Early-Life Lead Exposure: Risks and Neurotoxic Consequences


Cite item

Full Text

Abstract

Background:Lead (Pb) does not have any biological function in a human, and it is likely no safe level of Pb in the human body. The Pb exposure impacts are a global concern for their potential neurotoxic consequences. Despite decreasing both the environmental Pb levels and the average blood Pb levels in the survey populations, the lifetime redistribution from the tissues-stored Pb still poses neurotoxic risks from the low-level exposure in later life. The growing fetus and children hold their innate high-susceptible to these Pb-induced neurodevelopmental and neurobehavioral effects.

Objective:This article aims to evaluate cumulative studies and insights on the topic of Pb neurotoxicology while assessing the emerging trends in the field.

Results:The Pb-induced neurochemical and neuro-immunological mechanisms are likely responsible for the high-level Pb exposure with the neurodevelopmental and neurobehavioral impacts at the initial stages. Early-life Pb exposure can still produce neurodegenerative consequences in later life due to the altered epigenetic imprints and the ongoing endogenous Pb exposure. Several mechanisms contribute to the Pb-induced neurotoxic impacts, including the direct neurochemical effects, the induction of oxidative stress and inflammation through immunologic activations, and epigenetic alterations. Furthermore, the individual nutritional status, such as macro-, micro-, or antioxidant nutrients, can significantly influence the neurotoxic impacts even at low-level exposure to Pb.

Conclusion:The prevention of early-life Pb exposure is, therefore, the critical determinant for alleviating various Pb-induced neurotoxic impacts across the different age groups.

About the authors

Geir Bjørklund

, Council for Nutritional and Environmental Medicine (CONEM)

