Identification of Key Genes in Angiogenesis of Breast and Prostate Cancers in the Context of Different Cell Types


Cite item

Full Text

Abstract

Introduction:Angiogenesis involves the development of new blood vessels. Biochemical signals start this process in the body, which is followed by migration, growth, and differentiation of endothelial cells that line the inside wall of blood vessels. This process is vital for the growth of cancer cells and tumors.

Materials and Methods:We started our analysis by composing a list of genes that have a validated impact in humans with respect to angiogenesis-related phenotypes. Here, we have investigated the expression patterns of angiogenesis-related genes in the context of previously published single-cell RNA-Seq data from prostate and breast cancer samples.

Results:Using a protein-protein interaction network, we showed how different modules of angiogenesis-related genes are overexpressed in different cell types. In our results, genes, such as ACKR1, AQP1, and EGR1, showed a strong cell type-dependent overexpression pattern in the two investigated cancer types, which can potentially be helpful in the diagnosis and follow-up of patients with prostate and breast cancer.

Conclusion:Our work demonstrates how different biological processes in distinct cell types contribute to the angiogenesis process, which can provide clues regarding the potential application of targeted inhibition of the angiogenesis process.

About the authors

Abbas Jariani

Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences

Email: info@benthamscience.net

Setareh Kakroodi

, Pars Pathobiology Laboratory

Email: info@benthamscience.net

Masoud Arabfard

Chemical Injuries Research Center, Systems Biology and Poisonings Institute,, Baqiyatallah University of Medical Sciences

Email: info@benthamscience.net

Tannaz Jamialahmadi

Surgical Oncology Research Center, Mashhad University of Medical Sciences

Email: info@benthamscience.net

Maryam Rahimi

Clinical care and Health Promotion Research Center, Karaj Branch, Islamic Azad University

