Effects of Assisted Reproductive Technologies on the Behavior and Brain Development in the Mouse Model of Parkinson’s Disease
- Authors: Rozhkova I.N.1, Kozeneva V.S.1,2, Brusentsev E.Y.1, Rakhmanova T.A.1,2, Shavshaeva N.A.1,2, Afanasova S.G.1,2, Igonina T.N.1, Okotrub S.V.1, Naprimerov V.A.1, Amstislavsky S.Y.1
-
Affiliations:
- Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences
- Novosibirsk State University
- Issue: Vol 111, No 5 (2025)
- Pages: 729-743
- Section: EXPERIMENTAL ARTICLES
- URL: https://rjeid.com/0869-8139/article/view/686260
- DOI: https://doi.org/10.31857/S0869813925050052
- EDN: https://elibrary.ru/TNTKVO
- ID: 686260
Cite item
Abstract
This study investigated the long-term effects of assisted reproductive technologies (ART), i.e. in vitro embryo culture and embryo transfer, on behavior and brain development in B6.Cg-Tg mice, a model of Parkinson’s disease (PD), and wild-type C57BL/6 mice. Male offspring obtained using ART were compared with naturally conceived offspring. At six months of age, mice were assessed for anxiety in the elevated plus maze test; body and brain weights were measured as well. The results of the study demonstrated that naturally conceived B6.Cg-Tg mice exhibited lower anxiety levels and larger brain weights compared to wild-type mice. Using ART resulted in a decreased brain weight in B6.Cg-Tg offspring, as well as significantly decreased anxiety levels compared to the control groups. In wild-type C57BL/6 mice, ART did not cause significant changes in brain weight or anxiety levels. The results demonstrate effects of ART on behavior and brain development in offspring, particularly in those genetically predisposed to neurodegenerative diseases. These results demonstrate that further studies of the long-term effects of ART are warrant, particularly in the context of its impact on neurodevelopment and behavior, which has important medical implications.
Full Text

About the authors
I. N. Rozhkova
Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences
Author for correspondence.
Email: amstis@yandex.ru
Russian Federation, Novosibirsk
V. S. Kozeneva
Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Email: amstis@yandex.ru
Russian Federation, Novosibirsk; Novosibirsk
E. Yu. Brusentsev
Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences
Email: amstis@yandex.ru
Russian Federation, Novosibirsk
T. A. Rakhmanova
Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Email: amstis@yandex.ru
Russian Federation, Novosibirsk; Novosibirsk
N. A. Shavshaeva
Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Email: amstis@yandex.ru
Russian Federation, Novosibirsk; Novosibirsk
S. G. Afanasova
Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Email: amstis@yandex.ru
Russian Federation, Novosibirsk; Novosibirsk
T. N. Igonina
Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences
Email: amstis@yandex.ru
Russian Federation, Novosibirsk
S. V. Okotrub
Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences
Email: amstis@yandex.ru
Russian Federation, Novosibirsk
V. A. Naprimerov
Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences
Email: amstis@yandex.ru
Russian Federation, Novosibirsk
S. Ya. Amstislavsky
Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences
Email: amstis@yandex.ru
Russian Federation, Novosibirsk
References
- Bidesi NS, Vang Andersen I, Windhorst AD, Shalgunov V, Herth MM (2021) The role of neuroimaging in Parkinson’s disease. J Neurochem 159: 660–689.
- Morris HR, Spillantini MG, Sue CM, Williams-Gray CH (2024) The pathogenesis of Parkinson’s disease. Lancet 403(10423): 293–304. https://doi.org/10.1016/S0140-6736(23)01478-2
- Tanner CM, Ostrem JL (2024) Parkinson’s disease. N Engl J Med 391: 442–452. https://doi.org/10.1056/NEJMra2401857
- Торган ТИ, Байдина ТВ (2012) Немоторные симптомы болезни Паркинсона. Саратовск научно-мед журн 8: 535–538. [Torgan TI, Baidina TV (2012) Non-motor symptoms in Parkinson’s disease. Saratov J Med Sci Res 8: 535–538. (In Russ)].
