focus on perhexiline. Cardiovasc. Drugs Ther., 2016, 30(4), 399-405. doi: 10.1007/s10557-016-6664-3 PMID: 27106834
- Liu, Z.; Wang, D.; Liu, D.; Liu, J.; Zhou, G. Trimetazidine protects against LPS-induced acute lung injury through mTOR/SGK1 pathway. Int. J. Clin. Exp. Med., 2016, 9, 13950-13957.
- Singh, D.; Chander, V.; Chopra, K. Carvedilol and trimetazidine attenuates ferric nitrilotriacetate-induced oxidative renal injury in rats. Toxicology, 2003, 191(2-3), 143-151. doi: 10.1016/S0300-483X(03)00259-2 PMID: 12965117
- Tikhaze, A.K.; Lankin, V.Z.; Zharova, E.A.; Kolycheva, S.V. Trimetazidine as indirect antioxidant. Bull. Exp. Biol. Med., 2000, 130(10), 951-953. doi: 10.1023/A:1002801504611 PMID: 11177290
- Lestuzzi, C.; Crivellari, D.; Rigo, F.; Viel, E.; Meneguzzo, N. Capecitabine cardiac toxicity presenting as effort angina: A case report. J. Cardiovasc. Med., 2010, 11(9), 700-703. doi: 10.2459/JCM.0b013e328332e873 PMID: 20093950
- Tallarico, D.; Rizzo, V.; di Maio, F.; Petretto, F.; Bianco, G.; Placanica, G.; Marziali, M.; Paravati, V.; Gueli, N.; Meloni, F.; Campbell, S.V. Myocardial cytoprotection by trimetazidine against anthracycline-induced cardiotoxicity in anticancer chemotherapy. Angiology, 2003, 54(2), 219-227. doi: 10.1177/000331970305400212 PMID: 12678198
- Ferraro, E.; Pin, F.; Gorini, S.; Pontecorvo, L.; Ferri, A.; Mollace, V.; Costelli, P.; Rosano, G. Improvement of skeletal muscle performance in ageing by the metabolic modulator Trimetazidine. J. Cachexia Sarcopenia Muscle, 2016, 7(4), 449-457. doi: 10.1002/jcsm.12097 PMID: 27239426
- Gatta, L.; Vitiello, L.; Gorini, S.; Chiandotto, S.; Costelli, P.; Giammarioli, A.M.; Malorni, W.; Rosano, G.; Ferraro, E. Modulating the metabolism by trimetazidine enhances myoblast differentiation and promotes myogenesis in cachectic tumor-bearing c26 mice. Oncotarget, 2017, 8(69), 113938-113956. doi: 10.18632/oncotarget.23044 PMID: 29371959
- Molinari, F.; Pin, F.; Gorini, S.; Chiandotto, S.; Pontecorvo, L.; Penna, F.; Rizzuto, E.; Pisu, S.; Musarò, A.; Costelli, P.; Rosano, G.; Ferraro, E. The mitochondrial metabolic reprogramming agent trimetazidine as an exercise mimetic in cachectic C26-bearing mice. J. Cachexia Sarcopenia Muscle, 2017, 8(6), 954-973. doi: 10.1002/jcsm.12226 PMID: 29130633
- Andela, V.B.; Altuwaijri, S.; Wood, J.; Rosier, R.N. Inhibition of β-oxidative respiration is a therapeutic window associated with the cancer chemo-preventive activity of PPARγ agonists. FEBS Lett., 2005, 579(7), 1765-1769. doi: 10.1016/j.febslet.2005.01.082 PMID: 15757673
- Halama, A.; Kulinski, M.; Dib, S.S.; Zaghlool, S.B.; Siveen, K.S.; Iskandarani, A.; Zierer, J.; Prabhu, K.S.; Satheesh, N.J.; Bhagwat, A.M.; Uddin, S.; Kastenmüller, G.; Elemento, O.; Gross, S.S.; Suhre, K. Accelerated lipid catabolism and autophagy are cancer survival mechanisms under inhibited glutaminolysis. Cancer Lett., 2018, 430, 133-147. doi: 10.1016/j.canlet.2018.05.017 PMID: 29777783
