Multiple Natural Polymers in Drug and Gene Delivery Systems
- Authors: Jiang Z.1, Song Z.2, Cao C.3, Yan M.2, Liu Z.3, Cheng X.3, Wang H.3, Wang Q.3, Liu H.2, Chen S.2
-
Affiliations:
- Department of Orthopedics, First Affiliated Hospital of Zhengzhou University
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University
- Department of Orthopedics, Zhengzhou University Peoples Hospital
- Issue: Vol 31, No 13 (2024)
- Pages: 1691-1715
- Section: Anti-Infectives and Infectious Diseases
- URL: https://rjeid.com/0929-8673/article/view/644287
- DOI: https://doi.org/10.2174/0929867330666230316094540
- ID: 644287
Cite item
Full Text
Abstract
Background:Natural polymers are organic compounds produced by living organisms. In nature, they exist in three main forms, including proteins, polysaccharides, and nucleic acids. In recent years, with the continuous research on drug and gene delivery systems, scholars have found that natural polymers have promising applications in drug and gene delivery systems due to their excellent properties such as biocompatibility, biodegradability, low immunogenicity, and easy modification. However, since the structure, physicochemical properties, pharmacological properties and biological characteristics of biopolymer molecules have not yet been entirely understood, further studies are required before large-scale clinical application. This review focuses on recent advances in the representative natural polymers such as proteins (albumin, collagen, elastin), polysaccharides (chitosan, alginate, cellulose) and nucleic acids. We introduce the characteristics of various types of natural polymers, and further outline the characterization methods and delivery forms of these natural polymers. Finally, we discuss possible challenges for natural polymers in subsequent experimental studies and clinical applications. It provides an important strategy for the clinical application of natural polymers in drug and gene delivery systems.
About the authors
Zhengfa Jiang
Department of Orthopedics, First Affiliated Hospital of Zhengzhou University
Email: info@benthamscience.net
Zongmian Song
Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University
Email: info@benthamscience.net
Chen Cao
Department of Orthopedics, Zhengzhou University Peoples Hospital
Email: info@benthamscience.net
Miaoheng Yan
Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University
Email: info@benthamscience.net
Zhendong Liu
Department of Orthopedics, Zhengzhou University Peoples Hospital
Email: info@benthamscience.net
Xingbo Cheng
Department of Orthopedics, Zhengzhou University Peoples Hospital
Email: info@benthamscience.net
Hongbo Wang
Department of Orthopedics, Zhengzhou University Peoples Hospital
Email: info@benthamscience.net
Qingnan Wang
Department of Orthopedics, Zhengzhou University Peoples Hospital
Email: info@benthamscience.net
Hongjian Liu
Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University
Author for correspondence.
Email: info@benthamscience.net
Songfeng Chen
Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University
Author for correspondence.
Email: info@benthamscience.net
References
- Jo, Y. K.; Lee, D. Biopolymer microparticles prepared by microfluidics for biomedical applications. Small (Weinheim an der Bergstrasse, Germany), 2020, 16(9), e1903736.
- Gobi, R.; Ravichandiran, P.; Babu, R.S.; Yoo, D.J. Biopolymer and synthetic polymer-based nanocomposites in wound dressing applications: A review. Polymers, 2021, 13(12), 1962. doi: 10.3390/polym13121962 PMID: 34199209
- Pattanashetti, N.A.; Heggannavar, G.B.; Kariduraganavar, M.Y. In smart biopolymers and their biomedical applications. International Conference on Sustainable and Intelligent Manufacturing (RESIM), Leiria, PORTUGAL Dec 14-17, 2016, pp. 263-279.
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249. doi: 10.3322/caac.21660 PMID: 33538338
- Gopinath, V.; Kamath, S. M.; Priyadarshini, S.; Chik, Z.; Alarfaj, A. A.; Hirad, A. H. Multifunctional applications of natural polysaccharide starch and cellulose: An update on recent advances. Biomed. Pharmacother., 2022, 146, 112492.
- Nitta, S.; Numata, K. Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. Int. J. Mol. Sci., 2013, 14(1), 1629-1654. doi: 10.3390/ijms14011629 PMID: 23344060
- Chambre, L.; Martín-Moldes, Z.; Parker, R.N.; Kaplan, D.L. Bioengineered elastin- and silk-biomaterials for drug and gene delivery. Adv. Drug Deliv. Rev., 2020, 160, 186-198. doi: 10.1016/j.addr.2020.10.008 PMID: 33080258
- Karimi, M.; Bahrami, S.; Ravari, S.B.; Zangabad, P.S.; Mirshekari, H.; Bozorgomid, M.; Shahreza, S.; Sori, M.; Hamblin, M.R. Albumin nanostructures as advanced drug delivery systems. Expert Opin. Drug Deliv., 2016, 13(11), 1609-1623. doi: 10.1080/17425247.2016.1193149 PMID: 27216915
- Quinlan, G.J.; Martin, G.S.; Evans, T.W. Albumin: Biochemical properties and therapeutic potential. Hepatology, 2005, 41(6), 1211-1219. doi: 10.1002/hep.20720 PMID: 15915465
- Kratz, F. Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles. J. Control. Release, 2008, 132(3), 171-83.
- Yu, L.; Hua, Z.; Luo, X.; Zhao, T.; Liu, Y. Systematic interaction of plasma albumin with the efficacy of chemotherapeutic drugs. Biochim. Biophys. Acta Rev. Cancer, 2022, 1877(1), 188655. doi: 10.1016/j.bbcan.2021.188655 PMID: 34780933
- De Simone, G.; di Masi, A.; Ascenzi, P. Serum albumin: A multifaced enzyme. Int. J. Mol. Sci., 2021, 22(18), 10086. doi: 10.3390/ijms221810086 PMID: 34576249
- Wang, Z.; Ho, J.X.; Ruble, J.R.; Rose, J.; Rüker, F.; Ellenburg, M.; Murphy, R.; Click, J.; Soistman, E.; Wilkerson, L.; Carter, D.C. Structural studies of several clinically important oncology drugs in complex with human serum albumin. Biochim. Biophys. Acta, Gen. Subj., 2013, 1830(12), 5356-5374. doi: 10.1016/j.bbagen.2013.06.032 PMID: 23838380
- Zeeshan, F.; Madheswaran, T.; Panneerselvam, J.; Taliyan, R.; Kesharwani, P. Human serum albumin as multifunctional nanocarrier for cancer therapy. J. Pharm. Sci., 2021, 110(9), 3111-3117. doi: 10.1016/j.xphs.2021.05.001 PMID: 33989679
- Spada, A.; Emami, J.; Tuszynski, J.A.; Lavasanifar, A. The uniqueness of albumin as a carrier in nanodrug delivery. Mol. Pharm., 2021, 18(5), 1862-1894. doi: 10.1021/acs.molpharmaceut.1c00046 PMID: 33787270
- Tao, H.; Wang, R.; Sheng, W.; Zhen, Y. The development of human serum albumin-based drugs and relevant fusion proteins for cancer therapy. Int. J. Biol. Macromol., 2021, 187, 24-34. doi: 10.1016/j.ijbiomac.2021.07.080 PMID: 34284054
- Liu, Z.; Chen, X. Simple bioconjugate chemistry serves great clinical advances: albumin as a versatile platform for diagnosis and precision therapy. Chem. Soc. Rev., 2016, 45(5), 1432-1456. doi: 10.1039/C5CS00158G PMID: 26771036
- Xu, R.; Fisher, M.; Juliano, R.L. Targeted albumin-based nanoparticles for delivery of amphipathic drugs. Bioconjug. Chem., 2011, 22(5), 870-878. doi: 10.1021/bc1002295 PMID: 21452893
- Al-Hajeili, M.; Azmi, A.S.; Choi, M. Nab-paclitaxel: potential for the treatment of advanced pancreatic cancer. OncoTargets Ther., 2014, 7, 187-192. PMID: 24523592
- Wiedenmann, N.; Valdecanas, D.; Hunter, N.; Hyde, S.; Buchholz, T.A.; Milas, L.; Mason, K.A. 130-nm albumin-bound paclitaxel enhances tumor radiocurability and therapeutic gain. Clin. Cancer Res., 2007, 13(6), 1868-1874. doi: 10.1158/1078-0432.CCR-06-2534 PMID: 17363543
- Hu, H.; Quintana, J.; Weissleder, R.; Parangi, S.; Miller, M. Deciphering albumin-directed drug delivery by imaging. Adv. Drug Deliv. Rev., 2022, 185, 114237. doi: 10.1016/j.addr.2022.114237 PMID: 35364124
- Du, J.; Zhao, X.; Li, B.; Mou, Y.; Wang, Y. DNA-loaded microbubbles with crosslinked bovine serum albumin shells for ultrasound-promoted gene delivery and transfection. Colloids Surf. B Biointerfaces, 2018, 161, 279-287. doi: 10.1016/j.colsurfb.2017.10.036 PMID: 29096372
- Miyakawa, N.; Nishikawa, M.; Takahashi, Y.; Ando, M.; Misaka, M.; Watanabe, Y.; Takakura, Y. Gene delivery of albumin binding peptide-interferon-gamma fusion protein with improved pharmacokinetic properties and sustained biological activity. J. Pharm. Sci., 2013, 102(9), 3110-3118. doi: 10.1002/jps.23493 PMID: 23463584
- Wang, Y.; Chen, S.; Yang, X.; Zhang, S.; Cui, C. Preparation optimization of bovine serum albumin nanoparticles and its application for siRNA delivery. Drug Des. Devel. Ther., 2021, 15, 1531-1547. doi: 10.2147/DDDT.S299479 PMID: 33883877
- Lei, C.; Liu, X. R.; Chen, Q. B.; Li, Y.; Zhou, J. L.; Zhou, L. Y.; Zou, T. Hyaluronic acid and albumin based nanoparticles for drug delivery. J. Control. Release, 2021, 331, 416-433.
- Wang, M.; Zhang, L.; Cai, Y.; Yang, Y.; Qiu, L.; Shen, Y.; Jin, J.; Zhou, J.; Chen, J. Bioengineered human serum albumin fusion protein as Target/Enzyme/pH three-stage propulsive drug vehicle for tumor therapy. ACS Nano, 2020, 14(12), 17405-17418. doi: 10.1021/acsnano.0c07610 PMID: 33202141
- Lamichhane, S.; Lee, S. Albumin nanoscience: Homing nanotechnology enabling targeted drug delivery and therapy. Arch. Pharm. Res., 2020, 43(1), 118-133. doi: 10.1007/s12272-020-01204-7 PMID: 31916145
- Müller, W.E.G. The origin of metazoan complexity: porifera as integrated animals. Integr. Comp. Biol., 2003, 43(1), 3-10. doi: 10.1093/icb/43.1.3 PMID: 21680404
- Shoulders, M.D.; Raines, R.T. Collagen structure and stability. Annu. Rev. Biochem., 2009, 78(1), 929-958. doi: 10.1146/annurev.biochem.77.032207.120833 PMID: 19344236
- Xu, N.; Peng, X.L.; Li, H.R.; Liu, J.X.; Cheng, J.S.Y.; Qi, X.Y.; Ye, S.J.; Gong, H.L.; Zhao, X.H.; Yu, J.; Xu, G.; Wei, D.X. Marine-derived collagen as biomaterials for human health. Front. Nutr., 2021, 8, 702108. doi: 10.3389/fnut.2021.702108 PMID: 34504861
- Sorushanova, A.; Delgado, L.M.; Wu, Z.; Shologu, N.; Kshirsagar, A.; Raghunath, R.; Mullen, A.M.; Bayon, Y.; Pandit, A.; Raghunath, M.; Zeugolis, D.I. The Collagen Suprafamily: From biosynthesis to advanced biomaterial development. Adv. Mater., 2019, 31(1), 1801651. doi: 10.1002/adma.201801651 PMID: 30126066
- Sarrigiannidis, S.O.; Rey, J.M.; Dobre, O.; González-García, C.; Dalby, M.J.; Salmeron-Sanchez, M. A tough act to follow: collagen hydrogel modifications to improve mechanical and growth factor loading capabilities. Mater. Today Bio, 2021, 10, 100098. doi: 10.1016/j.mtbio.2021.100098 PMID: 33763641
- Ricard-Blum, S. The collagen family. Cold Spring Harb. Perspect. Biol., 2011, 3(1), a004978. doi: 10.1101/cshperspect.a004978 PMID: 21421911
- Fujioka, K.; Takada, Y.; Sato, S.; Miyata, T. Novel delivery system for proteins using collagen as a carrier material: the minipellet. J. Control. Release, 1995, 33(2), 307-315. doi: 10.1016/0168-3659(94)00107-6
- Higaki, M.; Azechi, Y.; Takase, T.; Igarashi, R.; Nagahara, S.; Sano, A.; Fujioka, K.; Nakagawa, N.; Aizawa, C.; Mizushima, Y. Collagen minipellet as a controlled release delivery system for tetanus and diphtheria toxoid. Vaccine, 2001, 19(23-24), 3091-3096. doi: 10.1016/S0264-410X(01)00039-1 PMID: 11312003
- Gu, L.; Shan, T.; Ma, Y.; Tay, F.R.; Niu, L. Novel biomedical applications of crosslinked collagen. Trends Biotechnol., 2019, 37(5), 464-491. doi: 10.1016/j.tibtech.2018.10.007 PMID: 30447877
- Adamiak, K.; Sionkowska, A. Current methods of collagen cross-linking: Review. Int. J. Biol. Macromol., 2020, 161, 550-560. doi: 10.1016/j.ijbiomac.2020.06.075 PMID: 32534089
- Wang, Z.; Liu, H.; Luo, W.; Cai, T.; Li, Z.; Liu, Y.; Gao, W.; Wan, Q.; Wang, X.; Wang, J.; Wang, Y.; Yang, X. Regeneration of skeletal system with genipin crosslinked biomaterials. J. Tissue Eng., 2020, 11, 2041731420974861. doi: 10.1177/2041731420974861 PMID: 33294154
- Persadmehr, A.; Torneck, C.D.; Cvitkovitch, D.G.; Pinto, V.; Talior, I.; Kazembe, M.; Shrestha, S.; McCulloch, C.A.; Kishen, A. Bioactive chitosan nanoparticles and photodynamic therapy inhibit collagen degradation in vitro. J. Endod., 2014, 40(5), 703-709. doi: 10.1016/j.joen.2013.11.004 PMID: 24767568
- Li, Y.; He, Q.; Hu, X.; Liu, Y.; Cheng, X.; Li, X.; Deng, F. Improved performance of collagen scaffolds crosslinked by Trauts reagent and Sulfo-SMCC. J. Biomater. Sci. Polym. Ed., 2017, 28(7), 629-647. doi: 10.1080/09205063.2017.1291296 PMID: 28277011
- Milczek, E.M. Commercial applications for enzyme-mediated protein conjugation: New developments in enzymatic processes to deliver functionalized proteins on the commercial scale. Chem. Rev., 2018, 118(1), 119-141. doi: 10.1021/acs.chemrev.6b00832 PMID: 28627171
- Eekhoff, J.D.; Fang, F.; Lake, S.P. Multiscale mechanical effects of native collagen cross-linking in tendon. Connect. Tissue Res., 2018, 59(5), 410-422. doi: 10.1080/03008207.2018.1449837 PMID: 29873266
- Stachel, I.; Schwarzenbolz, U.; Henle, T.; Meyer, M. Cross-linking of type I collagen with microbial transglutaminase: Identification of cross-linking sites. Biomacromolecules, 2010, 11(3), 698-705. doi: 10.1021/bm901284x PMID: 20131754
- Davison-Kotler, E.; Marshall, W.S.; García-Gareta, E. Sources of collagen for biomaterials in skin wound healing. Bioengineering, 2019, 6(3), 56. doi: 10.3390/bioengineering6030056 PMID: 31261996
- Bhattacharjee, P.; Ahearne, M. Significance of crosslinking approaches in the development of next generation hydrogels for corneal tissue engineering. Pharmaceutics, 2021, 13(3), 319. doi: 10.3390/pharmaceutics13030319 PMID: 33671011
- Seong, Y.J.; Song, E.H.; Park, C.; Lee, H.; Kang, I.G.; Kim, H.E.; Jeong, S.H. Porous calcium phosphatecollagen composite microspheres for effective growth factor delivery and bone tissue regeneration. Mater. Sci. Eng. C, 2020, 109, 110480. doi: 10.1016/j.msec.2019.110480 PMID: 32228926
- Paradowska-Stolarz, A.; Wieckiewicz, M.; Owczarek, A.; Wezgowiec, J. Natural polymers for the maintenance of oral health: review of recent advances and perspectives. Int. J. Mol. Sci., 2021, 22(19), 10337. doi: 10.3390/ijms221910337 PMID: 34638678
- Vindin, H.; Mithieux, S. M.; Weiss, A. S. Elastin architecture. Matrix Biol., 2019, 84, 4-16.