Author for correspondence.
Email: info@benthamscience.net

Torsak Tippairote

Department of Nutritional and Environmental Medicine, HP Medical Center

Email: info@benthamscience.net

Tony Hangan

Faculty of Medicine, Ovidius University of Constanta

Author for correspondence.
Email: info@benthamscience.net

Salvatore Chirumbolo

Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona,

Email: info@benthamscience.net

Massimiliano Peana

Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari

Email: info@benthamscience.net

References

  1. Mugahi, M.N.; Heidari, Z.; Sagheb, H.M.; Barbarestani, M. Effects of chronic lead acetate intoxication on blood indices of male adult rat. Daru, 2003, 11(4), 147-141.
  2. Suradkar, S.; Ghodasara, D.; Vihol, P.; Patel, J.; Jaiswal, V.; Prajapati, K. Haemato-biochemical alterations induced by lead acetate toxicity in wistar rats. Vet. World, 2009, 2(11), 429-431.
  3. Nordberg, G.F.; Fowler, B.A.; Nordberg, M. Handbook on the Toxicology of Metals, 4th ed; Elsevier, 2015, pp. 1-12.
  4. Flora, G.; Gupta, D.; Tiwari, A. Toxicity of lead: A review with recent updates. Interdiscip. Toxicol., 2012, 5(2), 47-58. doi: 10.2478/v10102-012-0009-2 PMID: 23118587
  5. Chen, Z.; Huo, X.; Chen, G.; Luo, X.; Xu, X. Lead (Pb) exposure and heart failure risk. Environ. Sci. Pollut. Res. Int., 2021, 28(23), 28833-28847. doi: 10.1007/s11356-021-13725-9 PMID: 33840028
  6. Karadas, S.; Sayın, R.; Aslan, M.; Gonullu, H.; Katı, C.; Dursun, R.; Duran, L.; Gonullu, E.; Demir, H. Serum levels of trace elements and heavy metals in patients with acute hemorrhagic stroke. J. Membr. Biol., 2014, 247(2), 175-180. doi: 10.1007/s00232-013-9621-0 PMID: 24346187
  7. Virgolini, M.B.; Aschner, M. Molecular mechanisms of lead neurotoxicity. Adv. Neurotoxicol., 2021, 5, 159-213. doi: 10.1016/bs.ant.2020.11.002 PMID: 34263090
  8. Zimet, Z.; Bilban, M.; Fabjan, T.; Suhadolc, K.; Poljšak, B.; Osredkar, J. Lead exposure and oxidative stress in coal miners. Biomed. Environ. Sci., 2017, 30(11), 841-845. doi: 10.3967/bes2017.113 PMID: 29216962
  9. Available from: http://www.atsdr.cdc.gov/toxguides/toxguide-13.pdf
  10. Maas, R.P.; Patch, S.C.; Pandolfo, T.J.; Druhan, J.L.; Gandy, N.F. Lead content and exposure from children’s and adult’s jewelry products. Bull. Environ. Contam. Toxicol., 2005, 74(3), 437-444. doi: 10.1007/s00128-005-0605-3 PMID: 15903176
  11. Mielke, H.W.; Gonzales, C.R.; Powell, E.T.; Laidlaw, M.A.S.; Berry, K.J.; Mielke, P.W., Jr; Egendorf, S.P. The concurrent decline of soil lead and children’s blood lead in New Orleans. Proc. Natl. Acad. Sci. USA, 2019, 116(44), 22058-22064. doi: 10.1073/pnas.1906092116 PMID: 31611401
  12. Rieuwerts, J. The elements of environmental pollution; Routledge, 2017. doi: 10.4324/9780203798690
  13. Needleman, H. Lead poisoning. Annu. Rev. Med., 2004, 55(1), 209-222. doi: 10.1146/annurev.med.55.091902.103653 PMID: 14746518
  14. Binns, H.J.; Campbell, C.; Brown, M.J. Interpreting and managing blood lead levels of less than 10 µg/dL in children and reducing childhood exposure to lead: Recommendations of the centers for disease control and prevention advisory committee on childhood lead poisoning prevention. Pediatrics, 2007, 120(5), e1285-e1298. doi: 10.1542/peds.2005-1770 PMID: 17974722
  15. Raymond, J.; Brown, M.J. Childhood blood lead levels in children aged
  16. CDC. Preventing lead poisoning in young children. Centers for Disease Control; CDC: Atlanta, 1991.
  17. Muntner, P.; Menke, A.; DeSalvo, K.B.; Rabito, F.A.; Batuman, V. Continued decline in blood lead levels among adults in the United States: The national health and nutrition examination surveys. Arch. Intern. Med., 2005, 165(18), 2155-2161. doi: 10.1001/archinte.165.18.2155 PMID: 16217007
  18. Grandjean, P.; Herz, K.T. Trace elements as paradigms of developmental neurotoxicants: Lead, methylmercury and arsenic. J. Trace Elem. Med. Biol., 2015, 31, 130-134. doi: 10.1016/j.jtemb.2014.07.023 PMID: 25175507
  19. Koller, K.; Brown, T.; Spurgeon, A.; Levy, L. Recent developments in low-level lead exposure and intellectual impairment in children. Environ. Health Perspect., 2004, 112(9), 987-994. doi: 10.1289/ehp.6941 PMID: 15198918
  20. EPA Biomonitoring - Lead. Available from: https://www.epa.gov/americaschildrenenvironment/biomonitoring-lead
  21. WHO Ten chemicals of major public health concern; , 1991.
  22. Surkan, P.; Zhang, A.; Trachtenberg, F.; Daniel, D.; McKinlay, S.; Bellinger, D. Neuropsychological function in children with blood lead levels
  23. Laksmidewi, A.A.A.P.; Suputra, G.; Widyadharma, I.P.E. High serum lead levels increase the incidence of cognitive impairment of public fueling station operators. Open Access Maced. J. Med. Sci., 2019, 7(4), 599-602. doi: 10.3889/oamjms.2019.127 PMID: 30894919
  24. Reis, C.F.; de Souza, I.D.; Morais, D.A.A.; Oliveira, R.A.C.; Imparato, D.O.; de Almeida, R.M.C.; Dalmolin, R.J.S. Systems biology-based analysis indicates global transcriptional impairment in lead-treated human neural progenitor cells. Front. Genet., 2019, 10(791), 791. doi: 10.3389/fgene.2019.00791 PMID: 31552095
  25. Stansfield, K.H.; Pilsner, J.R.; Lu, Q.; Wright, R.O.; Guilarte, T.R. Dysregulation of BDNF-TrkB signaling in developing hippocampal neurons by Pb(2+): Implications for an environmental basis of neurodevelopmental disorders. Toxicol. Sci., 2012, 127(1), 277-295. doi: 10.1093/toxsci/kfs090 PMID: 22345308
  26. Ghareeb, D.A.; Hussien, H.M.; Khalil, A.A.; El-Saadani, M.A.; Ali, A.N. Toxic effects of lead exposure on the brain of rats: Involvement of oxidative stress, inflammation, acetylcholinesterase, and the beneficial role of flaxseed extract. Toxicol. Environ. Chem., 2010, 92(1), 187-195. doi: 10.1080/02772240902830631
  27. Bjørklund, G.; Tippairote, T.; Rahaman, M.S.; Aaseth, J. Developmental toxicity of arsenic: A drift from the classical dose–response relationship. Arch. Toxicol., 2019. doi: 10.1007/s00204-019-02628-x PMID: 31807801
  28. Dórea, G. Multiple low-level exposures: Hg interactions with co-occurring neurotoxic substances in early life. Biochim Biophys Acta Gen Subj, 2018, 1863(12), 129243. doi: 10.1016/j.bbagen.2018.10.015