- Lee, J.S.; Oh, S.J.; Choi, H.J.; Kang, J.H.; Lee, S.H.; Ha, J.S.; Woo, S.M.; Jang, H.; Lee, H.; Kim, S.Y. ATP production relies on fatty acid oxidation rather than glycolysis in pancreatic ductal adenocarcinoma. Cancers, 2020, 12(9), 2477. doi: 10.3390/cancers12092477 PMID: 32882923
- Atlı Şekeroğlu, Z.; Şekeroğlu, V.; Işık, S.; Aydın, B. Trimetazidine alone or in combination with gemcitabine and/or abraxane decreased cell viability, migration and ATP levels and induced apoptosis of human pancreatic cells. Clin. Res. Hepatol. Gastroenterol., 2021, 45(6), 101632. doi: 10.1016/j.clinre.2021.101632 PMID: 33662778
- Amoedo, N.D.; Sarlak, S.; Obre, E.; Esteves, P.; Bégueret, H.; Kieffer, Y.; Rousseau, B.; Dupis, A.; Izotte, J.; Bellance, N.; Dard, L.; Redonnet-Vernhet, I.; Punzi, G.; Rodrigues, M.F.; Dumon, E.; Mafhouf, W.; Guyonnet-Dupérat, V.; Gales, L.; Palama, T.; Bellvert, F.; Dugot-Senan, N.; Claverol, S.; Baste, J.M.; Lacombe, D.; Rezvani, H.R.; Pierri, C.L.; Mechta-Grigoriou, F.; Thumerel, M.; Rossignol, R. Targeting the mitochondrial trifunctional protein restrains tumor growth in oxidative lung carcinomas. J. Clin. Invest., 2021, 131(1), e133081. doi: 10.1172/JCI133081 PMID: 33393495
- Nenchev, N.; Skopek, J.; Arora, D.; Samad, A.; Kaplan, S.; Domahidy, M.; Voogd, H.; Böhmert, S.; Ramos, R.S.; Jain, S. Effect of age and renal impairment on the pharmacokinetics and safety of trimetazidine: An open-label multiple-dose study. Drug Dev. Res., 2020, 81(5), 564-572. doi: 10.1002/ddr.21654 PMID: 32128844
- Strebhardt, K.; Ullrich, A. Paul Ehrlichs magic bullet concept: 100 years of progress. Nat. Rev. Cancer, 2008, 8(6), 473-480. doi: 10.1038/nrc2394 PMID: 18469827
- Medina-Franco, J.L.; Giulianotti, M.A.; Welmaker, G.S.; Houghten, R.A. Shifting from the single to the multitarget paradigm in drug discovery. Drug Discov. Today, 2013, 18(9-10), 495-501. doi: 10.1016/j.drudis.2013.01.008 PMID: 23340113
- Turanli, B.; Zhang, C.; Kim, W.; Benfeitas, R.; Uhlen, M.; Arga, K.Y.; Mardinoglu, A. Discovery of therapeutic agents for prostate cancer using genome-scale metabolic modeling and drug repositioning. EBioMedicine, 2019, 42, 386-396. doi: 10.1016/j.ebiom.2019.03.009 PMID: 30905848
- Yang, Y.; Mamouni, K.; Li, X.; Chen, Y.; Kavuri, S.; Du, Y.; Fu, H.; Kucuk, O.; Wu, D. Repositioning dopamine D2 receptor agonist bromocriptine to enhance docetaxel chemotherapy and treat bone metastatic prostate cancer. Mol. Cancer Ther., 2018, 17(9), 1859-1870. doi: 10.1158/1535-7163.MCT-17-1176 PMID: 29907594
- Wang, M.; Shim, J.S.; Li, R.J.; Dang, Y.; He, Q.; Das, M.; Liu, J.O. Identification of an old antibiotic clofoctol as a novel activator of unfolded protein response pathways and an inhibitor of prostate cancer. Br. J. Pharmacol., 2014, 171(19), 4478-4489. doi: 10.1111/bph.12800 PMID: 24903412
- Gayvert, K.M.; Dardenne, E.; Cheung, C.; Boland, M.R.; Lorberbaum, T.; Wanjala, J.; Chen, Y.; Rubin, M.A.; Tatonetti, N.P.; Rickman, D.S.; Elemento, O. A computational drug repositioning approach for targeting oncogenic transcription factors. Cell Rep., 2016, 15(11), 2348-2356. doi: 10.1016/j.celrep.2016.05.037 PMID: 27264179
- Platz, E.A.; Yegnasubramanian, S.; Liu, J.O.; Chong, C.R.; Shim, J.S.; Kenfield, S.A.; Stampfer, M.J.; Willett, W.C.; Giovannucci, E.; Nelson, W.G. A novel two-stage, transdisciplinary study identifies digoxin as a possible drug for prostate cancer treatment. Cancer Discov., 2011, 1(1), 68-77. doi: 10.1158/2159-8274.CD-10-0020 PMID: 22140654
- Lu, C.; Li, X.; Ren, Y.; Zhang, X. Disulfiram: A novel repurposed drug for cancer therapy. Cancer Chemother. Pharmacol., 2021, 87(2), 159-172. doi: 10.1007/s00280-020-04216-8 PMID: 33426580
- Kondratskyi, A.; Kondratska, K.; Vanden Abeele, F.; Gordienko, D.; Dubois, C.; Toillon, R.A.; Slomianny, C.; Lemière, S.; Delcourt, P.; Dewailly, E.; Skryma, R.; Biot, C.; Prevarskaya, N. Ferroquine, the next generation antimalarial drug, has antitumor activity. Sci. Rep., 2017, 7(1), 15896. doi: 10.1038/s41598-017-16154-2 PMID: 29162859
- Elhasasna, H.; Khan, R.; Bhanumathy, K.K.; Vizeacoumar, F.S.; Walke, P.; Bautista, M.; Dahiya, D.K.; Maranda, V.; Patel, H.; Balagopal, A.; Alli, N.; Krishnan, A.; Freywald, A.; Vizeacoumar, F.J. A drug repurposing screen identifies fludarabine phosphate as a potential therapeutic agent for N-MYC overexpressing neuroendocrine prostate cancers. Cells, 2022, 11(14), 2246. doi: 10.3390/cells11142246 PMID: 35883689
- Qi, C.; Bin Li; Yang, Y.; Yang, Y.; Li, J.; Zhou, Q.; Wen, Y.; Zeng, C.; Zheng, L.; Zhang, Q.; Li, J.; He, X.; Zhou, J.; Shao, C.; Wang, L. Glipizide suppresses prostate cancer progression in the TRAMP model by inhibiting angiogenesis. Sci. Rep., 2016, 6(1), 27819. doi: 10.1038/srep27819 PMID: 27292155
- Tsubamoto, H.; Ueda, T.; Inoue, K.; Sakata, K.; Shibahara, H.; Sonoda, T. Repurposing itraconazole as an anticancer agent. Oncol. Lett., 2017, 14(2), 1240-1246. doi: 10.3892/ol.2017.6325 PMID: 28789339
- Sulsenti, R.; Frossi, B.; Bongiovanni, L.; Cancila, V.; Ostano, P.; Fischetti, I.; Enriquez, C.; Guana, F.; Chiorino, G.; Tripodo, C.; Pucillo, C.E.; Colombo, M.P.; Jachetti, E. Repurposing of the antiepileptic drug levetiracetam to restrain neuroendocrine prostate cancer and inhibit mast cell support to adenocarcinoma. Front. Immunol., 2021, 12, 622001. doi: 10.3389/fimmu.2021.622001 PMID: 33737929
- Rushworth, L.K.; Hewit, K.; Munnings-Tomes, S.; Somani, S.; James, D.; Shanks, E.; Dufès, C.; Straube, A.; Patel, R.; Leung, H.Y. Repurposing screen identifies mebendazole as a clinical candidate to synergise with docetaxel for prostate cancer treatment. Br. J. Cancer, 2020, 122(4), 517-527. doi: 10.1038/s41416-019-0681-5 PMID: 31844184
- Albayrak, G.; Konac, E.; Dikmen, A.U.; Bilen, C.Y. Memantine induces apoptosis and inhibits cell cycle progression in LNCaP prostate cancer cells. Hum. Exp. Toxicol., 2018, 37(9), 953-958. doi: 10.1177/0960327117747025 PMID: 29226720
- Gillessen, S.; Gilson, C.; James, N.; Adler, A.; Sydes, M.R.; Clarke, N. Repurposing metformin as therapy for prostate cancer within the STAMPEDE trial platform. Eur. Urol., 2016, 70(6), 906-908. doi: 10.1016/j.eururo.2016.07.015 PMID: 27450106
- Iwamoto, Y.; Ishii, K.; Kanda, H.; Kato, M.; Miki, M.; Kajiwara, S.; Arima, K.; Shiraishi, T.; Sugimura, Y. Combination treatment with naftopidil increases the efficacy of radiotherapy in PC-3 human prostate cancer cells. J. Cancer Res. Clin. Oncol., 2017, 143(6), 933-939. doi: 10.1007/s00432-017-2367-9 PMID: 28243746
- Florent, R.; Poulain, L.; NDiaye, M. Drug repositioning of the α1-adrenergic receptor antagonist naftopidil: A potential new anti-cancer drug? Int. J. Mol. Sci., 2020, 21(15), 5339. doi: 10.3390/ijms21155339 PMID: 32727149
- Guan, M.; Su, L.; Yuan, Y.C.; Li, H.; Chow, W.A. Nelfinavir and nelfinavir analogs block site-2 protease cleavage to inhibit castration-resistant prostate cancer. Sci. Rep., 2015, 5(1), 9698. doi: 10.1038/srep09698 PMID: 25880275
- Lu, W.; Lin, C.; Roberts, M.J.; Waud, W.R.; Piazza, G.A.; Li, Y. Niclosamide suppresses cancer cell growth by inducing Wnt co-receptor LRP6 degradation and inhibiting the Wnt/β-catenin pathway. PLoS One, 2011, 6(12), e29290. doi: 10.1371/journal.pone.0029290 PMID: 22195040
- Chang, W.L.; Hsu, L.C.; Leu, W.J.; Chen, C.S.; Guh, J.H. Repurposing of nitroxoline as a potential anticancer agent against human prostate cancer - a crucial role on AMPK/mTOR signaling pathway and the interplay with Chk2 activation. Oncotarget, 2015, 6(37), 39806-39820. doi: 10.18632/oncotarget.5655 PMID: 26447757
- Hafeez, B.B.; Ganju, A.; Sikander, M.; Kashyap, V.K.; Hafeez, Z.B.; Chauhan, N.; Malik, S.; Massey, A.E.; Tripathi, M.K.; Halaweish, F.T.; Zafar, N.; Singh, M.M.; Yallapu, M.M.; Chauhan, S.C.; Jaggi, M. Ormeloxifene suppresses prostate tumor growth and metastatic phenotypes via inhibition of oncogenic β-catenin signaling and EMT progression. Mol. Cancer Ther., 2017, 16(10), 2267-2280. doi: 10.1158/1535-7163.MCT-17-0157 PMID: 28615299
- Ho, C.H.; Hsu, J.L.; Liu, S.P.; Hsu, L.C.; Chang, W.L.; Chao, C.C.K.; Guh, J.H. Repurposing of phentolamine as a potential anticancer agent against human castration-resistant prostate cancer: A central role on microtubule stabilization and mitochondrial apoptosis pathway. Prostate, 2015, 75(13), 1454-1466. doi: 10.1002/pros.23033 PMID: 26180030
- Shaw, V.; Srivastava, S.; Srivastava, S.K. Repurposing antipsychotics of the diphenylbutylpiperidine class for cancer therapy. Semin. Cancer Biol., 2021, 68, 75-83. doi: 10.1016/j.semcancer.2019.10.007 PMID: 31618686
- Dilly, S.J.; Clark, A.J.; Marsh, A.; Mitchell, D.A.; Cain, R.; Fishwick, C.W.G.; Taylor, P.C. A chemical genomics approach to drug reprofiling in oncology: Antipsychotic drug risperidone as a potential adenocarcinoma treatment. Cancer Lett., 2017, 393, 16-21. doi: 10.1016/j.canlet.2017.01.042 PMID: 28188816
- Sadowski, M.C.; Pouwer, R.H.; Gunter, J.H.; Lubik, A.A.; Quinn, R.J.; Nelson, C.C. The fatty acid synthase inhibitor triclosan: repurposing an anti-microbial agent for targeting prostate cancer. Oncotarget, 2014, 5(19), 9362-9381. doi: 10.18632/oncotarget.2433 PMID: 25313139
- Turanli, B.; Gulfidan, G.; Arga, K.Y. Transcriptomic-guided drug repositioning supported by a new bioinformatics search tool: geneXpharma. OMICS, 2017, 21(10), 584-591. doi: 10.1089/omi.2017.0127 PMID: 29049014
Supplementary files