Author for correspondence.
Email: info@benthamscience.net

Amirhossein Sahebkar

Applied Biomedical Research Center,, Mashhad University of Medical Sciences

Author for correspondence.
Email: info@benthamscience.net

References

  1. Rawla, P. Epidemiology of prostate cancer. World J. Oncol., 2019, 10(2), 63-89. doi: 10.14740/wjon1191 PMID: 31068988
  2. Mousavi, S.M.; Montazeri, A.; Mohagheghi, M.A.; Jarrahi, A.M.; Harirchi, I.; Najafi, M.; Ebrahimi, M. Breast cancer in Iran: An epidemiological review. Breast J., 2007, 13(4), 383-391. doi: 10.1111/j.1524-4741.2007.00446.x PMID: 17593043
  3. Rahimi, M.; Behjati, F.; Khorram Khorshid, H.R.; Karimlou, M.; Keyhani, E. The relationship between KIT copy number variation, protein expression, and angiogenesis in sporadic breast cancer. Rep. Biochem. Mol. Biol., 2020, 9(1), 40-49. doi: 10.29252/rbmb.9.1.40 PMID: 32821750
  4. De Jong, J.S.; Van Diest, P.J.; A Baak Hot spot microvessel density and the mitotic activity index are strong additional prognostic indicators in invasive breast cancer. Histopathology, 2000, 36(4), 306-312. doi: 10.1046/j.1365-2559.2000.00850.x PMID: 10759944
  5. Folkman, J.; Hanahan. D. Switch to the angiogenic phenotype during tumorigenesis. Princess Takamatsu Symp., 1991, 22(339-347). PMID: 1726933
  6. Jászai, J.; Schmidt, M. Trends and challenges in tumor anti-angiogenic therapies. Cells, 2019, 8(9), 1102. doi: 10.3390/cells8091102 PMID: 31540455
  7. Weis, S.M.; Cheresh, D.A. Tumor angiogenesis: Molecular pathways and therapeutic targets. Nat. Med., 2011, 17(11), 1359-1370. doi: 10.1038/nm.2537 PMID: 22064426
  8. Wu, S.Z.; Roden, D.L.; Al-Eryani, G.; Bartonicek, N.; Harvey, K.; Cazet, A.S.; Chan, C.L.; Junankar, S.; Hui, M.N.; Millar, E.A.; Beretov, J.; Horvath, L.; Joshua, A.M.; Stricker, P.; Wilmott, J.S.; Quek, C.; Long, G.V.; Scolyer, R.A.; Yeung, B.Z.; Segara, D.; Mak, C.; Warrier, S.; Powell, J.E.; O’Toole, S.; Lim, E.; Swarbrick, A. Cryopreservation of human cancers conserves tumour heterogeneity for single-cell multi-omics analysis. Genome Med., 2021, 13(1), 81. doi: 10.1186/s13073-021-00885-z PMID: 33971952
  9. Stuart, T.; Butler, A.; Hoffman, P.; Hafemeister, C.; Papalexi, E.; Mauck, W.M., III; Hao, Y.; Stoeckius, M.; Smibert, P.; Satija, R. Comprehensive integration of single-cell data. Cell, 2019, 177(7), 1888-1902.e21. doi: 10.1016/j.cell.2019.05.031 PMID: 31178118
  10. Eden, E.; Navon, R.; Steinfeld, I.; Lipson, D.; Yakhini, Z. GOrilla: A tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics, 2009, 10(1), 48. doi: 10.1186/1471-2105-10-48 PMID: 19192299
  11. Supek, F.; Bošnjak, M.; Škunca, N.; Šmuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One, 2011, 6(7), e21800. doi: 10.1371/journal.pone.0021800 PMID: 21789182
  12. Jensen, L.J.; Kuhn, M.; Stark, M.; Chaffron, S.; Creevey, C.; Muller, J.; Doerks, T.; Julien, P.; Roth, A.; Simonovic, M.; Bork, P.; von Mering, C. STRING 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res., 2009, 37(Suppl. 1), D412-D416. doi: 10.1093/nar/gkn760 PMID: 18940858
  13. Solimando, A.G.; Summa, S.D.; Vacca, A.; Ribatti, D. Cancer-associated angiogenesis: The endothelial cell as a checkpoint for immunological patrolling. Cancers, 2020, 12(11), 3380. doi: 10.3390/cancers12113380 PMID: 33203154
  14. Jiang, X.; Wang, J.; Deng, X.; Xiong, F.; Zhang, S.; Gong, Z.; Li, X.; Cao, K.; Deng, H.; He, Y.; Liao, Q.; Xiang, B.; Zhou, M.; Guo, C.; Zeng, Z.; Li, G.; Li, X.; Xiong, W. The role of microenvironment in tumor angiogenesis. J. Exp. Clin. Cancer Res., 2020, 39(1), 204. doi: 10.1186/s13046-020-01709-5 PMID: 32993787
  15. Bhome, R.; Bullock, M.D.; Al Saihati, H.A.; Goh, R.W.; Primrose, J.N.; Sayan, A.E.; Mirnezami, A.H. A top-down view of the tumor microenvironment: Structure, cells and signaling. Front. Cell Dev. Biol., 2015, 3, 33. doi: 10.3389/fcell.2015.00033 PMID: 26075202
  16. Eyerich, K.; Dimartino, V.; Cavani, A. IL-17 and IL-22 in immunity: Driving protection and pathology. Eur. J. Immunol., 2017, 47(4), 607-614. doi: 10.1002/eji.201646723 PMID: 28295238
  17. Queen, D.; Ediriweera, C.; Liu, L. Function and regulation of IL-36 signaling in inflammatory diseases and cancer development. Front. Cell Dev. Biol., 2019, 7, 317. doi: 10.3389/fcell.2019.00317 PMID: 31867327
  18. Lu, T.; Ramakrishnan, R.; Altiok, S.; Youn, J.I.; Cheng, P.; Celis, E.; Pisarev, V.; Sherman, S.; Sporn, M.B.; Gabrilovich, D. Tumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in mice. J. Clin. Invest., 2011, 121(10), 4015-4029. doi: 10.1172/JCI45862 PMID: 21911941
  19. Sarhan, D.; Hippen, K.L.; Lemire, A.; Hying, S.; Luo, X.; Lenvik, T.; Curtsinger, J.; Davis, Z.; Zhang, B.; Cooley, S.; Cichocki, F.; Blazar, B.R.; Miller, J.S. Adaptive NK cells resist regulatory T-cell suppression driven by IL37. Cancer Immunol. Res., 2018, 6(7), 766-775. doi: 10.1158/2326-6066.CIR-17-0498 PMID: 29784636
  20. Ren, D.; Hua, Y.; Yu, B.; Ye, X.; He, Z.; Li, C. Predictive biomarkers and mechanisms underlying resistance to PD1/PD-L1 blockade cancer immunotherapy. Mol. Cancer, 2020, 19(1), 1-19. PMID: 31901224
  21. Duan, S.; Guo, W.; Xu, Z.; He, Y.; Liang, C.; Mo, Y.; Wang, Y.; Xiong, F.; Guo, C.; Li, Y.; Li, X.; Li, G.; Zeng, Z.; Xiong, W.; Wang, F. Natural killer group 2D receptor and its ligands in cancer immune escape. Mol. Cancer, 2019, 18(1), 29. doi: 10.1186/s12943-019-0956-8 PMID: 30813924
  22. Aktaş, O.N.; Öztürk, A.B.; Erman, B.; Erus, S.; Tanju, S.; Dilege, Ş. Role of natural killer cells in lung cancer. J. Cancer Res. Clin. Oncol., 2018, 144(6), 997-1003. doi: 10.1007/s00432-018-2635-3 PMID: 29616326
  23. Butt, A.Q.; Mills, K.H.G. Immunosuppressive networks and checkpoints controlling antitumor immunity and their blockade in the development of cancer immunotherapeutics and vaccines. Oncogene, 2014, 33(38), 4623-4631. doi: 10.1038/onc.2013.432 PMID: 24141774
  24. Hanahan, D.; Coussens, L.M. Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell, 2012, 21(3), 309-322. doi: 10.1016/j.ccr.2012.02.022 PMID: 22439926
  25. Wang, M.; Zhao, J.; Zhang, L.; Wei, F.; Lian, Y.; Wu, Y.; Gong, Z.; Zhang, S.; Zhou, J.; Cao, K.; Li, X.; Xiong, W.; Li, G.; Zeng, Z.; Guo, C. Role of tumor microenvironment in tumorigenesis. J. Cancer, 2017, 8(5), 761-773. doi: 10.7150/jca.17648 PMID: 28382138
  26. Barsky, S.H.; Karlin, N.J. Myoepithelial cells: Autocrine and paracrine suppressors of breast cancer progression. J. Mammary Gland Biol. Neoplasia, 2005, 10(3), 249-260. doi: 10.1007/s10911-005-9585-5 PMID: 16807804
  27. Liang, Y.; Hyder, S.M. Proliferation of endothelial and tumor epithelial cells by progestin-induced vascular endothelial growth factor from human breast cancer cells: Paracrine and autocrine effects. Endocrinology, 2005, 146(8), 3632-3641. doi: 10.1210/en.2005-0103 PMID: 15845615
  28. Kalluri, R.; Weinberg, R.A. The basics of epithelial-mesenchymal transition. J. Clin. Invest., 2009, 119(6), 1420-1428. doi: 10.1172/JCI39104 PMID: 19487818
  29. Thiery, J.P. Epithelial–mesenchymal transitions in tumour progression. Nat. Rev. Cancer, 2002, 2(6), 442-454. doi: 10.1038/nrc822 PMID: 12189386