  29. Mitchell, E.; Frisbie, S.; Sarkar, B. Exposure to multiple metals from groundwater-a global crisis: Geology, climate change, health effects, testing, and mitigation. Metallomics, 2011, 3(9), 874-908. doi: 10.1039/c1mt00052g PMID: 21766119
  30. Lidsky, T.I.; Schneider, J.S. Lead neurotoxicity in children: Basic mechanisms and clinical correlates. Brain, 2003, 126(1), 5-19. doi: 10.1093/brain/awg014 PMID: 12477693
  31. Chua, R.X.Y.; Tay, M.J.Y.; Ooi, D.S.Q.; Siah, K.T.H.; Tham, E.H.; Shek, L.P.C.; Meaney, M.J.; Broekman, B.F.P.; Loo, E.X.L. Understanding the link between allergy and neurodevelopmental disorders: A current review of factors and mechanisms. Front. Neurol., 2021, 11, 603571. doi: 10.3389/fneur.2020.603571 PMID: 33658968
  32. Allen, J.L.; Oberdorster, G.; Morris-Schaffer, K.; Wong, C.; Klocke, C.; Sobolewski, M.; Conrad, K.; Mayer-Proschel, M.; Cory-Slechta, D.A. Developmental neurotoxicity of inhaled ambient ultrafine particle air pollution: Parallels with neuropathological and behavioral features of autism and other neurodevelopmental disorders. Neurotoxicology, 2017, 59, 140-154. doi: 10.1016/j.neuro.2015.12.014 PMID: 26721665
  33. Homberg, J.R.; Kyzar, E.J.; Scattoni, M.L.; Norton, W.H.; Pittman, J.; Gaikwad, S.; Nguyen, M.; Poudel, M.K.; Ullmann, J.F.P.; Diamond, D.M.; Kaluyeva, A.A.; Parker, M.O.; Brown, R.E.; Song, C.; Gainetdinov, R.R.; Gottesman, I.I.; Kalueff, A.V. Genetic and environmental modulation of neurodevelopmental disorders: Translational insights from labs to beds. Brain Res. Bull., 2016, 125, 79-91. doi: 10.1016/j.brainresbull.2016.04.015 PMID: 27113433
  34. Maccari, S.; Krugers, H.J.; Morley-Fletcher, S.; Szyf, M.; Brunton, P.J. The consequences of early-life adversity: Neurobiological, behavioural and epigenetic adaptations. J. Neuroendocrinol., 2014, 26(10), 707-723. doi: 10.1111/jne.12175 PMID: 25039443
  35. Zoroddu, M.A.; Aaseth, J.; Crisponi, G.; Medici, S.; Peana, M.; Nurchi, V.M. The essential metals for humans: A brief overview. J. Inorg. Biochem., 2019, 195, 120-129. doi: 10.1016/j.jinorgbio.2019.03.013 PMID: 30939379
  36. Luo, L.; Chu, B.; Liu, Y.; Wang, X.; Xu, T.; Bo, Y. Distribution, origin, and transformation of metal and metalloid pollution in vegetable fields, irrigation water, and aerosols near a Pb-Zn mine. Environ. Sci. Pollut. Res. Int., 2014, 21(13), 8242-8260. doi: 10.1007/s11356-014-2744-8 PMID: 24687780
  37. Koh, D.H.; Locke, S.J.; Chen, Y.C.; Purdue, M.P.; Friesen, M.C. Lead exposure in US worksites: A literature review and development of an occupational lead exposure database from the published literature. Am. J. Ind. Med., 2015, 58(6), 605-616. doi: 10.1002/ajim.22448 PMID: 25968240
  38. Alinejad, S.; Aaseth, J.; Abdollahi, M.; Hassanian-Moghaddam, H.; Mehrpour, O. Clinical aspects of opium adulterated with lead in iran: A review. Basic Clin. Pharmacol. Toxicol., 2018, 122(1), 56-64. doi: 10.1111/bcpt.12855 PMID: 28802093
  39. Rădulescu, A.; Lundgren, S. A pharmacokinetic model of lead absorption and calcium competitive dynamics. Sci. Rep., 2019, 9(1), 14225. doi: 10.1038/s41598-019-50654-7 PMID: 31578386
  40. Flanagan, P.R.; Haist, J.; Valberg, L.S. Comparative effects of iron deficiency induced by bleeding and a low-iron diet on the intestinal absorptive interactions of iron, cobalt, manganese, zinc, lead and cadmium. J. Nutr., 1980, 110(9), 1754-1763. doi: 10.1093/jn/110.9.1754 PMID: 7411235
  41. Gerhardsson, L.; Englyst, V.; Lundström, N.G.; Nordberg, G.; Sandberg, S.; Steinvall, F. Lead in tissues of deceased lead smelter workers. J. Trace Elem. Med. Biol., 1995, 9(3), 136-143. doi: 10.1016/S0946-672X(11)80037-4 PMID: 8605601
  42. Wittmers, L.E., Jr; Wallgren, J.; Alich, A.; Aufderheide, A.C.; Rapp, G., Jr Lead in bone. IV. Distribution of lead in the human skeleton. Arch. Environ. Health, 1988, 43(6), 381-391. doi: 10.1080/00039896.1988.9935855 PMID: 3196073
  43. Fleming, D.E.; Boulay, D.; Richard, N.S.; Robin, J.P.; Gordon, C.L.; Webber, C.E.; Chettle, D.R. Accumulated body burden and endogenous release of lead in employees of a lead smelter. Environ. Health Perspect., 1997, 105(2), 224-233. doi: 10.1289/ehp.97105224 PMID: 9105798
  44. Alissa, E.M.; Ferns, G.A. Heavy metal poisoning and cardiovascular disease. J. Toxicol., 2011, 2011, 870125. doi: 10.1155/2011/870125
  45. Brochin, R.; Leone, S.; Phillips, D.; Shepard, N.; Zisa, D. The cellular effect of lead poisoning and its clinical picture. Res. J. Health Sci., 2008, 5(2), 1-8.
  46. Strużyńska, L.; Walski, M.; Gadamski, R.; Dabrowska-Bouta, B.; Rafałowska, U. Lead-induced abnormalities in blood-brain barrier permeability in experimental chronic toxicity. Mol. Chem. Neuropathol., 1997, 31(3), 207-224. doi: 10.1007/BF02815125 PMID: 9336764
  47. Zheng, W.; Aschner, M.; Ghersi-Egea, J.F. Brain barrier systems: A new frontier in metal neurotoxicological research. Toxicol. Appl. Pharmacol., 2003, 192(1), 1-11. doi: 10.1016/S0041-008X(03)00251-5 PMID: 14554098
  48. van de Haar, H.J.; Burgmans, S.; Jansen, J.F.A.; van Osch, M.J.P.; van Buchem, M.A.; Muller, M.; Hofman, P.A.M.; Verhey, F.R.J.; Backes, W.H. Blood-brain barrier leakage in patients with early Alzheimer disease. Radiology, 2016, 281(2), 527-535. doi: 10.1148/radiol.2016152244 PMID: 27243267
  49. Gupta, R.C.; Pitt, J.; Zaja-Milatovic, S. Handbook of Toxicology of Chemical Warfare Agents, 2nd ed; Gupta, R.C., Ed.; Academic Press: Boston, 2015, pp. 725-739. doi: 10.1016/B978-0-12-800159-2.00049-X
  50. Fang, Y.; Lu, L.; Liang, Y.; Peng, D.; Aschner, M.; Jiang, Y. Signal transduction associated with lead-induced neurological disorders: A review. Food Chem. Toxicol., 2021, 150, 112063. doi: 10.1016/j.fct.2021.112063 PMID: 33596455
  51. Wang, T.; Zhang, J.; Xu, Y. Epigenetic basis of lead-induced neurological disorders. Int. J. Environ. Res. Public Health, 2020, 17(13), 4878. doi: 10.3390/ijerph17134878 PMID: 32645824
  52. Ramírez Ortega, D.; González Esquivel, D.F.; Blanco Ayala, T.; Pineda, B.; Gómez Manzo, S.; Marcial Quino, J.; Carrillo Mora, P.; Pérez de la Cruz, V. Cognitive impairment induced by lead exposure during lifespan: Mechanisms of lead neurotoxicity. Toxics, 2021, 9(2), 23. doi: 10.3390/toxics9020023 PMID: 33525464