- Hedtke, T.; Schräder, C.U.; Heinz, A.; Hoehenwarter, W.; Brinckmann, J.; Groth, T.; Schmelzer, C.E.H. A comprehensive map of human elastin cross-linking during elastogenesis. FEBS J., 2019, 286(18), 3594-3610. doi: 10.1111/febs.14929 PMID: 31102572
- Mahmood, A.; Patel, D.; Hickson, B.; DesRochers, J.; Hu, X. Recent progress in biopolymer-based hydrogel materials for biomedical applications. Int. J. Mol. Sci., 2022, 23(3), 1415. doi: 10.3390/ijms23031415 PMID: 35163339
- Saxena, R.; Nanjan, M.J. Elastin-like polypeptides and their applications in anticancer drug delivery systems: a review. Drug Deliv., 2015, 22(2), 156-167. doi: 10.3109/10717544.2013.853210 PMID: 24215207
- Jao, D.; Xue, Y.; Medina, J.; Hu, X. Protein-based drug-delivery materials. Materials, 2017, 10(5), 517.
- DeFrates, K.; Markiewicz, T.; Gallo, P.; Rack, A.; Weyhmiller, A.; Jarmusik, B.; Hu, X. Protein polymer-based nanoparticles: fabrication and medical applications. Int. J. Mol. Sci., 2018, 19(6), 1717. doi: 10.3390/ijms19061717 PMID: 29890756
- Liu, W.; Dreher, M. R.; Furgeson, D. Y.; Peixoto, K. V.; Yuan, H.; Zalutsky, M. R.; Chilkoti, A. Tumor accumulation, degradation and pharmacokinetics of elastin-like polypeptides in nude mice. J. Control. Release, 2006, 116(2), 170-8.
- Meyer, D.E.; Chilkoti, A. Genetically encoded synthesis of protein-based polymers with precisely specified molecular weight and sequence by recursive directional ligation: examples from the elastin-like polypeptide system. Biomacromolecules, 2002, 3(2), 357-367. doi: 10.1021/bm015630n PMID: 11888323
- Fletcher, E.E.; Yan, D.; Kosiba, A.A.; Zhou, Y.; Shi, H. Biotechnological applications of elastin-like polypeptides and the inverse transition cycle in the pharmaceutical industry. Protein Expr. Purif., 2019, 153, 114-120. doi: 10.1016/j.pep.2018.09.006 PMID: 30217600
- Chilkoti, A.; Dreher, M.R.; Meyer, D.E.; Raucher, D. Targeted drug delivery by thermally responsive polymers. Adv. Drug Deliv. Rev., 2002, 54(5), 613-630. doi: 10.1016/S0169-409X(02)00041-8 PMID: 12204595
- Massodi, I.; Raucher, D. A thermally responsive Tat-elastin-like polypeptide fusion protein induces membrane leakage, apoptosis, and cell death in human breast cancer cells. J. Drug Target., 2007, 15(9), 611-622. doi: 10.1080/10611860701502780 PMID: 17968715
- Kelly, G.; Milligan, J. J.; Mastria, E. M.; Kim, S.; Zelenetz, S. R.; Dobbins, J.; Cai, L. Y.; Li, X.; Nair, S. K.; Chilkoti, A. Intratumoral delivery of brachytherapy and immunotherapy by a thermally triggered polypeptide depot. J. Control. Release, 2022, 343, 267-276.
- Kang, H. J.; Kumar, S.; D'Elia, A.; Dash, B.; Nanda, V.; Hsia, H. C.; Yarmush, M. L.; Berthiaume, F. Self-assembled elastin-like polypeptide fusion protein coacervates as competitive inhibitors of advanced glycation end-products enhance diabetic wound healing. J. Control. Release, 2021, 333, 176-187.
- Rodríguez-Cabello, J.C.; González de Torre, I.; Ibañez- Fonseca, A.; Alonso, M. Bioactive scaffolds based on elastin-like materials for wound healing. Adv. Drug Deliv. Rev., 2018, 129, 118-133. doi: 10.1016/j.addr.2018.03.003 PMID: 29551651
- Liu, Z.; Jiao, Y.; Wang, Y.; Zhou, C.; Zhang, Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv. Drug Deliv. Rev., 2008, 60(15), 1650-1662. doi: 10.1016/j.addr.2008.09.001 PMID: 18848591
- Nosrati, H.; Khodaei, M.; Alizadeh, Z.; Banitalebi-Dehkordi, M. Cationic, anionic and neutral polysaccharides for skin tissue engineering and wound healing applications. Int. J. Biol. Macromol., 2021, 192, 298-322. doi: 10.1016/j.ijbiomac.2021.10.013 PMID: 34634326
- Lee, J.W.; Park, J.H.; Robinson, J.R. Bioadhesive-based dosage forms: The next generation. J. Pharm. Sci., 2000, 89(7), 850-866. doi: 10.1002/1520-6017(200007)89:73.0.CO;2-G PMID: 10861586
- Aider, M. Chitosan application for active bio-based films production and potential in the food industry: Review. Lebensm. Wiss. Technol., 2010, 43(6), 837-842. doi: 10.1016/j.lwt.2010.01.021
- Narain, R. Engineered carbohydrate-based materials for biomedical applications: polymers, surfaces, dendrimers, nanoparticles, and hydrogels; John Wiley & Sons, 2011. doi: 10.1002/9780470944349
- Roldo, M.; Hornof, M.; Caliceti, P.; Bernkop-Schnürch, A. Mucoadhesive thiolated chitosans as platforms for oral controlled drug delivery: synthesis and in vitro evaluation. Eur. J. Pharm. Biopharm., 2004, 57(1), 115-21.
- Prabaharan, M.; Mano, J.F. Chitosan-based particles as controlled drug delivery systems. Drug Deliv., 2004, 12(1), 41-57. doi: 10.1080/10717540590889781 PMID: 15801720
- Zhang, L.; Zhang, N. Advances of chitosan and its derivatives in drug delivery systems. Chin. J. New Drugs Clin. Remedies, 2014, 33(1), 9-14.
- Strand, S.P.; Lelu, S.; Reitan, N.K.; de Lange Davies, C.; Artursson, P.; Vårum, K.M. Molecular design of chitosan gene delivery systems with an optimized balance between polyplex stability and polyplex unpacking. Biomaterials, 2010, 31(5), 975-987. doi: 10.1016/j.biomaterials.2009.09.102 PMID: 19857892
- Shariatinia, Z. Pharmaceutical applications of chitosan. Adv. Colloid Interface Sci., 2019, 263, 131-194. doi: 10.1016/j.cis.2018.11.008 PMID: 30530176
- Maleki Dana, P.; Hallajzadeh, J.; Asemi, Z.; Mansournia, M.A.; Yousefi, B. Chitosan applications in studying and managing osteosarcoma. Int. J. Biol. Macromol., 2021, 169, 321-329. doi: 10.1016/j.ijbiomac.2020.12.058 PMID: 33310094
- Shahid-ul-Islam; Butola, B.S. Recent advances in chitosan polysaccharide and its derivatives in antimicrobial modification of textile materials. Int. J. Biol. Macromol., 2019, 121, 905-912. doi: 10.1016/j.ijbiomac.2018.10.102 PMID: 30342136
- Chang, S.H.; Wu, C.H.; Tsai, G.J. Effects of chitosan molecular weight on its antioxidant and antimutagenic properties. Carbohydr. Polym., 2018, 181, 1026-1032. doi: 10.1016/j.carbpol.2017.11.047 PMID: 29253927
- Mohammadi, Z.; Eini, M.; Rastegari, A.; Tehrani, M.R. Chitosan as a machine for biomolecule delivery: A review. Carbohydr. Polym., 2021, 256, 117414. doi: 10.1016/j.carbpol.2020.117414 PMID: 33483009
- Deineka, V.; Sulaieva, O.; Pernakov, N.; Radwan-Pragłowska, J.; Janus, L.; Korniienko, V.; Husak, Y.; Yanovska, A.; Liubchak, I.; Yusupova, A.; Piątkowski, M.; Zlatska, A.; Pogorielov, M. Hemostatic performance and biocompatibility of chitosan-based agents in experimental parenchymal bleeding. Mater. Sci. Eng. C, 2021, 120, 111740. doi: 10.1016/j.msec.2020.111740 PMID: 33545883
- Salatin, S.; Yari Khosroushahi, A. Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. J. Cell. Mol. Med., 2017, 21(9), 1668-1686. doi: 10.1111/jcmm.13110 PMID: 28244656
- Amidi, M.; Mastrobattista, E.; Jiskoot, W.; Hennink, W.E. Chitosan-based delivery systems for protein therapeutics and antigens. Adv. Drug Deliv. Rev., 2010, 62(1), 59-82. doi: 10.1016/j.addr.2009.11.009 PMID: 19925837
- Kim, K.; Kim, K.; Ryu, J.H.; Lee, H. Chitosan-catechol: A polymer with long-lasting mucoadhesive properties. Biomaterials, 2015, 52, 161-170. doi: 10.1016/j.biomaterials.2015.02.010 PMID: 25818422
- Xiao, B.; Wang, X.; Qiu, Z.; Ma, J.; Zhou, L.; Wan, Y.; Zhang, S. A dual-functionally modified chitosan derivative for efficient liver-targeted gene delivery. J. Biomed. Mater. Res. A, 2013, 101A(7), 1888-1897. doi: 10.1002/jbm.a.34493 PMID: 23203540
- Rastogi, P.; Kandasubramanian, B. Review of alginate-based hydrogel bioprinting for application in tissue engineering. Biofabrication, 2019, 11(4), 042001. doi: 10.1088/1758-5090/ab331e PMID: 31315105
- Sanchez-Ballester, N.M.; Bataille, B.; Soulairol, I. Sodium alginate and alginic acid as pharmaceutical excipients for tablet formulation: Structure-function relationship. Carbohydr. Polym., 2021, 270, 118399. doi: 10.1016/j.carbpol.2021.118399 PMID: 34364633
- Pawar, S.N.; Edgar, K.J. Alginate derivatization: A review of chemistry, properties and applications. Biomaterials, 2012, 33(11), 3279-3305. doi: 10.1016/j.biomaterials.2012.01.007 PMID: 22281421
- Cardoso, M.; Costa, R.; Mano, J. Marine origin polysaccharides in drug delivery systems. Mar. Drugs, 2016, 14(2), 34. doi: 10.3390/md14020034 PMID: 26861358
- Mano, J.F. Stimuli-responsive polymeric systems for biomedical applications. Adv. Eng. Mater., 2008, 10(6), 515-527. doi: 10.1002/adem.200700355
- Kim, S.; Jung, S. Biocompatible and self-recoverable succinoglycan dialdehyde-crosslinked alginate hydrogels for pH-controlled drug delivery. Carbohydr. Polym., 2020, 250, 116934. doi: 10.1016/j.carbpol.2020.116934 PMID: 33049846
- Zhao, D.; Zhuo, R.X.; Cheng, S.X. Alginate modified nanostructured calcium carbonate with enhanced delivery efficiency for gene and drug delivery. Mol. Biosyst., 2012, 8(3), 753-759. doi: 10.1039/C1MB05337J PMID: 22159070
- Zhao, D.; Liu, C.J.; Zhuo, R.X.; Cheng, S.X. Alginate/CaCO3 hybrid nanoparticles for efficient codelivery of antitumor gene and drug. Mol. Pharm., 2012, 9(10), 2887-2893. doi: 10.1021/mp3002123 PMID: 22894610
- Deng, Y.; Shavandi, A.; Okoro, O.V.; Nie, L. Alginate modification via click chemistry for biomedical applications. Carbohydr. Polym., 2021, 270, 118360. doi: 10.1016/j.carbpol.2021.118360 PMID: 34364605
- Mali, P.; Sherje, A.P. Cellulose nanocrystals: Fundamentals and biomedical applications. Carbohydr. Polym., 2022, 275, 118668. doi: 10.1016/j.carbpol.2021.118668 PMID: 34742407
- Yang, J.; Li, J. Self-assembled cellulose materials for biomedicine: A review. Carbohydr. Polym., 2018, 181, 264-274. doi: 10.1016/j.carbpol.2017.10.067 PMID: 29253971
- George, J.; Sabapathi, S.N. Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol. Sci. Appl., 2015, 8, 45-54. doi: 10.2147/NSA.S64386 PMID: 26604715
- Klemm, D.; Heublein, B.; Fink, H.P.; Bohn, A. Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed., 2005, 44(22), 3358-3393. doi: 10.1002/anie.200460587 PMID: 15861454
- Zhong, L.L.; Gao, Y.; Wu, Y.R.; Zhang, L.P. Preparation of amphiphilic cellulose carrier and study of its drug release performance. Mater. Res. Innov., 2013, 17(sup1), 79-82. doi: 10.1179/1432891713Z.000000000186
- Sampath Udeni Gunathilake, T.M.; Ching, Y.C.; Chuah, C.H.; Rahman, N.A.; Liou, N.S. Recent advances in celluloses and their hybrids for stimuli-responsive drug delivery. Int. J. Biol. Macromol., 2020, 158, 670-688. doi: 10.1016/j.ijbiomac.2020.05.010 PMID: 32389655
- Habibi, Y.; Lucia, L.A.; Rojas, O.J. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem. Rev., 2010, 110(6), 3479-3500. doi: 10.1021/cr900339w PMID: 20201500
- Leonel, A.G.; Mansur, H.S.; Mansur, A.A.P.; Caires, A.; Carvalho, S.M.; Krambrock, K.; Outon, L.E.F.; Ardisson, J.D. Synthesis and characterization of iron oxide nanoparticles/carboxymethyl cellulose core-shell nanohybrids for killing cancer cells in vitro. Int. J. Biol. Macromol., 2019, 132, 677-691. doi: 10.1016/j.ijbiomac.2019.04.006 PMID: 30951776
- Chatterjee, S.; Chi-leung HUI, P. Review of stimuli-responsive polymers in drug delivery and textile application. Molecules, 2019, 24(14), 2547. doi: 10.3390/molecules24142547 PMID: 31336916
- Hatakeyama, H. Recent advances in endogenous and exogenous stimuli-responsive nanocarriers for drug delivery and therapeutics. Chem. Pharm. Bull., 2017, 65(7), 612-617. doi: 10.1248/cpb.c17-00068 PMID: 28674332
- Deng, X.; Shao, Z.; Zhao, Y. Development of porphyrin and titanium dioxide sonosensitizers for sonodynamic cancer therapy. Biomat. Transl., 2021, 2(1), 72-85. PMID: 35837259
- Park, S.H.; Shin, H.S.; Park, S.N. A novel pH-responsive hydrogel based on carboxymethyl cellulose/2-hydroxyethyl acrylate for transdermal delivery of naringenin. Carbohydr. Polym., 2018, 200, 341-352. doi: 10.1016/j.carbpol.2018.08.011 PMID: 30177174
- Khan, S.; Anwar, N. Gelatin/carboxymethyl cellulose based stimuli-responsive hydrogels for controlled delivery of 5-fluorouracil, development, in vitro characterization, in vivo safety and bioavailability evaluation. Carbohydr. Polym., 2021, 257, 117617. doi: 10.1016/j.carbpol.2021.117617 PMID: 33541645
- Wen, Y.; Oh, J.K. Intracellular delivery cellulose-based bionanogels with dual temperature/pH-response for cancer therapy. Colloids Surf. B Biointerfaces, 2015, 133, 246-253. doi: 10.1016/j.colsurfb.2015.06.017 PMID: 26119370
- Rahimian, K.; Wen, Y.; Oh, J.K. Redox-responsive cellulose-based thermoresponsive grafted copolymers and in- situ disulfide crosslinked nanogels. Polymer (Guildf.), 2015, 72, 387-394. doi: 10.1016/j.polymer.2015.01.024
- Li, S.; Jasim, A.; Zhao, W.; Fu, L.; Ullah, M.W.; Shi, Z.; Yang, G. Fabrication of pH-electroactive Bacterial Cellulose/Polyaniline Hydrogel for the Development of a Controlled Drug Release System; ES Materials & Manufacturing, 2018. doi: 10.30919/esmm5f120
- Su, C.; Liu, J.; Yang, Z.; Jiang, L.; Liu, X.; Shao, W. UV- mediated synthesis of carboxymethyl cellulose/poly-N-isopropylacrylamide composite hydrogels with triple stimuli-responsive swelling performances. Int. J. Biol. Macromol., 2020, 161, 1140-1148. doi: 10.1016/j.ijbiomac.2020.06.094 PMID: 32553960
- Pandey, A. Pharmaceutical and biomedical applications of cellulose nanofibers: a review. Environ. Chem. Lett., 2021, 19(3), 2043-2055. doi: 10.1007/s10311-021-01182-2
- Li, M.; Yin, F.; Song, L.; Mao, X.; Li, F.; Fan, C.; Zuo, X.; Xia, Q. Nucleic acid tests for clinical translation. Chem. Rev., 2021, 121(17), 10469-10558. doi: 10.1021/acs.chemrev.1c00241 PMID: 34254782
- Juliano, R.L. The delivery of therapeutic oligonucleotides. Nucleic Acids Res., 2016, 44(14), 6518-6548. doi: 10.1093/nar/gkw236 PMID: 27084936
- Zhao, Z.; Ukidve, A.; Kim, J.; Mitragotri, S. Targeting strategies for tissue-specific drug delivery. Cell, 2020, 181(1), 151-167. doi: 10.1016/j.cell.2020.02.001 PMID: 32243788
- Chen, K.; Zhang, Y.; Zhu, L.; Chu, H.; Shao, X.; Asakiya, C.; Huang, K.; Xu, W. Insights into nucleic acid-based self-assembling nanocarriers for targeted drug delivery and controlled drug release. J. Control. Release, 2022, 341, 869-891.
- Jiang, Q.; Song, C.; Nangreave, J.; Liu, X.; Lin, L.; Qiu, D.; Wang, Z.G.; Zou, G.; Liang, X.; Yan, H.; Ding, B. DNA origami as a carrier for circumvention of drug resistance. J. Am. Chem. Soc., 2012, 134(32), 13396-13403. doi: 10.1021/ja304263n PMID: 22803823
- Mela, I.; Vallejo-Ramirez, P.P.; Makarchuk, S.; Christie, G.; Bailey, D.; Henderson, R.M.; Sugiyama, H.; Endo, M.; Kaminski, C.F. DNA nanostructures for targeted antimicrobial delivery. Angew. Chem. Int. Ed., 2020, 59(31), 12698-12702. doi: 10.1002/anie.202002740 PMID: 32297692
- Wang, Z.; Song, L.; Liu, Q.; Tian, R.; Shang, Y.; Liu, F.; Liu, S.; Zhao, S.; Han, Z.; Sun, J.; Jiang, Q.; Ding, B. A tubular DNA nanodevice as a siRNA/chemo-drug co-delivery vehicle for combined cancer therapy. Angew. Chem. Int. Ed., 2021, 60(5), 2594-2598. doi: 10.1002/anie.202009842 PMID: 33089613
- Mikkilä, J.; Eskelinen, A.P.; Niemelä, E.H.; Linko, V.; Frilander, M.J.; Törmä, P.; Kostiainen, M.A. Virus-encapsulated DNA origami nanostructures for cellular delivery. Nano Lett., 2014, 14(4), 2196-2200. doi: 10.1021/nl500677j PMID: 24627955
- Du, Y.; Jiang, Q.; Beziere, N.; Song, L.; Zhang, Q.; Peng, D.; Chi, C.; Yang, X.; Guo, H.; Diot, G.; Ntziachristos, V.; Ding, B.; Tian, J. DNA-nanostructure-gold-nanorod hybrids for enhanced in vivo optoacoustic imaging and photothermal therapy. Adv. Mater., 2016, 28(45), 10000-10007. doi: 10.1002/adma.201601710 PMID: 27679425
- Ellington, A.D.; Szostak, J.W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287), 818-822. doi: 10.1038/346818a0 PMID: 1697402
- Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990, 249(4968), 505-510. doi: 10.1126/science.2200121 PMID: 2200121
- Krissanaprasit, A.; Key, C.M.; Pontula, S.; LaBean, T.H. Self-assembling nucleic acid nanostructures functionalized with aptamers. Chem. Rev., 2021, 121(22), 13797-13868. doi: 10.1021/acs.chemrev.0c01332 PMID: 34157230
- Sundar, S.; Kundu, J.; Kundu, S.C. Biopolymeric nanoparticles. Sci. Technol. Adv. Mater., 2010, 11(1), 014104. doi: 10.1088/1468-6996/11/1/014104 PMID: 27877319
- Jurczak, E.; Mazurek, A.H.; Szeleszczuk, Ł.; Pisklak, D.M.; Zielińska-Pisklak, M. Pharmaceutical hydrates analysis-overview of methods and recent advances. Pharmaceutics, 2020, 12(10), 959. doi: 10.3390/pharmaceutics12100959 PMID: 33050621
- Rodríguez, I.; Gautam, R.; Tinoco, A.D. Using X-ray diffraction techniques for biomimetic drug development, formulation, and polymorphic characterization. Biomimetics, 2020, 6(1), 1. doi: 10.3390/biomimetics6010001 PMID: 33396786
- Samrot, A. V.; Sean, T. C.; Kudaiyappan, T.; Bisyarah, U.; Mirarmandi, A.; Faradjeva, E.; Abubakar, A.; Ali, H. H.; Angalene, J. L. A.; Suresh Kumar, S. Production, characterization and application of nanocarriers made of polysaccharides, proteins, bio-polyesters and other biopolymers: A review. Int. J. Biol. Macromol., 2020, 165(Pt B), 3088-3105. doi: 10.1016/j.ijbiomac.2020.10.104
- Tian, L.; Singh, A.; Singh, A.V. Synthesis and characterization of pectin-chitosan conjugate for biomedical application. Int. J. Biol. Macromol., 2020, 153, 533-538. doi: 10.1016/j.ijbiomac.2020.02.313 PMID: 32114170
- Lilo, T.; Morais, C.L.M.; Shenton, C.; Ray, A.; Gurusinghe, N. Revising Fourier-transform infrared (FT-IR) and Raman spectroscopy towards brain cancer detection. Photodiagn. Photodyn. Ther., 2022, 38, 102785. doi: 10.1016/j.pdpdt.2022.102785 PMID: 35231616
- Zhang, S.; Kang, L.; Hu, S.; Hu, J.; Fu, Y.; Hu, Y.; Yang, X. Carboxymethyl chitosan microspheres loaded hyaluronic acid/gelatin hydrogels for controlled drug delivery and the treatment of inflammatory bowel disease. Int. J. Biol. Macromol., 2021, 167, 1598-1612. doi: 10.1016/j.ijbiomac.2020.11.117 PMID: 33220374
- Yang, S.; Zhang, Q.; Yang, H.; Shi, H.; Dong, A.; Wang, L.; Yu, S. Progress in infrared spectroscopy as an efficient tool for predicting protein secondary structure. Int. J. Biol. Macromol., 2022, 206, 175-187. doi: 10.1016/j.ijbiomac.2022.02.104 PMID: 35217087
- Lin, P.C.; Lin, S.; Wang, P.C.; Sridhar, R. Techniques for physicochemical characterization of nanomaterials. Biotechnol. Adv., 2014, 32(4), 711-726. doi: 10.1016/j.biotechadv.2013.11.006 PMID: 24252561
- Paradowska, K.; Wawer, I. Solid-state NMR in the analysis of drugs and naturally occurring materials. J. Pharm. Biomed. Anal., 2014, 93, 27-42. doi: 10.1016/j.jpba.2013.09.032 PMID: 24173236
- Wang, P.; Lv, X.; Zhang, B.; Wang, T.; Wang, C.; Sun, J.; Zhang, K.; Wu, Y.; Zhao, J.; Zhang, Y. Simultaneous determination of molar degree of substitution and its distribution fraction, degree of acetylation in hydroxypropyl chitosan by 1H NMR spectroscopy. Carbohydr. Polym., 2021, 263, 117950. doi: 10.1016/j.carbpol.2021.117950 PMID: 33858567
- Wen, J.L.; Sun, S.L.; Xue, B.L.; Sun, R.C. Recent advances in characterization of lignin polymer by solution-state nuclear magnetic resonance (NMR) methodology. Materials, 2013, 6(1), 359-391. doi: 10.3390/ma6010359 PMID: 28809313
- Xia, Z.; Akim, L.G.; Argyropoulos, D.S. Quantitative (13)C NMR analysis of lignins with internal standards. J. Agric. Food Chem., 2001, 49(8), 3573-3578. doi: 10.1021/jf010333v PMID: 11513630
- Inbasekar, C.; Fathima, N.N. Collagen stabilization using ionic liquid functionalised cerium oxide nanoparticle. Int. J. Biol. Macromol., 2020, 147, 24-28. doi: 10.1016/j.ijbiomac.2019.12.271 PMID: 31904464
- Mourdikoudis, S.; Pallares, R.M.; Thanh, N.T.K. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale, 2018, 10(27), 12871-12934. doi: 10.1039/C8NR02278J PMID: 29926865
- Rozo, A.J.; Cox, M.H.; Devitt, A.; Rothnie, A.J.; Goddard, A.D. Biophysical analysis of lipidic nanoparticles. Methods, 2020, 180, 45-55. doi: 10.1016/j.ymeth.2020.05.001 PMID: 32387313
- Filipe, V.; Hawe, A.; Jiskoot, W. Critical evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharm. Res., 2010, 27(5), 796-810. doi: 10.1007/s11095-010-0073-2 PMID: 20204471
- Maguire, C.M.; Rösslein, M.; Wick, P.; Prina-Mello, A. Characterisation of particles in solution-a perspective on light scattering and comparative technologies. Sci. Technol. Adv. Mater., 2018, 19(1), 732-745. doi: 10.1080/14686996.2018.1517587 PMID: 30369998
- Verma, M.L.; Dhanya, B.S.; Sukriti; Rani, V.; Thakur, M.; Jeslin, J.; Kushwaha, R. Carbohydrate and protein based biopolymeric nanoparticles: Current status and biotechnological applications. Int. J. Biol. Macromol., 2020, 154, 390-412. doi: 10.1016/j.ijbiomac.2020.03.105 PMID: 32194126
- Jain, A.K.; Thareja, S. In vitro and in vivo characterization of pharmaceutical nanocarriers used for drug delivery. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 524-539. doi: 10.1080/21691401.2018.1561457 PMID: 30784319
- Gericke, M.; Schulze, P.; Heinze, T. Nanoparticles based on hydrophobic polysaccharide derivatives-formation principles, characterization techniques, and biomedical applications. Macromol. Biosci., 2020, 20(4), 1900415. doi: 10.1002/mabi.201900415 PMID: 32090505
- Berbel Manaia, E.; Paiva Abuçafy, M.; Chiari-Andréo, B.G.; Lallo Silva, B.; Oshiro-Júnior, J.A.; Chiavacci, L. Physicochemical characterization of drug nanocarriers. Int. J. Nanomed., 2017, 12, 4991-5011. doi: 10.2147/IJN.S133832 PMID: 28761340
- Melo, M.N.; Pereira, F.M.; Rocha, M.A.; Ribeiro, J.G.; Junges, A.; Monteiro, W.F.; Diz, F.M.; Ligabue, R.A.; Morrone, F.B.; Severino, P.; Fricks, A.T. Chitosan and chitosan/PEG nanoparticles loaded with indole-3-carbinol: Characterization, computational study and potential effect on human bladder cancer cells. Mater. Sci. Eng. C, 2021, 124, 112089. doi: 10.1016/j.msec.2021.112089 PMID: 33947529
- Song, Y.; Cong, Y.; Wang, B.; Zhang, N. Applications of Fourier transform infrared spectroscopy to pharmaceutical preparations. Expert Opin. Drug Deliv., 2020, 17(4), 551-571. doi: 10.1080/17425247.2020.1737671 PMID: 32116058
- Taylor, E.A.; Donnelly, E. Raman and Fourier transform infrared imaging for characterization of bone material properties. Bone, 2020, 139, 115490. doi: 10.1016/j.bone.2020.115490 PMID: 32569874
- Kumar, C.S. Raman spectroscopy for nanomaterials characterization; Springer Verlag, 2012. doi: 10.1007/978-3-642-20620-7
- Begum, R.; Farooqi, Z.H.; Naseem, K.; Ali, F.; Batool, M.; Xiao, J.; Irfan, A. Applications of UV/Vis spectroscopy in characterization and catalytic activity of noble metal nanoparticles fabricated in responsive polymer microgels: A review. Crit. Rev. Anal. Chem., 2018, 48(6), 503-516. doi: 10.1080/10408347.2018.1451299 PMID: 29601210
- Jing, Y.; Li, J.; Zhang, Y.; Zhang, R.; Zheng, Y.; Hu, B.; Wu, L.; Zhang, D. Structural characterization and biological activities of a novel polysaccharide from Glehnia littoralis and its application in preparation of nano-silver. Int. J. Biol. Macromol., 2021, 183, 1317-1326. doi: 10.1016/j.ijbiomac.2021.04.178 PMID: 33933541
- Mahnaj, T.; Ahmed, S.U.; Plakogiannis, F.M. Characterization of ethyl cellulose polymer. Pharm. Dev. Technol., 2013, 18(5), 982-989. doi: 10.3109/10837450.2011.604781 PMID: 21861778
- Thakral, S.; Terban, M.W.; Thakral, N.K.; Suryanarayanan, R. Recent advances in the characterization of amorphous pharmaceuticals by X-ray diffractometry. Adv. Drug Deliv. Rev., 2016, 100, 183-193. doi: 10.1016/j.addr.2015.12.013 PMID: 26712710
- Panchal, J.; Kotarek, J.; Marszal, E.; Topp, E.M. Analyzing subvisible particles in protein drug products: A comparison of dynamic light scattering (DLS) and resonant mass measurement (RMM). AAPS J., 2014, 16(3), 440-451. doi: 10.1208/s12248-014-9579-6 PMID: 24570341
- Ding, Z.; Mo, M.; Zhang, K.; Bi, Y.; Kong, F. Preparation, characterization and biological activity of proanthocyanidin-chitosan nanoparticles. Int. J. Biol. Macromol., 2021, 188, 43-51. doi: 10.1016/j.ijbiomac.2021.08.010 PMID: 34364936
- Birk, S.E.; Boisen, A.; Nielsen, L.H. Polymeric nano- and microparticulate drug delivery systems for treatment of biofilms. Adv. Drug Deliv. Rev., 2021, 174, 30-52. doi: 10.1016/j.addr.2021.04.005 PMID: 33845040
- Li, Y.; Thambi, T.; Lee, D.S. Co-delivery of drugs and genes using polymeric nanoparticles for synergistic cancer therapeutic effects. Adv. Healthc. Mater., 2018, 7(1), 1700886. doi: 10.1002/adhm.201700886 PMID: 28941203
- Hu, Y.; Sun, Y.; Wan, C.; Dai, X.; Wu, S.; Lo, P.C.; Huang, J.; Lovell, J.F.; Jin, H.; Yang, K. Microparticles: Biogenesis, characteristics and intervention therapy for cancers in preclinical and clinical research. J. Nanobiotechnology, 2022, 20(1), 189. doi: 10.1186/s12951-022-01358-0 PMID: 35418077
- Pinelli, F.; Sacchetti, A.; Perale, G.; Rossi, F. Is nanoparticle functionalization a versatile approach to meet the challenges of drug and gene delivery? Ther. Deliv., 2020, 11(7), 401-404. doi: 10.4155/tde-2020-0030 PMID: 32372721
- Lin, T.; Zhao, P.; Jiang, Y.; Tang, Y.; Jin, H.; Pan, Z.; He, H.; Yang, V.C.; Huang, Y. Bloodbrain-barrier-penetrating albumin nanoparticles for biomimetic drug delivery via albumin-binding protein pathways for antiglioma therapy. ACS Nano, 2016, 10(11), 9999-10012. doi: 10.1021/acsnano.6b04268 PMID: 27934069
- Morachis, J.M.; Mahmoud, E.A.; Almutairi, A. Physical and chemical strategies for therapeutic delivery by using polymeric nanoparticles. Pharmacol. Rev., 2012, 64(3), 505-519. doi: 10.1124/pr.111.005363 PMID: 22544864
- Yoo, J.; Kim, K.; Kim, S.; Park, H.H.; Shin, H.; Joo, J. Tailored polyethylene glycol grafting on porous nanoparticles for enhanced targeting and intracellular siRNA delivery. Nanoscale, 2022, 14(39), 14482-14490. doi: 10.1039/D2NR02995B PMID: 36134732
- Bouchemal, K.; Briançon, S.; Perrier, E.; Fessi, H. Nano-emulsion formulation using spontaneous emulsification: Solvent, oil and surfactant optimisation. Int. J. Pharm., 2004, 280(1-2), 241-251. doi: 10.1016/j.ijpharm.2004.05.016 PMID: 15265563
- Weber, C.; Coester, C.; Kreuter, J.; Langer, K. Desolvation process and surface characterisation of protein nanoparticles. Int. J. Pharm., 2000, 194(1), 91-102. doi: 10.1016/S0378-5173(99)00370-1 PMID: 10601688
- Pawar, A.; Thakkar, S.; Misra, M. A bird's eye view of nanoparticles prepared by electrospraying: Advancements in drug delivery field. J. Control. Release, 2018, 286, 179-200.
- Hedayati, R.; Jahanshahi, M.; Attar, H. Fabrication and characterization of albumin-acacia nanoparticles based on complex coacervation as potent nanocarrier. J. Chem. Technol. Biotechnol., 2012, 87(10), 1401-1408. doi: 10.1002/jctb.3758
- Guo, J.; Lin, Y. One-dimensional micro/nanomotors for biomedicine: delivery, sensing and surgery. Biomat. Transl., 2020, 1(1), 18-32. PMID: 35837656
- Li, Q.; Ning, Z.; Ren, J.; Liao, W. Structural design and physicochemical foundations of hydrogels for biomedical applications. Curr. Med. Chem., 2018, 25(8), 963-981. doi: 10.2174/0929867324666170818111630 PMID: 28820072
- Garg, T.; Singh, S.; Goyal, A.K. Stimuli-sensitive hydrogels: An excellent carrier for drug and cell delivery. Crit. Rev. Ther. Drug Carrier Syst., 2013, 30(5), 369-409. doi: 10.1615/CritRevTherDrugCarrierSyst.2013007259 PMID: 24099326
- Gao, Q.; He, Y.; Fu, J.; Liu, A.; Ma, L. Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials, 2015, 61, 203-215. doi: 10.1016/j.biomaterials.2015.05.031 PMID: 26004235
- Nguyen, Q.V.; Huynh, D.P.; Park, J.H.; Lee, D.S. Injectable polymeric hydrogels for the delivery of therapeutic agents: A review. Eur. Polym. J., 2015, 72, 602-619. doi: 10.1016/j.eurpolymj.2015.03.016
- Hu, C.; Zhang, F.; Long, L.; Kong, Q.; Luo, R.; Wang, Y. Dual-responsive injectable hydrogels encapsulating drug-loaded micelles for on-demand antimicrobial activity and accelerated wound healing. J. Control. Release, 2020, 324, 204-217.
- Lan, B.; Zhang, L.; Yang, L.; Wu, J.; Li, N.; Pan, C.; Wang, X.; Zeng, L.; Yan, L.; Yang, C.; Ren, M. Sustained delivery of MMP-9 siRNA via thermosensitive hydrogel accelerates diabetic wound healing. J. Nanobiotechnol., 2021, 19(1), 130. doi: 10.1186/s12951-021-00869-6 PMID: 33952251
- Elbl, J.; Gajdziok, J.; Kolarczyk, J. 3D printing of multilayered orodispersible films with in-process drying. Int. J. Pharm., 2020, 575, 118883. doi: 10.1016/j.ijpharm.2019.118883 PMID: 31811925
- Bhagurkar, A.M.; Darji, M.; Lakhani, P.; Thipsay, P.; Bandari, S.; Repka, M.A. Effects of formulation composition on the characteristics of mucoadhesive films prepared by hot-melt extrusion technology. J. Pharm. Pharmacol., 2019, 71(3), 293-305. doi: 10.1111/jphp.13046 PMID: 30485903
- Zayed, G. M.; Rasoul, S. A.; Ibrahim, M. A.; Saddik, M. S.; Alshora, D. H. In vitro and in vivo characterization of domperidone-loaded fast dissolving buccal films. Saudi Pharm. J., 2020, 28(3), 266-273.
- Wang, P.; Li, Y.; Zhang, C.; Feng, F.; Zhang, H. Sequential electrospinning of multilayer ethylcellulose/gelatin/ethylcellulose nanofibrous film for sustained release of curcumin. Food Chem., 2020, 308, 125599. doi: 10.1016/j.foodchem.2019.125599 PMID: 31648098
- He, M.; Zhu, L.; Yang, N.; Li, H.; Yang, Q. Recent advances of oral film as platform for drug delivery. Int. J. Pharm., 2021, 604, 120759. doi: 10.1016/j.ijpharm.2021.120759 PMID: 34098053
- Stie, M. B.; Kalouta, K.; Vetri, V.; Foderà, V. Protein materials as sustainable non- and minimally invasive strategies for biomedical applications. J. Control. Release, 2022, 344, 12-25.
- Adnan, M.; Santhosh Kumar, K.; Sreejith, L. Micellar nanocomposites hydrogels films for pH sensitive controlled drug delivery. Mater. Lett., 2020, 277, 128286. doi: 10.1016/j.matlet.2020.128286
- Speth, M.T.; Repnik, U.; Griffiths, G. Layer-by-layer nanocoating of live Bacille-Calmette-Guérin mycobacteria with poly(I:C) and chitosan enhances pro-inflammatory activation and bactericidal capacity in murine macrophages. Biomaterials, 2016, 111, 1-12. doi: 10.1016/j.biomaterials.2016.09.027 PMID: 27716523
- Paris, A.L.; Caridade, S.; Colomb, E.; Bellina, M.; Boucard, E.; Verrier, B.; Monge, C. Sublingual protein delivery by a mucoadhesive patch made of natural polymers. Acta Biomater., 2021, 128, 222-235. doi: 10.1016/j.actbio.2021.04.024 PMID: 33878475
- Schwestka, J.; Stoger, E. Microparticles and nanoparticles from plants-the benefits of bioencapsulation. Vaccines, 2021, 9(4), 369. doi: 10.3390/vaccines9040369 PMID: 33920425
- Catoira, M.C.; Fusaro, L.; Di Francesco, D.; Ramella, M.; Boccafoschi, F. Overview of natural hydrogels for regenerative medicine applications. J. Mater. Sci. Mater. Med., 2019, 30(10), 115. doi: 10.1007/s10856-019-6318-7 PMID: 31599365
- Yao, Y.; Zhang, A.; Yuan, C.; Chen, X.; Liu, Y. Recent trends on burn wound care: Hydrogel dressings and scaffolds. Biomater. Sci., 2021, 9(13), 4523-4540. doi: 10.1039/D1BM00411E PMID: 34047308
- Seo, K.S.; Bajracharya, R.; Lee, S.H.; Han, H.K. Pharmaceutical application of tablet film coating. Pharmaceutics, 2020, 12(9), 853. doi: 10.3390/pharmaceutics12090853 PMID: 32911720
- Moniz, T.; Costa Lima, S.A.; Reis, S. Marine polymeric microneedles for transdermal drug delivery. Carbohydr. Polym., 2021, 266, 118098. doi: 10.1016/j.carbpol.2021.118098 PMID: 34044917
- Tao, F.; Cheng, Y.; Shi, X.; Zheng, H.; Du, Y.; Xiang, W.; Deng, H. Applications of chitin and chitosan nanofibers in bone regenerative engineering. Carbohydr. Polym., 2020, 230, 115658. doi: 10.1016/j.carbpol.2019.115658 PMID: 31887899
- Mbese, Z.; Alven, S.; Aderibigbe, B.A. Collagen-based nanofibers for skin regeneration and wound dressing applications. Polymers, 2021, 13(24), 4368. doi: 10.3390/polym13244368 PMID: 34960918
- Hong, H.; Wang, X.; Song, X.; Fawal, G.E.; Wang, K.; Jiang, D.; Pei, Y.; Wang, Z.; Wang, H. Transdermal delivery of interleukin-12 gene targeting dendritic cells enhances the anti-tumour effect of programmed cell death protein 1 monoclonal antibody. Biomaterials Translational, 2021, 2(2), 151-164. PMID: 35836967
- Gullapalli, R.P.; Mazzitelli, C.L. Gelatin and non-gelatin capsule dosage forms. J. Pharm. Sci., 2017, 106(6), 1453-1465. doi: 10.1016/j.xphs.2017.02.006 PMID: 28209365
- Wong, C.Y.; Al-Salami, H.; Dass, C.R. Microparticles, microcapsules and microspheres: A review of recent developments and prospects for oral delivery of insulin. Int. J. Pharm., 2018, 537(1-2), 223-244. doi: 10.1016/j.ijpharm.2017.12.036 PMID: 29288095
- Abdelkader, H.; Fathalla, Z.; Seyfoddin, A.; Farahani, M.; Thrimawithana, T.; Allahham, A.; Alani, A.W.G.; Al-Kinani, A.A.; Alany, R.G. Polymeric long-acting drug delivery systems (LADDS) for treatment of chronic diseases: Inserts, patches, wafers, and implants. Adv. Drug Deliv. Rev., 2021, 177, 113957. doi: 10.1016/j.addr.2021.113957 PMID: 34481032
- Kumar, S.S.D.; Rajendran, N.K.; Houreld, N.N.; Abrahamse, H. Recent advances on silver nanoparticle and biopolymer-based biomaterials for wound healing applications. Int. J. Biol. Macromol., 2018, 115, 165-175. doi: 10.1016/j.ijbiomac.2018.04.003 PMID: 29627463
- Huang, B.; Liu, X.; Li, Z.; Zheng, Y.; Wai Kwok Yeung, K.; Cui, Z.; Liang, Y.; Zhu, S.; Wu, S. Rapid bacteria capturing and killing by AgNPs/N-CD@ZnO hybrids strengthened photo-responsive xerogel for rapid healing of bacteria-infected wounds. Chem. Eng. J., 2021, 414, 128805. doi: 10.1016/j.cej.2021.128805
- Wang, S.; Gao, Z.; Liu, L.; Li, M.; Zuo, A.; Guo, J. Preparation, in vitro and in vivo evaluation of chitosan-sodium alginate-ethyl cellulose polyelectrolyte film as a novel buccal mucosal delivery vehicle. Eur. J. Pharm., 2022, 168, 106085. doi: 10.1016/j.ejps.2021.106085
- Chen, M.; Tan, H.; Xu, W.; Wang, Z.; Zhang, J.; Li, S.; Zhou, T.; li, J.; Niu, X. A self-healing, magnetic and injectable biopolymer hydrogel generated by dual cross-linking for drug delivery and bone repair. Acta Biomater., 2022, 153, 159-177. doi: 10.1016/j.actbio.2022.09.036 PMID: 36152907
- Ishida, K.; Yamaguchi, M. Role of albumin in osteoblastic cells: Enhancement of cell proliferation and suppression of alkaline phosphatase activity. Int. J. Mol. Med., 2004, 14(6), 1077-1081. doi: 10.3892/ijmm.14.6.1077 PMID: 15547677
- Bharathi, R.; Ganesh, S. S.; Harini, G.; Vatsala, K.; Anushikaa, R.; Aravind, S.; Abinaya, S.; Selvamurugan, N. Chitosan-based scaffolds as drug delivery systems in bone tissue engineering. Int. J. Biol. Macromol., 2022, 222(Pt A), 132-153. doi: 10.1016/j.ijbiomac.2022.09.058
- Ong, J.; Zhao, J.; Justin, A.W.; Markaki, A.E. Albumin-based hydrogels for regenerative engineering and cell transplantation. Biotechnol. Bioeng., 2019, 116(12), 3457-3468. doi: 10.1002/bit.27167 PMID: 31520415
- Mansouri, S.; Lavigne, P.; Corsi, K.; Benderdour, M.; Beaumont, E.; Fernandes, J. C. Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: Strategies to improve transfection efficacy. Eur. J. Pharma. Biopharm., 2004, 57(1), 1-8. doi: 10.1016/S0939-6411(03)00155-3
- Tian, J.; Yu, J.; Sun, X. Chitosan microspheres as candidate plasmid vaccine carrier for oral immunisation of Japanese flounder (Paralichthys olivaceus). Vet. Immunol. Immunopathol., 2008, 126(3-4), 220-229. doi: 10.1016/j.vetimm.2008.07.002 PMID: 18722672
- Yamamoto, A.; Kormann, M.; Rosenecker, J.; Rudolph, C. Current prospects for mRNA gene delivery. Eur. J. Pharma. Biopharm., 2009, 71(3), 484-9. doi: 10.1016/j.ejpb.2008.09.016
- Yalcin, E.; Kara, G.; Celik, E.; Pinarli, F.A.; Saylam, G.; Sucularli, C.; Ozturk, S.; Yilmaz, E.; Bayir, O.; Korkmaz, M.H.; Denkbas, E.B. Preparation and characterization of novel albumin-sericin nanoparticles as siRNA delivery vehicle for laryngeal cancer treatment. Prep. Biochem. Biotechnol., 2019, 49(7), 659-670. doi: 10.1080/10826068.2019.1599395 PMID: 31066619
- Leng, Q.; Chen, L.; Lv, Y. RNA-based scaffolds for bone regeneration: Application and mechanisms of mRNA, miRNA and siRNA. Theranostics, 2020, 10(7), 3190-3205. doi: 10.7150/thno.42640 PMID: 32194862
- Kaur, I.P.; Kakkar, S. Newer therapeutic vistas for antiglaucoma medicines. Crit. Rev. Ther. Drug Carrier Syst., 2011, 28(2), 165-202. doi: 10.1615/CritRevTherDrugCarrierSyst.v28.i2.20 PMID: 21663575
- Chuan, D.; Jin, T.; Fan, R.; Zhou, L.; Guo, G. Chitosan for gene delivery: Methods for improvement and applications. Adv. Colloid Interface Sci., 2019, 268, 25-38. doi: 10.1016/j.cis.2019.03.007 PMID: 30933750
- Song, P.; Lu, Z.; Jiang, T.; Han, W.; Chen, X.; Zhao, X. Chitosan coated pH/redox-responsive hyaluronic acid micelles for enhanced tumor targeted co-delivery of doxorubicin and siPD-L1. Int. J. Biol. Macromol., 2022, 222(Pt A), 1078-1091.
- Meng, H.; Mai, W.X.; Zhang, H.; Xue, M.; Xia, T.; Lin, S.; Wang, X.; Zhao, Y.; Ji, Z.; Zink, J.I.; Nel, A.E. Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano, 2013, 7(2), 994-1005. doi: 10.1021/nn3044066 PMID: 23289892
Supplementary files