- Мугинова РЧ, Белодурина АД (2019) Изменение в серотонинергической системе как начальное проявление болезни Паркинсона. Вестн совета молод ученых и специалист Челябинск обл 1: 37–42. [Muginova RC, Belodurina AD (2019) The change in the seritoninergic system as an initial manifestation of Parkinson’s disease. Bull Council Young Scientists and Specialists Chelyabinsk Region 1: 37–42. (In Russ)].
- Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, Pike B, Root H, Rubenstein J, Boyer R, Stenroos ES, Chandrasekharappa S, Athanassiadou A, Papapetropoulos T, Johnson WG, Lazzarini AM, Duvoisin RC, Di Iorio G, Golbe LI, Nussbaum RL (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276: 2045–2047. https://doi.org/10.1126/science.276.5321.2045
- Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388: 839–840. https://doi.org/10.1038/42166
- Zhang Y, Wu Q, Zhang L, Wang Q, Yang Z, Liu J, Feng L (2019) Caffeic acid reduces A53T α-synuclein by activating JNK/Bcl-2-mediated autophagy in vitro and improves behaviour and protects dopaminergic neurons in a mouse model of Parkinson’s disease. Pharmacol Res 150: 104538. https://doi.org/10.1016/j.phrs.2019.104538
- Park HJ, Zhao TT, Kim SH, Lee CK, Hwang BY, Lee KE, Lee MK (2020) Ethanol extract from Gynostemmapentaphyllum ameliorates dopaminergic neuronal cell death in transgenic mice expressing mutant A53T human alpha-synuclein. Neural Regen Res 15: 361–368. https://doi.org/10.4103/1673-5374.265557 https://www.jax.org/strain/006823
- Unger EL, Eve DJ, Perez XA, Reichenbach DK, Xu Y, Lee MK, Andrews AM (2006) Locomotor hyperactivity and alterations in dopamine neurotransmission are associated with overexpression of A53T mutant human alpha-synuclein in mice. Neurobiol Dis 21: 431–443. https://doi.org/10.1016/j.nbd.2005.08.005
- Graham DR, Sidhu A (2010) Mice expressing the A53T mutant form of human alpha-synuclein exhibit hyperactivity and reduced anxiety-like behavior. J Neurosci Res 88: 1777–1183. https://doi.org/10.1002/jnr.22331
- Oaks AW, Frankfurt M, Finkelstein DI, Sidhu A (2013) Age-dependent effects of A53T alpha-synuclein on behavior and dopaminergic function. PLoS One 8: e60378. https://doi.org/10.1371/journal.pone.0060378
- Рожкова ИН, Окотруб СВ, Брусенцев ЕЮ, Рахманова ТА, Лебедева ДА, Козенева ВС, Хоцкин НВ, Амстиславский СЯ (2023) Анализ поведения и плотности нейронов в головном мозге мышей B6.Cg-Tg(Prnp-SNCA*A53T)23Mkle/J – модели болезни Паркинсона. Рос физиол журн им ИМ Сеченова 109: 1199–1216. [Rozhkova IN, Okotrub SV, Brusentsev EYu, Rakhmanova TA, Lebedeva DA, Kozeneva VS, Khotskin NV, Amstislavsky SYa (2023) Analysis of behavior and brain neuronal density in B6.Cg-Tg(Prnp-SNCA*A53T)23Mkle/J mice, a Parkinson’s disease model. Russ J Physiol 109: 1199–1216. (In Russ)]. https://doi.org/10.31857/S0869813923090091
- Ahmadi H, Aghebati-Maleki L, Rashidiani S, Csabai T, Nnaemeka OB, Szekeres-Bartho J (2023) Long-Term Effects of ART on the Health of the Offspring. Int J Mol Sci 24: 13564. https://doi.org/10.3390/ijms241713564
- Berntsen S, Soderstrom-Anttila V, Wennerholm UB, Laivuori H, Loft A, Oldereid NB, Romundstad LB, Bergh C, Pinborg A (2019) The health of children conceived by ART: ’the chicken or the egg?’. Hum Reprod Update 25: 137–158. https://doi.org/10.1093/humupd/dmz001
- Bergh C, Wennerholm UB (2020) Long-term health of children conceived after assisted reproductive technology. Ups J Med Sci 125: 152–157. https://doi.org/10.1080/03009734.2020.1729904
- Beilby KH, Kneebone E, Roseboom TJ, van Marrewijk IM, Thompson JG, Norman RJ, Robker RL, Mol BWJ, Wang R (2023) Offspring physiology following the use of IVM, IVF and ICSI: А systematic review and meta-analysis of animal studies. Hum Reprod Update 29: 272–290. https://doi.org/10.1093/humupd/dmac043 https://www.eshre.eu/ESHRE_ARTFactSheet_Nov_2023
- Graham ME, Jelin A, Hoon AH Jr, Wilms Floet AM, Levey E, Graham EM (2023) Assisted reproductive technology: Short- and long-term outcomes. Dev Med Child Neurol 65: 38–49. https://doi.org/10.1111/dmcn.15332
- Ecker DJ, Stein P, Xu Z, Williams CJ, Kopf GS, Bilker WB, Abel T, Schultz RM (2004) Long-term effects of culture of preimplantation mouse embryos on behavior. Proc Natl Acad Sci U S A 101: 1595–1600. https://doi.org/10.1073/pnas.0306846101
- Rose C, Rohl FW, Schwegler H, Hanke J, Yilmazer-Hanke DM (2006) Maternal and genetic effects on anxiety-related behavior of C3H/HeN, DBA/2J and NMRI mice in a motility-box following blastocyst transfer. Behav Genet 36: 745–762. https://doi.org/10.1007/s10519-005-9037-4
- Rose C, Schwegler H, Hanke J, Rohl FW, Yilmazer-Hanke DM (2006) Differential effects of embryo transfer and maternal factors on anxiety-related behavior and numbers of neuropeptide Y (NPY) and parvalbumin (PARV) containing neurons in the amygdala of inbred C3H/HeN and DBA/2J mice. Behav Brain Res 173: 163–168. https://doi.org/10.1016/j.bbr.2006.06.017
- Lopez-Cardona AP, Fernandez-Gonzalez R, Perez-Crespo M, Alen F, de Fonseca FR, Orio L, Gutierrez-Adan A (2015) Effects of synchronous and asynchronous embryo transfer on postnatal development, adult health, and behavior in mice. Biol Reprod 93: 85. https://doi.org/10.1095/biolreprod.115.130385
- Lerch S, Tolksdorf G, Schutz P, Brandwein C, Dormann C, Gass P, Chourbaji S (2016) Effects of embryo transfer on emotional behaviors in C57BL/6 mice. J Am Assoc Lab Anim Sci 55: 510–519.
- Qin NX, Zhao YR, Shi WH, Zhou ZY, Zou KX, Yu CJ, Liu X, Dong ZH, Mao YT, Zhou CL, Yu JL, Liu XM, Sheng JZ, Ding GL, Zhao WL, Wu YT, Huang HF (2021) Anxiety and depression-like behaviours are more frequent in aged male mice conceived by ART compared with natural conception. Reproduction 162: 437–448. https://doi.org/10.1530/REP-21-0175
- Roth G, Dicke U (2005) Evolution of the brain and intelligence. Trends Cogn Sci 9: 250–257. https://doi.org/10.1016/j.tics.2005.03.005
- Roderick TH, Wimer RE, Wimer CC, Schwartzkroin PA (1973) Genetic and phenotypic variation in weight of brain and spinal cord between inbred strains of mice. Brain Res 64: 345–353. https://doi.org/10.1016/0006-8993(73)90188-1
- Marhounova L, Kotrschal A, Kverkova K, Kolm N, Nemec P (2019) Artificial selection on brain size leads to matching changes in overall number of neurons. Evolution 73: 2003–2012. https://doi.org/10.1111/evo.13805
- Olkowicz S, Kocourek M, Lucan RK, Portes M, Fitch WT, Herculano-Houzel S, Nemec P (2016) Birds have primate-like numbers of neurons in the forebrain. Proc Natl Acad Sci U S A 113: 7255–7260. https://doi.org/10.1073/pnas.1517131113
- Le F, Lou HY, Wang QJ, Wang N, Wang LY, Li LJ, Yang XY, Zhan QT, Lou YY, Jin F (2019) Increased hepatic INSIG-SCAP-SREBP expression is associated with cholesterol metabolism disorder in assisted reproductive technology-conceived aged mice. Reprod Toxicol 84: 9–17. https://doi.org/10.1016/j.reprotox.2018.12.003
- Козенева ВС, Рожкова ИН, Брусенцев ЕЮ, Рахманова ТА, Шавшаева НА, Афанасова СГ, Лебедева ДА, Окотруб СВ, Игонина ТН, Амстиславский СЯ (2024) Репродуктивные технологии и болезнь Паркинсона: экспериментальное исследование черной субстанции мозга и моторных функций на мышах C57BL/6 И B6.Cg-Tg. Рос физиол журн им ИМ Сеченова 110. [Kozeneva VS, Rozhkova IN, Brusentsev EYu, Rakhmanova TA, Shavshaeva NA, Afanasova SG, Lebedeva DA, Okotrub SV, Igonina TN, Amstislavsky SYa (2024) Reproductive technologies and Parkinson’s disease: Еxperimental study of substantia nigra in the brain and motor functions on C57BL/6 and B6.Cg-Tg mice. Russ J Physiol 110. (In Russ)].
- Раннева СВ, Брусенцевa ЕЮ, Игонина ТН, Рагаева ДС, Рожкова ИН, Ершовa НИ, Левинсон АЛ, Амстиславский СЯ (2020) Влияние культивирования эмбрионов на онтогенез потомства у млекопитающих. Онтогенез 51: 417–439. [Ranneva SV, Brusentsev EYu, Igonina TN, Ragaeva DS, Rozhkova IN, Ershov NI, Levinson AL, Amstislavsky SYa (2020) In vitro culture of preimplantation embryos and its influence on mammalian ontogenesis. Russ J Dev Biol 51: 417–439. (In Russ)]. https://doi.org/10.31857/S0475145020060075
- Amstislavsky S, Okotrub S, Rozhkova I, Rakhmanova T, Igonina T, Brusentsev E, Kozeneva V, Lebedeva D, Omelchenko A, Okotrub K (2024) Program freezing of diapausing embryos in the mouse. Theriogenology 217: 1–10. https://doi.org/10.1016/j.theriogenology.2024.01.006
- Rinaudo P, Schultz RM (2004) Effects of embryo culture on global pattern of gene expression in preimplantation mouse embryos. Reproduction 128: 301–311. https://doi.org/10.1530/rep.1.00297
- Khotskin NV, Plyusnina AV, Kulikova EA, Bazhenova EY, Fursenko DV, Sorokin IE, Kolotygin I, Mormede P, Terenina EE, Shevelev OB, Kulikov AV (2019) On association of the lethal yellow (AY) mutation in the agouti gene with the alterations in mouse brain and behavior. Behav Brain Res 359: 446–456. https://doi.org/10.1016/j.bbr.2018.11.013
- Lee B, Sur B, Cho SG, Yeom M, Shim I, Lee H, Hahm DH (2015) Ginsenoside Rb1 rescues anxiety-like responses in a rat model of post-traumatic stress disorder. J Nat Med 70: 133–144. https://doi.org/10.1007/s11418-015-0943-3
- Williams RW (2000) Mapping genes that modulate mouse brain development: А quantitative genetic approach. Results Probl Cell Differ 30: 21–49. https://doi.org/10.1007/978-3-540-48002-0_2
- Strata F, Giritharan G, Sebastiano FD, Piane LD, Kao CN, Donjacour A, Rinaudo P (2015) Behavior and brain gene expression changes in mice exposed to preimplantation and prenatal stress. Reprod Sci 22: 23–30. https://doi.org/10.1177/1933719114557900
- Davies MJ, Rumbold AR, Moore VM (2018) Assisted reproductive technologies: A hierarchy of risks for conception, pregnancy outcomes and treatment decisions. J Dev Orig Health Dis 9: 241–246. https://doi.org/10.1017/S2040174417000757
- Reig A, Seli E (2019) The association between assisted reproductive technologies and low birth weight. Curr Opin Obstet Gynecol 31: 183–187. https://doi.org/10.1097/GCO.0000000000000535
- Faa G, Manchia M, Fanos V (2024) Assisted Reproductive Technologies: A new player in the foetal programming of childhood and adult diseases? Pediatr Rep 16: 329–338. https://doi.org/10.3390/pediatric16020029
- Qin N, Zhou Z, Zhao W, Zou K, Shi W, Yu C, Liu X, Dong Z, Mao Y, Liu X, Sheng J, Ding G, Wu Y, Huang H (2021) Abnormal glucose metabolism in male mice offspring conceived by in vitro fertilization and frozen-thawed embryo transfer. Front Cell Dev Biol 9: 637781. https://doi.org/10.3389/fcell.2021.637781
- Lopez-Tello J, Sferruzzi-Perri AN (2023) Characterization of placental endocrine function and fetal brain development in a mouse model of small for gestational age. Front Endocrinol (Lausanne) 14: 1116770. https://doi.org/10.3389/fendo.2023.1116770
- Powell TL, Barentsen K, Vaughan O, Uhlson C, Zemski Berry K, Erickson K, Faer K, Chassen SS, Jansson T (2023) Knockdown of placental major facilitator superfamily domain containing 2a in pregnant mice reduces fetal brain growth and phospholipid docosahexaenoic acid content. Nutrients 15: 4956. https://doi.org/10.3390/nu15234956
- Bloise E, Feuer SK, Rinaudo PF (2014) Comparative intrauterine development and placental function of ART concepti: Implications for human reproductive medicine and animal breeding. Hum Reprod Update 20: 822–839. https://doi.org/10.1093/humupd/dmu032
- Manna C, Lacconi V, Rizzo G, De Lorenzo A, Massimiani M (2022) Placental Dysfunction in Assisted Reproductive Pregnancies: Perinatal, Neonatal and Adult Life Outcomes. Int J Mol Sci 23: 659. https://doi.org/10.3390/ijms23020659
- Vrooman LA, Rhon-Calderon EA, Suri KV, Dahiya AK, Lan Y, Schultz RM, Bartolomei MS (2022) Placental abnormalities are associated with specific windows of embryo culture in a mouse model. Front Cell Dev Biol 10: 884088. https://doi.org/10.3389/fcell.2022.884088
- de Waal E, Mak W, Calhoun S, Stein P, Ord T, Krapp C, Coutifaris C, Schultz RM, Bartolomei MS (2014) In vitro culture increases the frequency of stochastic epigenetic errors at imprinted genes in placental tissues from mouse concepti produced through assisted reproductive technologies. Biol Reprod 90: 22. https://doi.org/10.1095/biolreprod.113.114785
- Kleijkers SH, Eijssen LM, Coonen E, Derhaag JG, Mantikou E, Jonker MJ, Mastenbroek S, Repping S, Evers JL, Dumoulin JC, van Montfoort AP (2015) Differences in gene expression profiles between human preimplantation embryos cultured in two different IVF culture media. Hum Reprod 30: 2303–2311. https://doi.org/10.1093/humrep/dev179
- Voigt MW, Schepers J, Haas J, von Bohlen Und Halbach O (2024) Reduced levels of brain-derived neurotrophic factor affect body weight, brain weight and behavior. Biology (Basel) 13: 159. https://doi.org/10.3390/biology13030159
- Вальдман ЕА, Мелкумян ДС, Середенина ТС, Яркова МА, Середенин СБ (2005) Изменения уровня BDNF в структурах головного мозга мышей С57BL/6 и BALB/с при стрессовых воздействиях. Психофармакол и биол наркол 5: 974–978. [Waldman EA, Melkumyan DS, Seredenina TS, Yarkova MA, Seredenin SB (2005) Changes in BDNF levels in the brain structures of C57BL/6 and BALB/c mice under stressful influences. Psychopharmacol and Biol Narcol 5: 974–978. (In Russ)].
- Kohno R, Sawada H, Kawamoto Y, Uemura K, Shibasaki H, Shimohama S (2004) BDNF is induced by wild-type alpha-synuclein but not by the two mutants, A30P or A53T, in glioma cell line. Biochem Biophys Res Commun 318: 113–118. https://doi.org/10.1016/j.bbrc.2004.04.012
- Yuan Y, Sun J, Zhao M, Hu J, Wang X, Du G, Chen NH (2010) Overexpression of alpha-synuclein down-regulates BDNF expression. Cell Mol Neurobiol 30: 939–946. https://doi.org/10.1007/s10571-010-9523-y
- Sandin S, Nygren KG, Iliadou A, Hultman CM, Reichenberg A (2013) Autism and mental retardation among offspring born after in vitro fertilization. JAMA 310: 75–84. https://doi.org/10.1001/jama.2013.7222
- Liu L, Gao J, He X, Cai Y, Wang L, Fan X (2017) Association between assisted reproductive technology and the risk of autism spectrum disorders in the offspring: A meta-analysis. Sci Rep 7: 46207. https://doi.org/10.1038/srep46207
- Andreadou MT, Katsaras GN, Talimtzi P, Doxani C, Zintzaras E, Stefanidis I (2021) Association of assisted reproductive technology with autism spectrum disorder in the offspring: An updated systematic review and meta-analysis. Eur J Pediatr 180: 2741–2755. https://doi.org/10.1007/s00431-021-04187-9
- Ono M, Kuji N, Ueno K, Kojima J, Nishi H (2024) The long-term outcome of children conceived through assisted reproductive technology. Reprod Sci 31: 583–590. https://doi.org/10.1007/s43032-023-01339-0
- Sonigo C, Ahdad-Yata N, Pirtea P, Solignac C, Grynberg M, Sermondade N (2024) Do IVF culture conditions have an impact on neonatal outcomes? A systematic review and meta-analysis. J Assist Reprod Genet 41: 563–580. https://doi.org/10.1007/s10815-024-03020-0
- Рожкова ИН, Окотруб СВ, Брусенцев ЕЮ, Игонина ТН, Рахманова ТА, Лебедева ДА, Яцук ТА, Козенева ВС, Напримеров ВА, Амстиславский СЯ (2023) Эффекты вспомогательных репродуктивных технологий на социальное поведение мышей линии BTBR – модели расстройств аутистического спектра. Рос физиол журн им ИМ Сеченова 109: 315–333. [Rozhkova IN, Okotrub SV, Brusentsev EY, Igonina TN, Rakhmanova TA, Lebedeva DA, Yatsuk TA, Kozeneva VS, Naprimerov VA, Amstislavsky SYa (2023) Effects of assisted reproductive technologies on social behavior of BTBR mice, a model of autism spectrum disorders. J Evol Biochem Phys 59: 458–472. (In Russ)]. https://doi.org/10.1134/S0022093023020138
Supplementary files