  53. Schneider, J.S.; Anderson, D.W.; Kidd, S.K.; Sobolewski, M.; Cory-Slechta, D.A. Sex-dependent effects of lead and prenatal stress on post-translational histone modifications in frontal cortex and hippocampus in the early postnatal brain. Neurotoxicology, 2016, 54, 65-71. doi: 10.1016/j.neuro.2016.03.016 PMID: 27018513
  54. Meng, Y.; Zhou, M.; Wang, T.; Zhang, G.; Tu, Y.; Gong, S.; Zhang, Y.; Christiani, D.C.; Au, W.; Liu, Y.; Xia, Z. Occupational lead exposure on genome-wide DNA methylation and DNA damage. Environ. Pollut., 2022, 304, 119252. doi: 10.1016/j.envpol.2022.119252 PMID: 35385786
  55. Sanders, T.; Liu, Y.; Buchner, V.; Tchounwou, P.B. Neurotoxic effects and biomarkers of lead exposure: a review. Rev. Environ. Health, 2009, 24(1), 15-45. doi: 10.1515/REVEH.2009.24.1.15 PMID: 19476290
  56. Jones, B.L.; Smith, S.M. Calcium-sensing receptor: A key target for extracellular calcium signaling in neurons. Front. Physiol., 2016, 7(116), 116. doi: 10.3389/fphys.2016.00116 PMID: 27065884
  57. Mason, L.H.; Harp, J.P.; Han, D.Y. Pb neurotoxicity: Neuropsychological effects of lead toxicity. BioMed Res. Int., 2014, 2014, 1-8. doi: 10.1155/2014/840547 PMID: 24516855
  58. Kirberger, M.; Wong, H.C.; Jiang, J.; Yang, J.J. Metal toxicity and opportunistic binding of Pb2+ in proteins. J. Inorg. Biochem., 2013, 125, 40-49. doi: 10.1016/j.jinorgbio.2013.04.002 PMID: 23692958
  59. Knowles, S.O.; Donaldson, W.E. Dietary modification of lead toxicity: Effects on fatty acid and eicosanoid metabolism in chicks. Comp. Biochem. Physiol. C Comp. Pharmacol., 1990, 95(1), 99-104. doi: 10.1016/0742-8413(90)90088-Q PMID: 1971558
  60. Adonaylo, V.N.; Oteiza, P.I. Pb2+ promotes lipid oxidation and alterations in membrane physical properties. Toxicology, 1999, 132(1), 19-32. doi: 10.1016/S0300-483X(98)00134-6 PMID: 10199578
  61. Chiba, M.; Shinohara, A.; Matsushita, K.; Watanabe, H.; Inaba, Y. Indices of lead-exposure in blood and urine of lead-exposed workers and concentrations of major and trace elements and activities of SOD, GSH-Px and catalase in their blood. Tohoku J. Exp. Med., 1996, 178(1), 49-62. doi: 10.1620/tjem.178.49 PMID: 8848789
  62. Oyagbemi, A.A.; Omobowale, T.O.; Akinrinde, A.S.; Saba, A.B.; Ogunpolu, B.S.; Daramola, O. Lack of reversal of oxidative damage in renal tissues of lead acetate-treated rats. Environ. Toxicol., 2015, 30(11), 1235-1243. doi: 10.1002/tox.21994 PMID: 24706517
  63. Gurer, H.; Ercal, N. Can antioxidants be beneficial in the treatment of lead poisoning? Free Radic. Biol. Med., 2000, 29(10), 927-945. doi: 10.1016/S0891-5849(00)00413-5 PMID: 11084283
  64. Baranowska-Bosiacka, I.; Gutowska, I.; Marchetti, C.; Rutkowska, M.; Marchlewicz, M.; Kolasa, A.; Prokopowicz, A.; Wiernicki, I.; Piotrowska, K.; Baśkiewicz, M.; Safranow, K.; Wiszniewska, B.; Chlubek, D. Altered energy status of primary cerebellar granule neuronal cultures from rats exposed to lead in the pre- and neonatal period. Toxicology, 2011, 280(1-2), 24-32. doi: 10.1016/j.tox.2010.11.004 PMID: 21108985
  65. Velaga, M.K.; Basuri, C.K.; Robinson Taylor, K.S.; Yallapragada, P.R.; Rajanna, S.; Rajanna, B. Ameliorative effects of Bacopa monniera on lead-induced oxidative stress in different regions of rat brain. Drug Chem. Toxicol., 2014, 37(3), 357-364. doi: 10.3109/01480545.2013.866137 PMID: 24328849
  66. Barkur, R.R.; Bairy, L.K. Assessment of oxidative stress in hippocampus, cerebellum and frontal cortex in rat pups exposed to lead (Pb) during specific periods of initial brain development. Biol. Trace Elem. Res., 2015, 164(2), 212-218. doi: 10.1007/s12011-014-0221-3 PMID: 25575663
  67. Kumar Singh, P.; Kumar Singh, M.; Singh Yadav, R.; Kumar Dixit, R.; Mehrotra, A.; Nath, R. Attenuation of lead-induced neurotoxicity by omega-3 fatty acid in rats. Ann. Neurosci., 2017, 24(4), 221-232. doi: 10.1159/000481808 PMID: 29849446
  68. Adonaylo, V.N.; Oteiza, P.I. Lead intoxication: Antioxidant defenses and oxidative damage in rat brain. Toxicology, 1999, 135(2-3), 77-85. doi: 10.1016/S0300-483X(99)00051-7 PMID: 10463764
  69. Salim, S. Oxidative stress and the central nervous system. J. Pharmacol. Exp. Ther., 2017, 360(1), 201-205. doi: 10.1124/jpet.116.237503 PMID: 27754930
  70. Strużyńska, L.; Dąbrowska-Bouta, B.; Koza, K.; Sulkowski, G. Inflammation-like glial response in lead-exposed immature rat brain. Toxicol. Sci., 2007, 95(1), 156-162. doi: 10.1093/toxsci/kfl134 PMID: 17047031
  71. Caito, S.; Aschner, M. Neurotoxicity of Metals; Aschner, M.; Costa, L.G., Eds.; Springer International Publishing: Cham, 2017, pp. 3-12. doi: 10.1007/978-3-319-60189-2_1
  72. Chibowska, K.; Baranowska-Bosiacka, I.; Falkowska, A.; Gutowska, I.; Goschorska, M.; Chlubek, D. Effect of lead (Pb) on inflammatory processes in the brain. Int. J. Mol. Sci., 2016, 17(12), 2140. doi: 10.3390/ijms17122140 PMID: 27999370
  73. Valentino, M.; Rapisarda, V.; Santarelli, L.; Bracci, M.; Scorcelletti, M.; Di Lorenzo, L.; Cassano, F.; Soleo, L. Effect of lead on the levels of some immunoregulatory cytokines in occupationally exposed workers. Hum. Exp. Toxicol., 2007, 26(7), 551-556. doi: 10.1177/0960327107073817 PMID: 17884957
  74. Giovanni, A.; Maria, A.T.; Andrea, F. Depression and inflammation: Disentangling a clear yet complex and multifaceted link. Neuropsychiatry, 2017, 7(4), 448-445.
  75. Saccaro, L.F.; Schilliger, Z.; Dayer, A.; Perroud, N.; Piguet, C. Inflammation, anxiety, and stress in bipolar disorder and borderline personality disorder: A narrative review. Neurosci. Biobehav. Rev., 2021, 127, 184-192. doi: 10.1016/j.neubiorev.2021.04.017 PMID: 33930472
  76. Vogel, S.W.N.; Bijlenga, D.; Verduijn, J.; Bron, T.I.; Beekman, A.T.F.; Kooij, J.J.S.; Penninx, B.W.J.H. Attention-deficit/hyperactivity disorder symptoms and stress-related biomarkers. Psychoneuroendocrinology, 2017, 79, 31-39. doi: 10.1016/j.psyneuen.2017.02.009 PMID: 28249186