  30. Yu, D.; Ye, T.; Xiang, Y.; Shi, Z.; Zhang, J.; Lou, B.; Zhang, F.; Chen, B.; Zhou, M. Quercetin inhibits epithelial–mesenchymal transition, decreases invasiveness and metastasis, and reverses IL-6 induced epithelial–mesenchymal transition, expression of MMP by inhibiting STAT3 signaling in pancreatic cancer cells. OncoTargets Ther., 2017, 10, 4719-4729. doi: 10.2147/OTT.S136840 PMID: 29026320
  31. Horejs, C.M. Basement membrane fragments in the context of the epithelial-to-mesenchymal transition. Eur. J. Cell Biol., 2016, 95(11), 427-440. doi: 10.1016/j.ejcb.2016.06.002 PMID: 27397693
  32. Wang, F.T.; Sun, W.; Zhang, J.T.; Fan, Y.Z. Cancer-associated fibroblast regulation of tumor neo-angiogenesis as a therapeutic target in cancer (Review). Oncol. Lett., 2019, 17(3), 3055-3065. doi: 10.3892/ol.2019.9973 PMID: 30867734
  33. Wu, S.Z.; Roden, D.L.; Wang, C.; Holliday, H.; Harvey, K.; Cazet, A.S.; Murphy, K.J.; Pereira, B.; Al-Eryani, G.; Bartonicek, N.; Hou, R.; Torpy, J.R.; Junankar, S.; Chan, C.L.; Lam, C.E.; Hui, M.N.; Gluch, L.; Beith, J.; Parker, A.; Robbins, E.; Segara, D.; Mak, C.; Cooper, C.; Warrier, S.; Forrest, A.; Powell, J.; O’Toole, S.; Cox, T.R.; Timpson, P.; Lim, E.; Liu, X.S.; Swarbrick, A. Stromal cell diversity associated with immune evasion in human triple‐negative breast cancer. EMBO J., 2020, 39(19), e104063. doi: 10.15252/embj.2019104063 PMID: 32790115
  34. Massara, M.; Bonavita, O.; Mantovani, A.; Locati, M.; Bonecchi, R. Atypical chemokine receptors in cancer: Friends or foes? J. Leukoc. Biol., 2016, 99(6), 927-933. doi: 10.1189/jlb.3MR0915-431RR PMID: 26908826
  35. Tomita, Y.; Dorward, H.; Yool, A.; Smith, E.; Townsend, A.; Price, T.; Hardingham, J. Role of aquaporin 1 signalling in cancer development and progression. Int. J. Mol. Sci., 2017, 18(2), 299. doi: 10.3390/ijms18020299 PMID: 28146084
  36. Wang, B.; Guo, H.; Yu, H.; Chen, Y.; Xu, H.; Zhao, G. The role of the transcription factor EGR1 in cancer. Front. Oncol., 2021, 11, 642547. doi: 10.3389/fonc.2021.642547 PMID: 33842351
  37. Sikder, H.A.; Devlin, M.K.; Dunlap, S.; Ryu, B.; Alani, R.M. Id proteins in cell growth and tumorigenesis. Cancer Cell, 2003, 3(6), 525-530. doi: 10.1016/S1535-6108(03)00141-7 PMID: 12842081
  38. Lin, Y-W.; Weng, X-F.; Huang, B-L.; Guo, H-P.; Xu, Y-W.; Peng, Y-H. IGFBP-1 in cancer: Expression, molecular mechanisms, and potential clinical implications. Am. J. Transl. Res., 2021, 13(3), 813-832. PMID: 33841624
  39. Baxter, R.C. Signalling pathways involved in antiproliferative effects of IGFBP-3: A review. Mol. Pathol., 2001, 54(3), 145-148. doi: 10.1136/mp.54.3.145 PMID: 11376125
  40. Park, S.; Sorenson, C.M.; Sheibani, N. PECAM-1 isoforms, eNOS and endoglin axis in regulation of angiogenesis. Clin. Sci., 2015, 129(3), 217-234. doi: 10.1042/CS20140714 PMID: 25976664
  41. He, Z.; Bateman, A. Progranulin (granulin-epithelin precursor, PC-cell-derived growth factor, acrogranin) mediates tissue repair and tumorigenesis. J. Mol. Med., 2003, 81(10), 600-612. doi: 10.1007/s00109-003-0474-3 PMID: 12928786
  42. Vlaicu, S.I.; Tatomir, A.; Rus, V.; Rus, H. Role of C5b-9 and RGC-32 in cancer. Front. Immunol., 2019, 10, 1054. doi: 10.3389/fimmu.2019.01054 PMID: 31156630
  43. Xing, Y.; Ye, Y.; Zuo, H.; Li, Y. Progress on the function and application of thymosin β4. Front. Endocrinol., 2021, 12, 767785. doi: 10.3389/fendo.2021.767785
  44. Elamin, Y.Y.; Rafee, S.; Osman, N.; O Byrne, K.J.; Gately, K. Thymidine phosphorylase in cancer; enemy or friend? Cancer Microenviron., 2016, 9(1), 33-43. doi: 10.1007/s12307-015-0173-y PMID: 26298314

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers