Peptide-based PROTACs: Current Challenges and Future Perspectives
- Authors: Wang H.1, Chen M.1, Zhang X.1, Xie S.1, Qin J.1, Li J.1
-
Affiliations:
- School of Life Sciences and Medicine, Shandong University of Technology
- Issue: Vol 31, No 2 (2024)
- Pages: 208-222
- Section: Anti-Infectives and Infectious Diseases
- URL: https://rjeid.com/0929-8673/article/view/644628
- DOI: https://doi.org/10.2174/0929867330666230130121822
- ID: 644628
Cite item
Full Text
Abstract
Proteolysis-targeting chimeras (PROTACs) are an attractive means to target previously undruggable or drug-resistant mutant proteins. While small molecule-based PROTACs are stable and can cross cell membranes, there is limited availability of suitable small molecule warheads capable of recruiting proteins to an E3 ubiquitin ligase for degradation. With advances in structural biology and in silico protein structure prediction, it is now becoming easier to define highly selective peptides suitable for PROTAC design. As a result, peptide-based PROTACs are becoming a feasible proposition for targeting previously "undruggable" proteins not amenable to small molecule inhibition. In this review, we summarize recent progress in the design and application of peptide-based PROTACs as well as several practical approaches for obtaining candidate peptides for PROTACs. We also discuss the major hurdles preventing the translation of peptide-based PROTACs from bench to bedside, such as their delivery and bioavailability, with the aim of stimulating discussion about how best to accelerate the clinical development of peptide- based PROTACs in the near future.
About the authors
Huidan Wang
School of Life Sciences and Medicine, Shandong University of Technology
Email: info@benthamscience.net
Miao Chen
School of Life Sciences and Medicine, Shandong University of Technology
Email: info@benthamscience.net
Xiaoyuan Zhang
School of Life Sciences and Medicine, Shandong University of Technology
Email: info@benthamscience.net
Songbo Xie
School of Life Sciences and Medicine, Shandong University of Technology
Email: info@benthamscience.net
Jie Qin
School of Life Sciences and Medicine, Shandong University of Technology
Author for correspondence.
Email: info@benthamscience.net
Jingrui Li
School of Life Sciences and Medicine, Shandong University of Technology
Author for correspondence.
Email: info@benthamscience.net
References
- Nakamura, Y.; Kawazoe, A.; Lordick, F.; Janjigian, Y.Y.; Shitara, K. Biomarker-targeted therapies for advanced- stage gastric and gastro-oesophageal junction cancers: an emerging paradigm. Nat. Rev. Clin. Oncol., 2021, 18(8), 473-487. doi: 10.1038/s41571-021-00492-2 PMID: 33790428
- Hanzl, A.; Winter, G.E. Targeted protein degradation: current and future challenges. Curr. Opin. Chem. Biol., 2020, 56, 35-41. doi: 10.1016/j.cbpa.2019.11.012 PMID: 31901786
- Waddell, A.R.; Liao, D. Assays for validating histone acetyltransferase inhibitors. J Vis Exp, 2020, 162, 61289. doi: 10.3791/61289
- Zhang, D.; Baek, S.H.; Ho, A.; Lee, H.; Jeong, Y.S.; Kim, K. Targeted degradation of proteins by small molecules: a novel tool for functional proteomics. Comb. Chem. High Throughput Screen., 2004, 7(7), 689-697. doi: 10.2174/1386207043328364 PMID: 15578931
- Kashani, B.; Zandi, Z.; Kaveh, V.; Pourbagheri-Sigaroodi, A.; Ghaffari, S.H.; Bashash, D. Small molecules with huge impacts: the role of miRNA-regulated PI3K pathway in human malignancies. Mol. Biol. Rep., 2021, 48(12), 8045-8059. doi: 10.1007/s11033-021-06739-6 PMID: 34689281
- Gonzalvez, F.; Vincent, S.; Baker, T.E.; Gould, A.E.; Li, S.; Wardwell, S.D.; Nadworny, S.; Ning, Y.; Zhang, S.; Huang, W.S.; Hu, Y.; Li, F.; Greenfield, M.T.; Zech, S.G.; Das, B.; Narasimhan, N.I.; Clackson, T.; Dalgarno, D.; Shakespeare, W.C.; Fitzgerald, M.; Chouitar, J.; Griffin, R.J.; Liu, S.; Wong, K.; Zhu, X.; Rivera, V.M. Mobocertinib (TAK-788): A targeted inhibitor of EGFR exon 20 insertion mutants in nonsmall cell lung cancer. Cancer Discov., 2021, 11(7), 1672-1687. doi: 10.1158/2159-8290.CD-20-1683 PMID: 33632773
- Li, Y.; Song, J.; Zhou, P.; Zhou, J.; Xie, S. Targeting undruggable transcription factors with PROTACs: Advances and perspectives. J. Med. Chem., 2022, 65(15), 10183-10194. doi: 10.1021/acs.jmedchem.2c00691 PMID: 35881047
- Zeng, S.; Huang, W.; Zheng, X.; Cheng, L.; Zhang, Z.; Wang, J.; Shen, Z. Proteolysis targeting chimera (PROTAC) in drug discovery paradigm: Recent progress and future challenges. Eur. J. Med. Chem., 2021, 210, 112981. doi: 10.1016/j.ejmech.2020.112981 PMID: 33160761
- Békés, M.; Langley, D.R.; Crews, C.M. PROTAC targeted protein degraders: the past is prologue. Nat. Rev. Drug Discov., 2022, 21(3), 181-200. doi: 10.1038/s41573-021-00371-6 PMID: 35042991
- Yang, Z.; Sun, Y.; Ni, Z.; Yang, C.; Tong, Y.; Liu, Y.; Li, H.; Rao, Y. Merging PROTAC and molecular glue for degrading BTK and GSPT1 proteins concurrently. Cell Res., 2021, 31(12), 1315-1318. doi: 10.1038/s41422-021-00533-6 PMID: 34417569
- Guenette, R.G.; Yang, S.W.; Min, J.; Pei, B.; Potts, P.R. Target and tissue selectivity of PROTAC degraders. Chem. Soc. Rev., 2022, 51(14), 5740-5756. doi: 10.1039/D2CS00200K PMID: 35587208
- Au, Y.Z.; Wang, T.; Sigua, L.H.; Qi, J. Peptide-based PROTAC: The predator of pathological proteins. Cell Chem. Biol., 2020, 27(6), 637-639. doi: 10.1016/j.chembiol.2020.06.002 PMID: 32559499
- Morris, M.C.; Depollier, J.; Mery, J.; Heitz, F.; Divita, G. A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat. Biotechnol., 2001, 19(12), 1173-1176. doi: 10.1038/nbt1201-1173 PMID: 11731788
- Sekine, K.; Takubo, K.; Kikuchi, R.; Nishimoto, M.; Kitagawa, M.; Abe, F.; Nishikawa, K.; Tsuruo, T.; Naito, M. Small molecules destabilize cIAP1 by activating auto-ubiquitylation. J. Biol. Chem., 2008, 283(14), 8961-8968. doi: 10.1074/jbc.M709525200 PMID: 18230607
- Rana, S.; Mallareddy, J.R.; Singh, S.; Boghean, L.; Natarajan, A. Inhibitors, PROTACs and molecular glues as diverse therapeutic modalities to target cyclin-dependent kinase. Cancers (Basel), 2021, 13(21), 5506. doi: 10.3390/cancers13215506 PMID: 34771669
- Zhao, Y.; Shu, Y.; Lin, J.; Chen, Z.; Xie, Q.; Bao, Y.; Lu, L.; Sun, N.; Wang, Y. Discovery of novel BTK PROTACs for B-Cell lymphomas. Eur. J. Med. Chem., 2021, 225, 113820. doi: 10.1016/j.ejmech.2021.113820 PMID: 34509879
- Wang, H.; Li, C.; Liu, X.; Ma, M. Design, synthesis and activity study of a novel PI3K degradation by hijacking VHL E3 ubiquitin ligase. Bioorg. Med. Chem., 2022, 61, 116707. doi: 10.1016/j.bmc.2022.116707 PMID: 35344835
- Xiang, W.; Zhao, L.; Han, X.; Qin, C.; Miao, B.; McEachern, D.; Wang, Y.; Metwally, H.; Kirchhoff, P.D.; Wang, L.; Matvekas, A.; He, M.; Wen, B.; Sun, D.; Wang, S. Discovery of ARD-2585 as an exceptionally potent and orally active PROTAC degrader of androgen receptor for the treatment of advanced prostate cancer. J. Med. Chem., 2021, 64(18), 13487-13509. doi: 10.1021/acs.jmedchem.1c00900 PMID: 34473519
- Duan, L.; Xu, X.; Xu, L.; Wen, C.; Ouyang, K.; Li, Z.; Liang, Y. ERα-targeting PROTAC as a chemical knockdown tool to investigate the estrogen receptor function in rat menopausal arthritis. Front. Pharmacol., 2021, 12, 764154. doi: 10.3389/fphar.2021.764154 PMID: 34916941
- Backus, K.M.; Correia, B.E.; Lum, K.M.; Forli, S.; Horning, B.D.; González-Páez, G.E.; Chatterjee, S.; Lanning, B.R.; Teijaro, J.R.; Olson, A.J.; Wolan, D.W.; Cravatt, B.F. Proteome-wide covalent ligand discovery in native biological systems. Nature, 2016, 534(7608), 570-574. doi: 10.1038/nature18002 PMID: 27309814
- Lee, K.Y.; Chau, C.H.; Price, D.K.; Figg, W.D. Drugging the undruggable: activity-based protein profiling offers opportunities for targeting the KLK activome. Cancer Biol. Ther., 2022, 23(1), 136-138. doi: 10.1080/15384047.2022.2033059 PMID: 35129066
- Jiang, Y.; Deng, Q.; Zhao, H.; Xie, M.; Chen, L.; Yin, F.; Qin, X.; Zheng, W.; Zhao, Y.; Li, Z. Development of stabilized peptide-based PROTACs against estrogen receptor α. ACS Chem. Biol., 2018, 13(3), 628-635. doi: 10.1021/acschembio.7b00985 PMID: 29271628
- Pelay-Gimeno, M.; Glas, A.; Koch, O.; Grossmann, T.N. Structure-based design of inhibitors of protein-protein interactions: Mimicking peptide binding epitopes. Angew. Chem. Int. Ed., 2015, 54(31), 8896-8927. doi: 10.1002/anie.201412070 PMID: 26119925
- Ledsgaard, L.; Ljungars, A.; Rimbault, C.; Sørensen, C.V.; Tulika, T.; Wade, J.; Wouters, Y.; McCafferty, J.; Laustsen, A.H. Advances in antibody phage display technology. Drug Discov. Today, 2022, 27(8), 2151-2169. doi: 10.1016/j.drudis.2022.05.002 PMID: 35550436
- Jaroszewicz, W.; Morcinek-Orłowska, J.; Pierzynowska, K.; Gaffke, L.; Węgrzyn, G. Phage display and other peptide display technologies. FEMS Microbiol. Rev., 2022, 46(2), fuab052. doi: 10.1093/femsre/fuab052 PMID: 34673942
- Sakamoto, K.M.; Kim, K.B.; Kumagai, A.; Mercurio, F.; Crews, C.M.; Deshaies, R.J. Protacs: Chimeric molecules that target proteins to the Skp1CullinF box complex for ubiquitination and degradation. Proc. Natl. Acad. Sci. USA, 2001, 98(15), 8554-8559. doi: 10.1073/pnas.141230798 PMID: 11438690
- Sakamoto, K.M.; Kim, K.B.; Verma, R.; Ransick, A.; Stein, B.; Crews, C.M.; Deshaies, R.J. Development of Protacs to target cancer-promoting proteins for ubiquitination and degradation. Mol. Cell. Proteomics, 2003, 2(12), 1350-1358. doi: 10.1074/mcp.T300009-MCP200 PMID: 14525958
- Schneekloth, J.S., Jr; Fonseca, F.N.; Koldobskiy, M.; Mandal, A.; Deshaies, R.; Sakamoto, K.; Crews, C.M. Chemical genetic control of protein levels: selective in vivo targeted degradation. J. Am. Chem. Soc., 2004, 126(12), 3748-3754. doi: 10.1021/ja039025z PMID: 15038727
- Poongavanam, V.; Kihlberg, J. PROTAC cell permeability and oral bioavailability: a journey into uncharted territory. Future Med. Chem., 2022, 14(3), 123-126. doi: 10.4155/fmc-2021-0208 PMID: 34583518
- Klein, V.G.; Townsend, C.E.; Testa, A.; Zengerle, M.; Maniaci, C.; Hughes, S.J.; Chan, K.H.; Ciulli, A.; Lokey, R.S. Understanding and improving the membrane permeability of VH032-based PROTACs. ACS Med. Chem. Lett., 2020, 11(9), 1732-1738. doi: 10.1021/acsmedchemlett.0c00265 PMID: 32939229
- McAndrews, K.M.; Xiao, F.; Chronopoulos, A.; LeBleu, V.S.; Kugeratski, F.G.; Kalluri, R. Exosome-mediated delivery of CRISPR/Cas9 for targeting of oncogenic KrasG12D in pancreatic cancer. Life Sci. Alliance, 2021, 4(9), e202000875. doi: 10.26508/lsa.202000875 PMID: 34282051
- Balantič, K.; Miklavčič, D.; Kriaj, I.; Kramar, P. The good and the bad of cell membrane electroporation. Acta Chim. Slov., 2021, 68(4), 753-764. doi: 10.17344/acsi.2021.7198 PMID: 34918751
- Chen, Z.; Ling, L.; Shi, X.; Li, W.; Zhai, H.; Kang, Z.; Zheng, B.; Zhu, J.; Ye, S.; Wang, H.; Tong, L.; Ni, J.; Huang, C.; Li, Y.; Zheng, K. Microinjection of antisense oligonucleotides into living mouse testis enables lncRNA function study. Cell Biosci., 2021, 11(1), 213. doi: 10.1186/s13578-021-00717-y PMID: 34920761
- Wender, P.A.; Mitchell, D.J.; Pattabiraman, K.; Pelkey, E.T.; Steinman, L.; Rothbard, J.B. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: Peptoid molecular transporters. Proc. Natl. Acad. Sci. USA, 2000, 97(24), 13003-13008. doi: 10.1073/pnas.97.24.13003 PMID: 11087855
- Kirschberg, T.A.; VanDeusen, C.L.; Rothbard, J.B.; Yang, M.; Wender, P.A. Arginine-based molecular transporters: the synthesis and chemical evaluation of releasable taxol-transporter conjugates. Org. Lett., 2003, 5(19), 3459-3462. doi: 10.1021/ol035234c PMID: 12967299
- Zhang, D.; Baek, S.H.; Ho, A.; Kim, K. Degradation of target protein in living cells by small-molecule proteolysis inducer. Bioorg. Med. Chem. Lett., 2004, 14(3), 645-648. doi: 10.1016/j.bmcl.2003.11.042 PMID: 14741260
- Lee, H.; Puppala, D.; Choi, E.Y.; Swanson, H.; Kim, K.B. Targeted degradation of the aryl hydrocarbon receptor by the PROTAC approach: a useful chemical genetic tool. ChemBioChem, 2007, 8(17), 2058-2062. doi: 10.1002/cbic.200700438 PMID: 17907127
- Bargagna-Mohan, P.; Baek, S.H.; Lee, H.; Kim, K.; Mohan, R. Use of PROTACS as molecular probes of angiogenesis. Bioorg. Med. Chem. Lett., 2005, 15(11), 2724-2727. doi: 10.1016/j.bmcl.2005.04.008 PMID: 15876533
- Rodriguez-Gonzalez, A.; Cyrus, K.; Salcius, M.; Kim, K.; Crews, C.M.; Deshaies, R.J.; Sakamoto, K.M. Targeting steroid hormone receptors for ubiquitination and degradation in breast and prostate cancer. Oncogene, 2008, 27(57), 7201-7211. doi: 10.1038/onc.2008.320 PMID: 18794799
- Montrose, K.; Krissansen, G.W. Design of a PROTAC that antagonizes and destroys the cancer-forming X-protein of the hepatitis B virus. Biochem. Biophys. Res. Commun., 2014, 453(4), 735-740. doi: 10.1016/j.bbrc.2014.10.006 PMID: 25305486
- Henning, R.K.; Varghese, J.O.; Das, S.; Nag, A.; Tang, G.; Tang, K.; Sutherland, A.M.; Heath, J.R. Degradation of Akt using protein-catalyzed capture agents. J. Pept. Sci., 2016, 22(4), 196-200. doi: 10.1002/psc.2858 PMID: 26880702
- Wang, X.; Feng, S.; Fan, J.; Li, X.; Wen, Q.; Luo, N. New strategy for renal fibrosis: Targeting Smad3 proteins for ubiquitination and degradation. Biochem. Pharmacol., 2016, 116, 200-209. doi: 10.1016/j.bcp.2016.07.017 PMID: 27473774
- Chu, T.T.; Gao, N.; Li, Q.Q.; Chen, P.G.; Yang, X.F.; Chen, Y.X.; Zhao, Y.F.; Li, Y.M. Specific knockdown of endogenous tau protein by peptide-directed ubiquitin-proteasome degradation. Cell Chem. Biol., 2016, 23(4), 453-461. doi: 10.1016/j.chembiol.2016.02.016 PMID: 27105281
- Hines, J.; Gough, J.D.; Corson, T.W.; Crews, C.M. Posttranslational protein knockdown coupled to receptor tyrosine kinase activation with phosphoPROTACs. Proc. Natl. Acad. Sci. USA, 2013, 110(22), 8942-8947. doi: 10.1073/pnas.1217206110 PMID: 23674677
- Bauer, P.O.; Goswami, A.; Wong, H.K.; Okuno, M.; Kurosawa, M.; Yamada, M.; Miyazaki, H.; Matsumoto, G.; Kino, Y.; Nagai, Y.; Nukina, N. Harnessing chaperone-mediated autophagy for the selective degradation of mutant huntingtin protein. Nat. Biotechnol., 2010, 28(3), 256-263. doi: 10.1038/nbt.1608 PMID: 20190739
- Lu, M.; Liu, T.; Jiao, Q.; Ji, J.; Tao, M.; Liu, Y.; You, Q.; Jiang, Z. Discovery of a Keap1-dependent peptide PROTAC to knockdown Tau by ubiquitination-proteasome degradation pathway. Eur. J. Med. Chem., 2018, 146, 251-259. doi: 10.1016/j.ejmech.2018.01.063 PMID: 29407955
- Zou, Y.; Ma, D.; Wang, Y. The PROTAC technology in drug development. Cell Biochem. Funct., 2019, 37(1), 21-30. doi: 10.1002/cbf.3369 PMID: 30604499
- Zheng, J.; Tan, C.; Xue, P.; Cao, J.; Liu, F.; Tan, Y.; Jiang, Y. Proteolysis targeting peptide (PROTAP) strategy for protein ubiquitination and degradation. Biochem. Biophys. Res. Commun., 2016, 470(4), 936-940. doi: 10.1016/j.bbrc.2016.01.158 PMID: 26826379
- Paiva, S.L.; Crews, C.M. Targeted protein degradation: elements of PROTAC design. Curr. Opin. Chem. Biol., 2019, 50, 111-119. doi: 10.1016/j.cbpa.2019.02.022 PMID: 31004963
- Liao, H.; Li, X.; Zhao, L.; Wang, Y.; Wang, X.; Wu, Y.; Zhou, X.; Fu, W.; Liu, L.; Hu, H.G.; Chen, Y.G. A PROTAC peptide induces durable β-catenin degradation and suppresses Wnt-dependent intestinal cancer. Cell Discov., 2020, 6(1), 35. doi: 10.1038/s41421-020-0171-1 PMID: 32550000
- Tanaka, Y.; Luo, Y.; OShea, J.J.; Nakayamada, S. Janus kinase-targeting therapies in rheumatology: a mechanisms-based approach. Nat. Rev. Rheumatol., 2022, 18(3), 133-145. doi: 10.1038/s41584-021-00726-8 PMID: 34987201
- Alsfouk, A. Small molecule inhibitors of cyclin-dependent kinase 9 for cancer therapy. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 693-706. doi: 10.1080/14756366.2021.1890726 PMID: 33632038
- Crews, C.M. Inducing protein degradation as a therapeutic strategy. J. Med. Chem., 2018, 61(2), 403-404. doi: 10.1021/acs.jmedchem.7b01333 PMID: 29164885
- Crews, C.M.; Georg, G.; Wang, S. Inducing protein degradation as a therapeutic strategy. J. Med. Chem., 2016, 59(11), 5129-5130. doi: 10.1021/acs.jmedchem.6b00735 PMID: 27199030
- Cao, L.; Coventry, B.; Goreshnik, I.; Huang, B.; Sheffler, W.; Park, J.S.; Jude, K.M.; Marković, I.; Kadam, R.U.; Verschueren, K.H.G.; Verstraete, K.; Walsh, S.T.R.; Bennett, N.; Phal, A.; Yang, A.; Kozodoy, L.; DeWitt, M.; Picton, L.; Miller, L.; Strauch, E.M.; DeBouver, N.D.; Pires, A.; Bera, A.K.; Halabiya, S.; Hammerson, B.; Yang, W.; Bernard, S.; Stewart, L.; Wilson, I.A.; Ruohola-Baker, H.; Schlessinger, J.; Lee, S.; Savvides, S.N.; Garcia, K.C.; Baker, D. Design of protein-binding proteins from the target structure alone. Nature, 2022, 605(7910), 551-560. doi: 10.1038/s41586-022-04654-9 PMID: 35332283
- Linkous, R.O.; Sestok, A.E.; Smith, A.T. The crystal structure of Klebsiella pneumoniae FeoA reveals a site for protein-protein interactions. Proteins, 2019, 87(11), 897-903. doi: 10.1002/prot.25755 PMID: 31162843
- Zhang, Y.; Zhong, Z.; Ye, J.; Wang, C. Crystal structure of the PDZ4 domain of MAGI2 in complex with PBM of ARMS reveals a canonical PDZ recognition mode. Neurochem. Int., 2021, 149, 105152. doi: 10.1016/j.neuint.2021.105152 PMID: 34371146
- Nowak, R.P.; DeAngelo, S.L.; Buckley, D.; He, Z.; Donovan, K.A.; An, J.; Safaee, N.; Jedrychowski, M.P.; Ponthier, C.M.; Ishoey, M.; Zhang, T.; Mancias, J.D.; Gray, N.S.; Bradner, J.E.; Fischer, E.S. Plasticity in binding confers selectivity in ligand-induced protein degradation. Nat. Chem. Biol., 2018, 14(7), 706-714. doi: 10.1038/s41589-018-0055-y PMID: 29892083
- Jakhmola, S.; Sk, M.F.; Chatterjee, A.; Jain, K.; Kar, P.; Jha, H.C. A plausible contributor to multiple sclerosis; presentation of antigenic myelin protein epitopes by major histocompatibility complexes. Comput. Biol. Med., 2022, 148, 105856. doi: 10.1016/j.compbiomed.2022.105856 PMID: 35863244
- Das, L.; Shekhar, S.; Chandrani, P.; Varma, A.K. In silico structural analysis of secretory clusterin to assess pathogenicity of mutations identified in the evolutionarily conserved regions. J. Biomol. Struct. Dyn., 2021, 2007791. doi: 10.1080/07391102.2021.2007791 PMID: 34821197
- Choi, J.; Park, T.; Yul Lee, S.; Yang, J.; Seok, C. GalaxyDomDock: An ab initio domaindomain docking web server for multi-domain protein structure prediction. J. Mol. Biol., 2022, 434(11), 167508. doi: 10.1016/j.jmb.2022.167508 PMID: 35662464
- Kootery, K.P.; Sarojini, S. Structural and functional characterization of a hypothetical protein in the RD7 region in clinical isolates of Mycobacterium tuberculosis an in silico approach to candidate vaccines. J. Genet. Eng. Biotechnol., 2022, 20(1), 55. doi: 10.1186/s43141-022-00340-5 PMID: 35394551
- Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.; Stroe, O.; Wood, G.; Laydon, A.; ídek, A.; Green, T.; Tunyasuvunakool, K.; Petersen, S.; Jumper, J.; Clancy, E.; Green, R.; Vora, A.; Lutfi, M.; Figurnov, M.; Cowie, A.; Hobbs, N.; Kohli, P.; Kleywegt, G.; Birney, E.; Hassabis, D.; Velankar, S. AlphaFold protein structure database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res., 2022, 50(D1), D439-D444. doi: 10.1093/nar/gkab1061 PMID: 34791371
- David, A.; Islam, S.; Tankhilevich, E.; Sternberg, M.J.E. The alphaFold database of protein structures: A biologists guide. J. Mol. Biol., 2022, 434(2), 167336. doi: 10.1016/j.jmb.2021.167336 PMID: 34757056
- Bagdonas, H.; Fogarty, C.A.; Fadda, E.; Agirre, J. The case for post-predictional modifications in the alphaFold protein structure database. Nat. Struct. Mol. Biol., 2021, 28(11), 869-870. doi: 10.1038/s41594-021-00680-9 PMID: 34716446
- Wheeler, R.J. A resource for improved predictions of Trypanosoma and Leishmania protein three-dimensional structure. PLoS One, 2021, 16(11), e0259871. doi: 10.1371/journal.pone.0259871 PMID: 34762696
- Pla-Prats, C.; Thomä, N.H. Quality control of protein complex assembly by the ubiquitinproteasome system. Trends Cell Biol., 2022, 32(8), 696-706. doi: 10.1016/j.tcb.2022.02.005 PMID: 35300891
- Ottis, P.; Toure, M.; Cromm, P.M.; Ko, E.; Gustafson, J.L.; Crews, C.M. Assessing different E3 ligases for small molecule induced protein ubiquitination and degradation. ACS Chem. Biol., 2017, 12(10), 2570-2578. doi: 10.1021/acschembio.7b00485 PMID: 28767222
- Qu, J.; Ren, X.; Xue, F.; He, Y.; Zhang, R.; Zheng, Y.; Huang, H.; Wang, W.; Zhang, J. Specific knockdown of α-synuclein by peptide-directed proteasome degradation rescued its associated neurotoxicity. Cell Chem. Biol., 2020, 27(6), 751-762.e4. doi: 10.1016/j.chembiol.2020.03.010 PMID: 32359427
- An, S.; Fu, L. Small-molecule PROTACs: An emerging and promising approach for the development of targeted therapy drugs. EBioMedicine, 2018, 36, 553-562. doi: 10.1016/j.ebiom.2018.09.005 PMID: 30224312
- Arvinas, Pfizer team up on PROTACs. Cancer Discov., 2018, 8(4), 377-378. doi: 10.1158/2159-8290.CD-NB2018-015 PMID: 29453240
- Itoh, Y. Chemical protein degradation approach and its application to epigenetic targets. Chem. Rec., 2018, 18(12), 1681-1700. doi: 10.1002/tcr.201800032 PMID: 29893461
- Yang, Y.; Yang, Y.; Xie, X.; Cai, X.; Mei, X. Preparation and characterization of photo-responsive cell-penetrating peptide-mediated nanostructured lipid carrier. J. Drug Target., 2014, 22(10), 891-900. doi: 10.3109/1061186X.2014.940589 PMID: 25045925
- Visca, H.; DuPont, M.; Moshnikova, A.; Crawford, T.; Engelman, D.M.; Andreev, O.A.; Reshetnyak, Y.K. pHLIP peptides target acidity in activated macrophages. Mol. Imaging Biol., 2022, 24(6), 874-885. doi: 10.1007/s11307-022-01737-x PMID: 35604527
- Sun, Y.; Hu, L.; Yang, P.; Zhang, M.; Wang, X.; Xiao, H.; Qiao, C.; Wang, J.; Luo, L.; Feng, J.; Zheng, Y.; Wang, Y.; Shi, Y.; Chen, G. H low insertion peptide-modified programmed cell death-ligand 1 potently suppresses T-Cell activation under acidic condition. Front. Immunol., 2021, 12, 794226. doi: 10.3389/fimmu.2021.794226 PMID: 35003115
- Otieno, S.A.; Qiang, W. Roles of key residues and lipid dynamics reveal pHLIP-membrane interactions at intermediate pH. Biophys. J., 2021, 120(21), 4649-4662. doi: 10.1016/j.bpj.2021.10.001 PMID: 34624273
- Andreev, O.A.; Engelman, D.M.; Reshetnyak, Y.K. pH-sensitive membrane peptides (pHLIPs) as a novel class of delivery agents. Mol. Membr. Biol., 2010, 27(7), 341-352. doi: 10.3109/09687688.2010.509285 PMID: 20939768
- a) Gao, X.; Ran, N.; Dong, X.; Zuo, B.; Yang, R.; Zhou, Q.; Moulton, H.M.; Seow, Y.; Yin, H. Anchor peptide captures, targets, and loads exosomes of diverse origins for diagnostics and therapy. Sci. Transl. Med., 2018, 10(444), eaat0195. doi: 10.1126/scitranslmed.aat0195 PMID: 29875202; b) Dong, X.; Lei, Y.; Yu, Z.; Wang, T.; Liu, Y.; Han, G.; Zhang, X.; Li, Y.; Song, Y.; Xu, H.; Du, M.; Yin, H.; Wang, X.; Yan, H. Exosome-mediated delivery of an anti-angiogenic peptide inhibits pathological retinal angiogenesis. Theranostics, 2021, 11, 5107-5126.
- Okuda, A.; Futaki, S. Protein delivery to cytosol by cell-penetrating peptide bearing tandem repeat penetration-accelerating sequence. Methods Mol. Biol., 2022, 2383, 265-273. doi: 10.1007/978-1-0716-1752-6_18 PMID: 34766296
- Yang, Q.; Tang, J.; Xu, C.; Zhao, H.; Zhou, Y.; Wang, Y.; Yang, M.; Chen, X.; Chen, J. Histone deacetylase 4 inhibits NF-κB activation by facilitating IκBα sumoylation. J. Mol. Cell Biol., 2021, 12(12), 933-945. doi: 10.1093/jmcb/mjaa043 PMID: 32770227
- Nguyen, H.C.; Yang, H.; Fribourgh, J.L.; Wolfe, L.S.; Xiong, Y. Insights into Cullin-RING E3 ubiquitin ligase recruitment: structure of the VHL-EloBC-Cul2 complex. Structure, 2015, 23(3), 441-449. doi: 10.1016/j.str.2014.12.014 PMID: 25661653
- Zengerle, M.; Chan, K.H.; Ciulli, A. Selective small molecule induced degradation of the BET bromodomain protein BRD4. ACS Chem. Biol., 2015, 10(8), 1770-1777. doi: 10.1021/acschembio.5b00216 PMID: 26035625
- Lebraud, H.; Wright, D.J.; Johnson, C.N.; Heightman, T.D. Protein degradation by in-cell self-assembly of proteolysis targeting chimeras. ACS Cent. Sci., 2016, 2(12), 927-934. doi: 10.1021/acscentsci.6b00280 PMID: 28058282
- Wurz, R.P.; Dellamaggiore, K.; Dou, H.; Javier, N.; Lo, M.C.; McCarter, J.D.; Mohl, D.; Sastri, C.; Lipford, J.R.; Cee, V.J. "Click Chemistry Platform" for the rapid synthesis of bispecific molecules for inducing protein degradation. J. Med. Chem., 2018, 61(2), 453-461. doi: 10.1021/acs.jmedchem.6b01781 PMID: 28378579
- Rong, G. Fluoroalkylation promotes cytosolic peptide delivery. Sci Adv, 2020, 6(33), eaaz1774. doi: 10.1126/sciadv.aaz1774
- Rueping, M.; Mahajan, Y.; Sauer, M.; Seebach, D. Cellular uptake studies with beta-peptides. ChemBioChem, 2002, 3(2-3), 257-259. doi: 10.1002/1439-7633(20020301)3:2/33.0.CO;2-S PMID: 11921409
- Valeur, E.; Guéret, S.M.; Adihou, H.; Gopalakrishnan, R.; Lemurell, M.; Waldmann, H.; Grossmann, T.N.; Plowright, A.T. New modalities for challenging targets in drug discovery. Angew. Chem. Int. Ed., 2017, 56(35), 10294-10323. doi: 10.1002/anie.201611914 PMID: 28186380
- Fuller, J.C.; Burgoyne, N.J.; Jackson, R.M. Predicting druggable binding sites at the proteinprotein interface. Drug Discov. Today, 2009, 14(3-4), 155-161. doi: 10.1016/j.drudis.2008.10.009 PMID: 19041415
- Schneider, M.; Radoux, C.J.; Hercules, A.; Ochoa, D.; Dunham, I.; Zalmas, L.P.; Hessler, G.; Ruf, S.; Shanmugasundaram, V.; Hann, M.M.; Thomas, P.J.; Queisser, M.A.; Benowitz, A.B.; Brown, K.; Leach, A.R. The PROTACtable genome. Nat. Rev. Drug Discov., 2021, 20(10), 789-797. doi: 10.1038/s41573-021-00245-x PMID: 34285415
- Cromm, P.M.; Crews, C.M. Targeted protein degradation: from chemical biology to drug discovery. Cell Chem. Biol., 2017, 24(9), 1181-1190. doi: 10.1016/j.chembiol.2017.05.024 PMID: 28648379
Supplementary files