  77. Saccaro, L.F.; Schilliger, Z.; Perroud, N.; Piguet, C. Inflammation, anxiety, and stress in attention-deficit/hyperactivity disorder. Biomedicines, 2021, 9(10), 1313. doi: 10.3390/biomedicines9101313 PMID: 34680430
  78. McCabe, M.J., Jr; Lawrence, D.A. Lead, a major environmental pollutant, is immunomodulatory by its differential effects on CD4+ T cell subsets. Toxicol. Appl. Pharmacol., 1991, 111(1), 13-23. doi: 10.1016/0041-008X(91)90129-3 PMID: 1719661
  79. Dehghanifiroozabadi, M.; Noferesti, P.; Amirabadizadeh, A.; Nakhaee, S.; Aaseth, J.; Noorbakhsh, F.; Mehrpour, O. Blood lead levels and multiple sclerosis: A case-control study. Mult. Scler. Relat. Disord., 2018, 27, 151-155. PMID: 30384201
  80. Bjørklund, G.; Dadar, M.; Aaseth, J. Delayed-type hypersensitivity to metals in connective tissue diseases and fibromyalgia. Environ. Res., 2018, 161, 573-579. doi: 10.1016/j.envres.2017.12.004 PMID: 29245125
  81. Khalid, M.; Abdollahi, M. Epigenetic modifications associated with pathophysiological effects of lead exposure. J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev., 2019, 37(4), 235-287. doi: 10.1080/10590501.2019.1640581 PMID: 31402779
  82. Portela, A.; Esteller, M. Epigenetic modifications and human disease. Nat. Biotechnol., 2010, 28(10), 1057-1068. doi: 10.1038/nbt.1685 PMID: 20944598
  83. Cuomo, D.; Foster, M.J.; Threadgill, D. Systemic review of genetic and epigenetic factors underlying differential toxicity to environmental lead (Pb) exposure. Environ. Sci. Pollut. Res. Int., 2022, 29(24), 35583-35598. doi: 10.1007/s11356-022-19333-5 PMID: 35244845
  84. de Faria Amormino, S.A.; Arão, T.C.; Saraiva, A.M.; Gomez, R.S.; Dutra, W.O.; da Costa, J.E.; de Fátima Correia Silva, J.; Moreira, P.R. Hypermethylation and low transcription of TLR2 gene in chronic periodontitis. Hum. Immunol., 2013, 74(9), 1231-1236. doi: 10.1016/j.humimm.2013.04.037 PMID: 23747679
  85. Pilsner, J.R.; Hu, H.; Ettinger, A.; Sánchez, B.N.; Wright, R.O.; Cantonwine, D.; Lazarus, A.; Lamadrid-Figueroa, H.; Mercado-García, A.; Téllez-Rojo, M.M.; Hernández-Avila, M. Influence of prenatal lead exposure on genomic methylation of cord blood DNA. Environ. Health Perspect., 2009, 117(9), 1466-1471. doi: 10.1289/ehp.0800497 PMID: 19750115
  86. Luo, M.; Xu, Y.; Cai, R.; Tang, Y.; Ge, M.M.; Liu, Z.H.; Xu, L.; Hu, F.; Ruan, D.Y.; Wang, H.L. Epigenetic histone modification regulates developmental lead exposure induced hyperactivity in rats. Toxicol. Lett., 2014, 225(1), 78-85. doi: 10.1016/j.toxlet.2013.11.025 PMID: 24291742
  87. Schneider, J.S.; Kidd, S.K.; Anderson, D.W. Influence of developmental lead exposure on expression of DNA methyltransferases and methyl cytosine-binding proteins in hippocampus. Toxicol. Lett., 2013, 217(1), 75-81. doi: 10.1016/j.toxlet.2012.12.004 PMID: 23246732
  88. Dosunmu, R.; Alashwal, H.; Zawia, N.H. Genome-wide expression and methylation profiling in the aged rodent brain due to early-life Pb exposure and its relevance to aging. Mech. Ageing Dev., 2012, 133(6), 435-443. doi: 10.1016/j.mad.2012.05.003 PMID: 22613225
  89. Wright, R.O.; Schwartz, J.; Wright, R.J.; Bollati, V.; Tarantini, L.; Park, S.K.; Hu, H.; Sparrow, D.; Vokonas, P.; Baccarelli, A. Biomarkers of lead exposure and DNA methylation within retrotransposons. Environ. Health Perspect., 2010, 118(6), 790-795. doi: 10.1289/ehp.0901429 PMID: 20064768
  90. Kovatsi, L.; Georgiou, E.; Ioannou, A.; Haitoglou, C.; Tzimagiorgis, G.; Tsoukali, H.; Kouidou, S. p16 promoter methylation in Pb2+-exposed individuals. Clin. Toxicol., 2010, 48(2), 124-128. doi: 10.3109/15563650903567091 PMID: 20199129
  91. Wu, J.; Basha, M.R.; Brock, B.; Cox, D.P.; Cardozo-Pelaez, F.; McPherson, C.A.; Harry, J.; Rice, D.C.; Maloney, B.; Chen, D.; Lahiri, D.K.; Zawia, N.H. Alzheimer’s disease (AD)-like pathology in aged monkeys after infantile exposure to environmental metal lead (Pb): Evidence for a developmental origin and environmental link for AD. J. Neurosci., 2008, 28(1), 3-9. doi: 10.1523/JNEUROSCI.4405-07.2008 PMID: 18171917
  92. Feng, J.; Zhou, Y.; Campbell, S.L.; Le, T.; Li, E.; Sweatt, J.D.; Silva, A.J.; Fan, G. Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat. Neurosci., 2010, 13(4), 423-430. doi: 10.1038/nn.2514 PMID: 20228804
  93. Li, Y.Y.; Chen, T.; Wan, Y.; Xu, S. Lead exposure in pheochromocytoma cells induces persistent changes in amyloid precursor protein gene methylation patterns. Environ. Toxicol., 2012, 27(8), 495-502. doi: 10.1002/tox.20666 PMID: 22764079
  94. Schneider, J.S.; Anderson, D.W.; Sonnenahalli, H.; Vadigepalli, R. Sex-based differences in gene expression in hippocampus following postnatal lead exposure. Toxicol. Appl. Pharmacol., 2011, 256(2), 179-190. doi: 10.1016/j.taap.2011.08.008 PMID: 21864555
  95. Schneider, J.S.; Mettil, W.; Anderson, D.W. Differential effect of postnatal lead exposure on gene expression in the hippocampus and frontal cortex. J. Mol. Neurosci., 2012, 47(1), 76-88. doi: 10.1007/s12031-011-9686-0 PMID: 22160880
  96. Schneider, J.S.; Anderson, D.W.; Talsania, K.; Mettil, W.; Vadigepalli, R. Effects of developmental lead exposure on the hippocampal transcriptome: influences of sex, developmental period, and lead exposure level. Toxicol. Sci., 2012, 129(1), 108-125. doi: 10.1093/toxsci/kfs189 PMID: 22641619
  97. Sánchez-Martín, F.J.; Lindquist, D.M.; Landero-Figueroa, J.; Zhang, X.; Chen, J.; Cecil, K.M.; Medvedovic, M.; Puga, A. Sex- and tissue-specific methylome changes in brains of mice perinatally exposed to lead. Neurotoxicology, 2015, 46, 92-100. doi: 10.1016/j.neuro.2014.12.004 PMID: 25530354
  98. Liu, J.; Morgan, M.; Hutchison, K.; Calhoun, V.D. A study of the influence of sex on genome wide methylation. PLoS One, 2010, 5(4), e10028. doi: 10.1371/journal.pone.0010028 PMID: 20386599
  99. Lin, Y.; Huang, L.; Xu, J.; Specht, A.J.; Yan, C.; Geng, H.; Shen, X.; Nie, L.H.; Hu, H. Blood lead, bone lead and child attention-deficit-hyperactivity-disorder-like behavior. Sci. Total Environ., 2019, 659, 161-167. doi: 10.1016/j.scitotenv.2018.12.219 PMID: 30597466
  100. Clark, W.; Grunstein, M. Are We Hardwired?: The Role of Genes in Human Behavior; Oxford University Press, 2004. doi: 10.1093/acprof:oso/9780195178005.001.0001
  101. Lasley, S.M.; Gilbert, M.E. Glutamatergic components underlying lead-induced impairments in hippocampal synaptic plasticity. Neurotoxicology, 2000, 21(6), 1057-1068. PMID: 11233752
  102. Stansfield, K.H.; Ruby, K.N.; Soares, B.D.; McGlothan, J.L.; Liu, X.; Guilarte, T.R. Early-life lead exposure recapitulates the selective loss of parvalbumin-positive GABAergic interneurons and subcortical dopamine system hyperactivity present in schizophrenia. Transl. Psychiatry, 2015, 5(3), e522. doi: 10.1038/tp.2014.147 PMID: 25756805
  103. Duan, Y.; Peng, L.; Shi, H.; Jiang, Y. The effects of lead on GABAergic interneurons in rodents. Toxicol. Ind. Health, 2017, 33(11), 867-875. doi: 10.1177/0748233717732902 PMID: 29056070
  104. Cobos, I.; Calcagnotto, M.E.; Vilaythong, A.J.; Thwin, M.T.; Noebels, J.L.; Baraban, S.C.; Rubenstein, J.L.R. Mice lacking Dlx1 show subtype-specific loss of interneurons, reduced inhibition and epilepsy. Nat. Neurosci., 2005, 8(8), 1059-1068. doi: 10.1038/nn1499 PMID: 16007083
  105. Minnema, D.; Michaelson, I.A.; Cooper, G.P. Calcium efflux and neurotransmitter release from rat hippocampal synaptosomes exposed to lead*1. Toxicol. Appl. Pharmacol., 1988, 92(3), 351-357. doi: 10.1016/0041-008X(88)90175-5 PMID: 2895506
  106. Atchison, W.D.; Narahashi, T. Mechanism of action of lead on neuromuscular junctions. Neurotoxicology, 1984, 5(3), 267-282. PMID: 6097847
  107. Villaseñor-Granados, T.; Díaz-Cervantes, E.; Soto-Arredondo, K.J.; Martínez-Alfaro, M.; Robles, J.; García-Revilla, M.A. Binding of Pb-Melatonin and Pb-(Melatonin-metabolites) complexes with DMT1 and ZIP8: implications for lead detoxification. Daru, 2019, 27(1), 137-148. doi: 10.1007/s40199-019-00256-5 PMID: 30850959
  108. Bouyatas, M.M.; Gamrani, H. Immunohistochemical evaluation of the effect of lead exposure on subcommissural organ innervation and secretion in Shaw’s Jird (Meriones shawi). Acta Histochem., 2007, 109(6), 421-427. doi: 10.1016/j.acthis.2007.05.002 PMID: 17707886
  109. Correia, A.S.; Vale, N. Tryptophan metabolism in depression: A narrative review with a focus on serotonin and kynurenine pathways. Int. J. Mol. Sci., 2022, 23(15), 8493. doi: 10.3390/ijms23158493 PMID: 35955633
  110. Ramirez, O.D.; Ovalle, R.P.; Pineda, B.; González, E.D.F.; Ramos, C.L.A.; Vázquez, C.G.I.; Roldán, R.G.; Pérez de la, C.G.; Díaz, R.A.; Méndez, A.M.; Marcial, Q.J.; Gómez, M.S.; Ríos, C.; Pérez de la Cruz, V. Kynurenine pathway as a new target of cognitive impairment induced by lead toxicity during the lactation. Sci. Rep., 2020, 10(1), 3184. doi: 10.1038/s41598-020-60159-3 PMID: 32081969
  111. Omeiza, N.A.; Abdulrahim, H.A.; Alagbonsi, A.I.; Ezurike, P.U.; Soluoku, T.K.; Isiabor, H.; Alli-oluwafuyi, A.A. Melatonin salvages lead-induced neuro-cognitive shutdown, anxiety, and depressive-like symptoms via oxido-inflammatory and cholinergic mechanisms. Brain Behav., 2021, 11(8), e2227. doi: 10.1002/brb3.2227 PMID: 34087957
  112. Finkelstein, Y.; Markowitz, M.E.; Rosen, J.F. Low-level lead-induced neurotoxicity in children: An update on central nervous system effects. Brain Res. Brain Res. Rev., 1998, 27(2), 168-176. doi: 10.1016/S0165-0173(98)00011-3 PMID: 9622620
  113. Lee, J.; Freeman, J.L. Embryonic exposure to 10 µg L −1 lead results in female-specific expression changes in genes associated with nervous system development and function and Alzheimer’s disease in aged adult zebrafish brain. Metallomics, 2016, 8(6), 589-596. doi: 10.1039/C5MT00267B PMID: 26776728
  114. Needleman, H.L.; McFarland, C.; Ness, R.B.; Fienberg, S.E.; Tobin, M.J. Bone lead levels in adjudicated delinquents. Neurotoxicol. Teratol., 2002, 24(6), 711-717. doi: 10.1016/S0892-0362(02)00269-6 PMID: 12460653
  115. Wright, J.P.; Dietrich, K.N.; Ris, M.D.; Hornung, R.W.; Wessel, S.D.; Lanphear, B.P.; Ho, M.; Rae, M.N. Association of prenatal and childhood blood lead concentrations with criminal arrests in early adulthood. PLoS Med., 2008, 5(5), e101. doi: 10.1371/journal.pmed.0050101 PMID: 18507497
  116. Brubaker, C.J.; Schmithorst, V.J.; Haynes, E.N.; Dietrich, K.N.; Egelhoff, J.C.; Lindquist, D.M.; Lanphear, B.P.; Cecil, K.M. Altered myelination and axonal integrity in adults with childhood lead exposure: A diffusion tensor imaging study. Neurotoxicology, 2009, 30(6), 867-875. doi: 10.1016/j.neuro.2009.07.007 PMID: 19619581
  117. Cecil, K.M.; Brubaker, C.J.; Adler, C.M.; Dietrich, K.N.; Altaye, M.; Egelhoff, J.C.; Wessel, S.; Elangovan, I.; Hornung, R.; Jarvis, K.; Lanphear, B.P. Decreased brain volume in adults with childhood lead exposure. PLoS Med., 2008, 5(5), e112. doi: 10.1371/journal.pmed.0050112 PMID: 18507499
  118. Yuan, W.; Holland, S.K.; Cecil, K.M.; Dietrich, K.N.; Wessel, S.D.; Altaye, M.; Hornung, R.W.; Ris, M.D.; Egelhoff, J.C.; Lanphear, B.P. The impact of early childhood lead exposure on brain organization: A functional magnetic resonance imaging study of language function. Pediatrics, 2006, 118(3), 971-977. doi: 10.1542/peds.2006-0467 PMID: 16950987
  119. Bellinger, D.C. Very low lead exposures and children’s neurodevelopment. Curr. Opin. Pediatr., 2008, 20(2), 172-177. doi: 10.1097/MOP.0b013e3282f4f97b PMID: 18332714
  120. Vij, A.G.; Dhundasi, S. Hemopoietic, hemostatic and mutagenic effects of lead and possible prevention by zinc and vitamin C. Al Ameen J. Med. Sci., 2009, 2, 27-36.
  121. Ferraro, M.V.M.; Fenocchio, A.S.; Mantovani, M.S.; Ribeiro, C.O.; Cestari, M.M. Mutagenic effects of tributyltin and inorganic lead (Pb II) on the fish H. malabaricus as evaluated using the comet assay and the piscine micronucleus and chromosome aberration tests. Genet. Mol. Biol., 2004, 27(1), 103-107. doi: 10.1590/S1415-47572004000100017
  122. Martinez, E.A.; Moore, B.C.; Schaumloffel, J.; Dasgupta, N. Teratogenic versus mutagenic abnormalities in chironomid larvae exposed to zinc and lead. Arch. Environ. Contam. Toxicol., 2004, 47(2), 193-198. doi: 10.1007/s00244-004-3116-z PMID: 15386144
  123. Yang, J.L.; Wang, L.C.; Chang, C.Y.; Liu, T.Y. Singlet oxygen is the major species participating in the induction of DNA strand breakage and 8-hydroxydeoxyguanosine adduct by lead acetate. Environ. Mol. Mutagen., 1999, 33(3), 194-201. doi: 10.1002/(SICI)1098-2280(1999)33:33.0.CO;2-O PMID: 10334621
  124. Bjørklund, G.; Zou, L.; Wang, J.; Chasapis, C.T.; Peana, M. Thioredoxin reductase as a pharmacological target. Pharmacol. Res., 2021, 174, 105854. doi: 10.1016/j.phrs.2021.105854 PMID: 34455077
  125. Christophersen, O.A. Radiation protection following nuclear power accidents: A survey of putative mechanisms involved in the radioprotective actions of taurine during and after radiation exposure. Microb. Ecol. Health Dis., 2012, 23(1), 14787. doi: 10.3402/mehd.v23i0.14787 PMID: 23990836
  126. Bermúdez-Guzmán, L.; Leal, A. DNA repair deficiency in neuropathogenesis: When all roads lead to mitochondria. Transl. Neurodegener., 2019, 8(1), 14. doi: 10.1186/s40035-019-0156-x PMID: 31110700
  127. Meyer, J.N.; Leung, M.C.K.; Rooney, J.P.; Sendoel, A.; Hengartner, M.O.; Kisby, G.E.; Bess, A.S. Mitochondria as a target of environmental toxicants. Toxicol. Sci., 2013, 134(1), 1-17. doi: 10.1093/toxsci/kft102 PMID: 23629515
  128. Sousa, C.A.; Soares, E.V. Mitochondria are the main source and one of the targets of Pb (lead)-induced oxidative stress in the yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol., 2014, 98(11), 5153-5160. doi: 10.1007/s00253-014-5631-9 PMID: 24652061
  129. Son, G.; Han, J. Roles of mitochondria in neuronal development. BMB Rep., 2018, 51(11), 549-556. doi: 10.5483/BMBRep.2018.51.11.226 PMID: 30269744
  130. Khacho, M.; Slack, R.S. Mitochondrial dynamics in the regulation of neurogenesis: From development to the adult brain. Dev. Dyn., 2018, 247(1), 47-53. doi: 10.1002/dvdy.24538 PMID: 28643345
  131. Falk, M.J. Neurodevelopmental manifestations of mitochondrial disease. J. Dev. Behav. Pediatr., 2010, 31(7), 610-621. doi: 10.1097/DBP.0b013e3181ef42c1 PMID: 20814259
  132. Kim, S.; Arora, M.; Fernandez, C.; Landero, J.; Caruso, J.; Chen, A. Lead, mercury, and cadmium exposure and attention deficit hyperactivity disorder in children. Environ. Res., 2013, 126, 105-110. doi: 10.1016/j.envres.2013.08.008 PMID: 24034783
  133. Wang, H.L.; Chen, X.T.; Yang, B.; Ma, F.L.; Wang, S.; Tang, M.L.; Hao, M.G.; Ruan, D.Y. Case-control study of blood lead levels and attention deficit hyperactivity disorder in Chinese children. Environ. Health Perspect., 2008, 116(10), 1401-1406. doi: 10.1289/ehp.11400 PMID: 18941585
  134. Yun, L.; Zhang, W.; Qin, K. Relationship among maternal blood lead, ALAD gene polymorphism and neonatal neurobehavioral development. Int. J. Clin. Exp. Pathol., 2015, 8(6), 7277-7281. PMID: 26261627
  135. Huang, S.; Hu, H.; Sánchez, B.N.; Peterson, K.E.; Ettinger, A.S.; Lamadrid-Figueroa, H.; Schnaas, L.; Mercado-García, A.; Wright, R.O.; Basu, N.; Cantonwine, D.E.; Hernández-Avila, M.; Téllez-Rojo, M.M. Childhood blood lead levels and symptoms of attention deficit hyperactivity disorder (ADHD): A cross-sectional study of Mexican children. Environ. Health Perspect., 2016, 124(6), 868-874. doi: 10.1289/ehp.1510067 PMID: 26645203
  136. Reuben, A.; Caspi, A.; Belsky, D.W.; Broadbent, J.; Harrington, H.; Sugden, K.; Houts, R.M.; Ramrakha, S.; Poulton, R.; Moffitt, T.E. Association of childhood blood lead levels with cognitive function and socioeconomic status at age 38 years and with iq change and socioeconomic mobility between childhood and adulthood. JAMA, 2017, 317(12), 1244-1251. doi: 10.1001/jama.2017.1712 PMID: 28350927
  137. Chen, A.; Dietrich, K.N.; Ware, J.H.; Radcliffe, J.; Rogan, W.J. IQ and blood lead from 2 to 7 years of age: are the effects in older children the residual of high blood lead concentrations in 2-year-olds? Environ. Health Perspect., 2005, 113(5), 597-601. doi: 10.1289/ehp.7625 PMID: 15866769
  138. Hu, H.; Téllez-Rojo, M.M.; Bellinger, D.; Smith, D.; Ettinger, A.S.; Lamadrid-Figueroa, H.; Schwartz, J.; Schnaas, L.; Mercado-García, A.; Hernández-Avila, M. Fetal lead exposure at each stage of pregnancy as a predictor of infant mental development. Environ. Health Perspect., 2006, 114(11), 1730-1735. doi: 10.1289/ehp.9067 PMID: 17107860
  139. Lanphear, B.P.; Hornung, R.; Khoury, J.; Yolton, K.; Baghurst, P.; Bellinger, D.C.; Canfield, R.L.; Dietrich, K.N.; Bornschein, R.; Greene, T.; Rothenberg, S.J.; Needleman, H.L.; Schnaas, L.; Wasserman, G.; Graziano, J.; Roberts, R. Low-level environmental lead exposure and children’s intellectual function: an international pooled analysis. Environ. Health Perspect., 2005, 113(7), 894-899. doi: 10.1289/ehp.7688 PMID: 16002379
  140. Fenga, C.; Gangemi, S.; Alibrandi, A.; Costa, C.; Micali, E. Relationship between lead exposure and mild cognitive impairment. J. Prev. Med. Hyg., 2016, 57(4), E205-E210. PMID: 28167858
  141. Santa Maria, M.P.; Hill, B.D.; Kline, J. Lead (Pb) neurotoxicology and cognition. Appl. Neuropsychol. Child, 2019, 8(3), 272-293. doi: 10.1080/21622965.2018.1428803 PMID: 29494781
  142. Daneshparvar, M.; Mostafavi, S-A.; Zare Jeddi, M.; Yunesian, M.; Mesdaghinia, A.; Mahvi, A.H.; Akhondzadeh, S. The role of lead exposure on attention-deficit/ hyperactivity disorder ‎in children: A systematic review. Iran. J. Psychiatry, 2016, 11(1), 1-14. PMID: 27252763
  143. Mostafa, G.A.; Bjørklund, G.; Urbina, M.A.; Al-Ayadhi, L.Y. The positive association between elevated blood lead levels and brain-specific autoantibodies in autistic children from low lead-polluted areas. Metab. Brain Dis., 2016, 31(5), 1047-1054. doi: 10.1007/s11011-016-9836-8 PMID: 27250967
  144. White, L.D.; Cory-Slechta, D.A.; Gilbert, M.E.; Tiffany- Castiglioni, E.; Zawia, N.H.; Virgolini, M.; Rossi-George, A.; Lasley, S.M.; Qian, Y.C.; Basha, M.R. New and evolving concepts in the neurotoxicology of lead. Toxicol. Appl. Pharmacol., 2007, 225(1), 1-27. doi: 10.1016/j.taap.2007.08.001 PMID: 17904601
  145. Dickerson, A.S.; Rahbar, M.H.; Bakian, A.V.; Bilder, D.A.; Harrington, R.A.; Pettygrove, S.; Kirby, R.S.; Durkin, M.S.; Han, I.; Moyé, L.A., III; Pearson, D.A.; Wingate, M.S.; Zahorodny, W.M. Autism spectrum disorder prevalence and associations with air concentrations of lead, mercury, and arsenic. Environ. Monit. Assess., 2016, 188(7), 407-407. doi: 10.1007/s10661-016-5405-1 PMID: 27301968
  146. Geier, D.; Kern, J.; Geier, M. Blood lead levels and learning disabilities: A cross-sectional study of the 2003–2004 national health and nutrition examination survey (NHANES). Int. J. Environ. Res. Public Health, 2017, 14(10), 1202. doi: 10.3390/ijerph14101202 PMID: 28994742
  147. Reuben, A. Childhood lead exposure and adult neurodegenerative disease. J. Alzheimers Dis., 2018, 64(1), 17-42. doi: 10.3233/JAD-180267 PMID: 29865081
  148. Mansouri, M.T.; Muñoz-Fambuena, I.; Cauli, O. Cognitive impairment associated with chronic lead exposure in adults. Neurol. Psychiatry Brain Res., 2018, 30, 5-8. doi: 10.1016/j.npbr.2018.04.001
  149. Barker, D.J.P. In utero programming of cardiovascular disease. Theriogenology, 2000, 53(2), 555-574. doi: 10.1016/S0093-691X(99)00258-7 PMID: 10735050
  150. Mandy, M.; Nyirenda, M. Developmental origins of health and disease: The relevance to developing nations. Int. Health, 2018, 10(2), 66-70. doi: 10.1093/inthealth/ihy006 PMID: 29528398
  151. Vig, E.; Hu, H. Lead toxicity in older adults. J. Am. Geriatr. Soc., 2000, 48(11), 1501-1506. PMID: 11083332
  152. Bolin, C.M.; Basha, R.; Cox, D.; Zawia, N.H.; Maloney, B.; Lahiri, D.K.; Cardozo-Pelaez, F. Exposure to lead (Pb) and the developmental origin of oxidative DNA damage in the aging brain. FASEB J., 2006, 20(6), 788-790. doi: 10.1096/fj.05-5091fje PMID: 16484331
  153. Castellani, R.J.; Lee, H.; Perry, G.; Smith, M.A. Antioxidant protection and neurodegenerative disease: The role of amyloid-β and tau. Am. J. Alzheimers Dis. Demen., 2006, 21(2), 126-130. doi: 10.1177/153331750602100213 PMID: 16634469
  154. Weisskopf, M.G.; Wright, R.O.; Schwartz, J.; Spiro, A., III; Sparrow, D.; Aro, A.; Hu, H. Cumulative lead exposure and prospective change in cognition among elderly men: the VA normative aging study. Am. J. Epidemiol., 2004, 160(12), 1184-1193. doi: 10.1093/aje/kwh333 PMID: 15583371
  155. Giacoppo, S.; Galuppo, M.; Calabrò, R.S.; D’Aleo, G.; Marra, A.; Sessa, E.; Bua, D.G.; Potortì, A.G.; Dugo, G.; Bramanti, P.; Mazzon, E. Heavy metals and neurodegenerative diseases: An observational study. Biol. Trace Elem. Res., 2014, 161(2), 151-160. doi: 10.1007/s12011-014-0094-5 PMID: 25107328
  156. Schwartz, B.S.; Stewart, W.F.; Bolla, K.I.; Simon, D.; Bandeen-Roche, K.; Gordon, B.; Links, J.M.; Todd, A.C. Past adult lead exposure is associated with longitudinal decline in cognitive function. Neurology, 2000, 55(8), 1144-1150. doi: 10.1212/WNL.55.8.1144 PMID: 11071492
  157. Stewart, W.F.; Schwartz, B.S. Effects of lead on the adult brain: A 15-year exploration. Am. J. Ind. Med., 2007, 50(10), 729-739. doi: 10.1002/ajim.20434 PMID: 17311281
  158. Khalil, N.; Morrow, L.A.; Needleman, H.; Talbott, E.O.; Wilson, J.W.; Cauley, J.A. Association of cumulative lead and neurocognitive function in an occupational cohort. Neuropsychology, 2009, 23(1), 10-19. doi: 10.1037/a0013757 PMID: 19210029
  159. Bihaqi, S.W. Early life exposure to lead (Pb) and changes in DNA methylation: Relevance to Alzheimer’s disease. Rev. Environ. Health, 2019, 34(2), 187-195. doi: 10.1515/reveh-2018-0076 PMID: 30710487
  160. Brown, E.E.; Shah, P.; Pollock, B.G.; Gerretsen, P.; Graff-Guerrero, A. Lead (Pb) in Alzheimer’s dementia: A systematic review of human case-control studies. Curr. Alzheimer Res., 2019, 16(4), 353-361. doi: 10.2174/1567205016666190311101445 PMID: 30854970
  161. Li, T.; Lu, L.; Pember, E.; Li, X.; Zhang, B.; Zhu, Z. New insights into neuroinflammation involved in pathogenic mechanism of alzheimer’s disease and its potential for therapeutic intervention. Cells, 2022, 11(12), 1925. doi: 10.3390/cells11121925 PMID: 35741054
  162. Yegambaram, M.; Manivannan, B.; Beach, T.; Halden, R. Role of environmental contaminants in the etiology of Alzheimer’s disease: A review. Curr. Alzheimer Res., 2015, 12(2), 116-146. doi: 10.2174/1567205012666150204121719 PMID: 25654508
  163. Mir, R.H.; Sawhney, G.; Pottoo, F.H.; Mohi-ud-din, R.; Madishetti, S.; Jachak, S.M.; Ahmed, Z.; Masoodi, M.H. Role of environmental pollutants in Alzheimer’s disease: A review. Environ. Sci. Pollut. Res. Int., 2020, 27(36), 44724-44742. doi: 10.1007/s11356-020-09964-x PMID: 32715424
  164. Calivarathan, L.; Brahadeeswaran, S.; Lateef, M. An insight into the molecular mechanism of mitochondrial toxicant-induced neuronal apoptosis in Parkinson’s disease. Curr. Mol. Med., 2023, 23(1), 63-75. doi: 10.2174/1566524022666220203163631 PMID: 35125081
  165. Ghanwat, G.; Patil, A.J.; Patil, J.; Kshirsagar, M.; Sontakke, A.; Ayachit, R.K. Effect of vitamin C supplementation on blood lead level, oxidative stress and antioxidant status of battery manufacturing workers of Western Maharashtra, India. J. Clin. Diagn. Res., 2016, 10(4), BC08-BC11. doi: 10.7860/JCDR/2016/15968.7528 PMID: 27190789
  166. Antonio-García, M.T.; Massó-Gonzalez, E.L. Toxic effects of perinatal lead exposure on the brain of rats: Involvement of oxidative stress and the beneficial role of antioxidants. Food Chem. Toxicol., 2008, 46(6), 2089-2095. doi: 10.1016/j.fct.2008.01.053 PMID: 18417264
  167. Ahmad, F.; Haque, S.; Ravinayagam, V.; Ahmad, A.; Kamli, M.R.; Barreto, G.E.; Ghulam Md, A. Developmental lead (Pb)-induced deficits in redox and bioenergetic status of cerebellar synapses are ameliorated by ascorbate supplementation. Toxicology, 2020, 440, 152492. doi: 10.1016/j.tox.2020.152492 PMID: 32407874
  168. Bhattacharya, S. Essential trace metals as countermeasure for lead toxicity. J. Environ. Pathol. Toxicol. Oncol., 2022, 41(2), 61-67. doi: 10.1615/JEnvironPatholToxicolOncol.2022040132 PMID: 35695652
  169. Bjørklund, G.; Mutter, J.; Aaseth, J. Metal chelators and neurotoxicity: Lead, mercury, and arsenic. Arch. Toxicol., 2017, 91(12), 3787-3797. doi: 10.1007/s00204-017-2100-0 PMID: 29063135
  170. Peana, M.; Zoroddu, M.A.; Pelucelli, A.; Medici, S.; Cappai, R.; Nurchi, V.M. Metal toxicity and speciation: A review. Curr. Med. Chem., 2021, 28(35), 7190-7208. doi: 10.2174/0929867328666210324161205 PMID: 33761850

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers