Necroptosis, Autophagy and Parthanatos in the Pathogenesis of Brain Diseases
- Authors: Golushko N.I.1,2, Martynov D.D.1,2, Lebedev A.S.1,2,3, Ilyin N.P.1,2, Galstyan D.S.1,2, Kaluev A.V.1,2,3
-
Affiliations:
- Almazov National Medical Research Center
- Saint Petersburg State University
- Sirius University of Science and Technology
- Issue: Vol 111, No 5 (2025)
- Pages: 659-692
- Section: REVIEW
- URL: https://rjeid.com/0869-8139/article/view/686244
- DOI: https://doi.org/10.31857/S0869813925050028
- EDN: https://elibrary.ru/TOCVNE
- ID: 686244
Cite item
Abstract
Necroptosis, autophagy and parthanatos are three interrelated mechanisms of programmed cell death that exert a significant impact on the health and pathology of the central nervous system. They participate in maintaining cellular homeostasis by eliminating damaged or nonfunctional cells, as well as in shaping the neuroinflammatory response. Dysregulation of these processes is associated with a range of neurological and psychiatric disorders – from neurodegeneration in Alzheimer’s and Parkinson’s diseases to depressive and schizophrenic conditions. This paper summarizes clinical and preclinical data describing the roles of necroptosis, autophagy and parthanatos in the pathogenesis of brain diseases. It also discusses experimental models that enable the study of these forms of cell death and the testing of new therapeutic approaches. A thorough understanding of the molecular mechanisms underlying these processes opens up opportunities for the development of drugs capable of simultaneously modulating multiple signaling pathways, thereby improving the prevention, diagnosis, and treatment of central nervous system disorders.
Full Text

About the authors
N. I. Golushko
Almazov National Medical Research Center; Saint Petersburg State University
Email: avkalueff@gmail.com
Russian Federation, Saint Petersburg; Saint Petersburg
D. D. Martynov
Almazov National Medical Research Center; Saint Petersburg State University
Email: avkalueff@gmail.com
Russian Federation, Saint Petersburg; Saint Petersburg
A. S. Lebedev
Almazov National Medical Research Center; Saint Petersburg State University; Sirius University of Science and Technology
Email: avkalueff@gmail.com
Russian Federation, Saint Petersburg; Saint Petersburg; Sirius Federal Territory
N. P. Ilyin
Almazov National Medical Research Center; Saint Petersburg State University
Email: avkalueff@gmail.com
Russian Federation, Saint Petersburg; Saint Petersburg
D. S. Galstyan
Almazov National Medical Research Center; Saint Petersburg State University
Email: avkalueff@gmail.com
Russian Federation, Saint Petersburg; Saint Petersburg
A. V. Kaluev
Almazov National Medical Research Center; Saint Petersburg State University; Sirius University of Science and Technology
Author for correspondence.
Email: avkalueff@gmail.com
Russian Federation, Saint Petersburg; Saint Petersburg; Sirius Federal Territory
References
- Bertheloot D, Latz E, Franklin BS (2021) Necroptosis, pyroptosis and apoptosis: An intricate game of cell death. Cell Mol Immunol 18(5): 1106–1121. https://doi.org/10.1038/s41423-020-00630-3
- Syntichaki P, Tavernarakis N (2002) Death by necrosis. EMBO Rep 3(7): 604–609. https://doi.org/10.1093/embo-reports/kvf138
- Yan J, Wan P, Choksi S, Liu Z-G (2022) Necroptosis and tumor progression. Trends Cancer 8(1): 21–27. https://doi.org/10.1016/j.trecan.2021.09.003
- Park MY, Ha SE, Vetrivel P, Kim HH, Bhosale PB, Abusaliya A, Kim GS (2021) Differences of key proteins between apoptosis and necroptosis. Biomed Res Int 2021(1): 3420168. https://doi.org/10.1155/2021/3420168
- Al-Lamki R, Lu W, Manalo P, Wang J, Warren A, Tolkovsky A, Pober J, Bradley J (2016) Tubular epithelial cells in renal clear cell carcinoma express high RIPK1/3 and show increased susceptibility to TNF receptor 1-induced necroptosis. Cell Death Dis 7(6): e2287-e. https://doi.org/10.1038/cddis.2016.184
- Grootjans S, Vanden Berghe T, Vandenabeele P (2017) Initiation and execution mechanisms of necroptosis: An overview. Cell Death Differ on 24(7): 1184–1195. https://doi.org/10.1038/cdd.2017.65
- Du J, Wang Z (2024) Regulation of RIPK1 phosphorylation: Implications for inflammation, cell death, and therapeutic interventions. Biomedicines 12(7): 1525. https://doi.org/10.3390/biomedicines12071525
- Seo J, Nam YW, Kim S, Oh D-B, Song J (2021) Necroptosis molecular mechanisms: Recent findings regarding novel necroptosis regulators. Exp Mol Med 53(6): 1007–1017. https://doi.org/10.1038/s12276-021-00634-7
- Mompeán M, Li W, Li J, Laage S, Siemer AB, Bozkurt G, Wu H, McDermott AE (2018) The structure of the necrosome RIPK1-RIPK3 core, a human hetero-amyloid signaling complex. Cell 173(5): 124412–124453.e10. https://doi.org/10.1016/j.cell.2018.03.032
- He S, Wang L, Miao L, Wang T, Du F, Zhao L, Wang X (2009) Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-α. Cell 137(6): 1100–1111. https://doi.org/10.1016/j.cell.2009.05.021
- Zhang D-W, Shao J, Lin J, Zhang N, Lu B-J, Lin S-C, Dong M-Q, Han J (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325(5938): 332–336. https://doi.org/10.1126/science.1172308
- Sun L, Wang H, Wang Z, He S, Chen S, Liao D, Wang L, Yan J, Liu W, Lei X (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148(1): 213–227. https://doi.org/10.1016/j.cell.2011.11.031
- Galluzzi L, Kepp O, Chan FK-M, Kroemer G (2017) Necroptosis: Mechanisms and relevance to disease. Annu Rev Pathol 12(1): 103–130. https://doi.org/10.1146/annurev-pathol-052016-100247
- Dillon CP, Weinlich R, Rodriguez DA, Cripps JG, Quarato G, Gurung P, Verbist KC, Brewer TL, Llambi F, Gong Y-N (2014) RIPK1 blocks early postnatal lethality mediated by caspase-8 and RIPK3. Cell 157(5): 1189–1202. https://doi.org/10.1016/j.cell.2014.04.018
- Someda M, Kuroki S, Miyachi H, Tachibana M, Yonehara S (2020) Caspase-8, receptor-interacting protein kinase 1 (RIPK1), and RIPK3 regulate retinoic acid-induced cell differentiation and necroptosis. Cell Death Differ 27(5): 1539–1553. https://doi.org/10.1038/s41418-019-0434-2
- Feoktistova M, Geserick P, Panayotova-Dimitrova D, Leverkus M (2012) Pick your poison: The Ripoptosome, a cell death platform regulating apoptosis and necroptosis. Cell cycle 11(3): 460–467. https://doi.org/10.4161/cc.11.3.19060
- Yu Z, Jiang N, Su W, Zhuo Y (2021) Necroptosis: A novel pathway in neuroinflammation. Front Pharmacol 12: 701564. https://doi.org/10.3389/fphar.2021.701564
- Cai Z, Jitkaew S, Zhao J, Chiang H-C, Choksi S, Liu J, Ward Y, Wu L-G, Liu Z-G (2014) Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat Cell Biol 16(1): 55–65. https://doi.org/10.1038/ncb2883
- Chen X, Li W, Ren J, Huang D, He W-T, Song Y, Yang C, Li W, Zheng X, Chen P (2014) Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Res 24(1): 105–121. https://doi.org/10.1038/cr.2013.171
- Gong Y, Fan Z, Luo G, Yang C, Huang Q, Fan K, Cheng H, Jin K, Ni Q, Yu X (2019) The role of necroptosis in cancer biology and therapy. Mol Cancer 18: 1–17. https://doi.org/10.1186/s12943-019-1029-8
- Tang R, Xu J, Zhang B, Liu J, Liang C, Hua J, Meng Q, Yu X, Shi S (2020) Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J Hematol Oncol 13: 1–18. https://doi.org/10.1186/s13045-020-00946-7
- Najafov A, Chen H, Yuan J (2017) Necroptosis and cancer. Trends Cancer 3(4): 294–301. https://doi.org/10.1016/j.trecan.2017.03.002
- Liu Z-G, Jiao D (2020) Necroptosis, tumor necrosis and tumorigenesis. Cell Stress 4(1): 1. https://doi.org/10.15698/cst2020.01.208
- Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 11(10): 700–714. https://doi.org/10.1038/nrm2970
- Tada K, Okazaki T, Sakon S, Kobarai T, Kurosawa K, Yamaoka S, Hashimoto H, Mak TW, Yagita H, Okumura K (2001) Critical roles of TRAF2 and TRAF5 in tumor necrosis factor-induced NF-κB activation and protection from cell death. J Biol Chem 276(39): 36530–36534. https://doi.org/10.1074/jbc.M104837200
- Zhang L, Blackwell K, Shi Z, Habelhah H (2010) The RING domain of TRAF2 plays an essential role in the inhibition of TNFα-induced cell death but not in the activation of NF-κB. J Mol Biol 396(3): 528–539. https://doi.org/10.1016/j.jmb.2010.01.008
- Alvarez SE, Harikumar KB, Hait NC, Allegood J, Strub GM, Kim EY, Maceyka M, Jiang H, Luo C, Kordula T (2010) Sphingosine-1-phosphate is a missing cofactor for the E3 ubiquitin ligase TRAF2. Nature 465(7301): 1084–1088. https://doi.org/10.1038/nature09128
- Zhang J, Kong X, Zhou C, Li L, Nie G, Li X (2014) Toll-like receptor recognition of bacteria in fish: Ligand specificity and signal pathways. Fish Shellfish Immunol 41(2): 380–388. https://doi.org/10.1016/j.fsi.2014.09.022
- Ermolaeva MA, Michallet M-C, Papadopoulou N, Utermöhlen O, Kranidioti K, Kollias G, Tschopp J, Pasparakis M (2008) Function of TRADD in tumor necrosis factor receptor 1 signaling and in TRIF-dependent inflammatory responses. Nat Immunol 9(9): 1037–1046. https://doi.org/10.1038/ni.1638
- Li H, Kobayashi M, Blonska M, You Y, Lin X (2006) Ubiquitination of RIP is required for tumor necrosis factor α-induced NF-κB activation. J Biol Chem 281(19): 13636–13643. https://doi.org/10.1074/jbc.M600620200
- O’Donnell MA, Ting AT (2012) NFκB and ubiquitination: Partners in disarming RIPK1-mediated cell death. Immunol Res 54: 214–226. https://doi.org/10.1007/s12026-012-8321-7
- Nakabayashi O, Takahashi H, Moriwaki K, Komazawa-Sakon S, Ohtake F, Murai S, Tsuchiya Y, Koyahara Y, Saeki Y, Yoshida Y (2021) MIND bomb 2 prevents RIPK1 kinase activity-dependent and-independent apoptosis through ubiquitylation of cFLIPL. Commun Biol 4(1): 80. https://doi.org/10.1038/s42003-020-01603-y
- Wang H, Meng H, Li X, Zhu K, Dong K, Mookhtiar AK, Wei H, Li Y, Sun S-C, Yuan J (2017) PELI1 functions as a dual modulator of necroptosis and apoptosis by regulating ubiquitination of RIPK1 and mRNA levels of c-FLIP. Proc Natl Acad Sci U S A 114(45): 11944–11949. https://doi.org/10.1073/pnas.1715742114
- Lork M, Verhelst K, Beyaert R (2017) CYLD, A20 and OTULIN deubiquitinases in NF-κB signaling and cell death: so similar, yet so different. Cell Death Differ 24(7): 1172–1183. https://doi.org/10.1038/cdd.2017.46
- Zhu T, Wu B-W (2024) Recognition of necroptosis: From molecular mechanisms to detection methods. Biomed Pharmacother 178: 117196. https://doi.org/10.1016/j.biopha.2024.117196
- Belizário J, Vieira-Cordeiro L, Enns S (2015) Necroptotic cell death signaling and execution pathway: lessons from knockout mice. Mediat Inflamm 2015(1): 128076. https://doi.org/10.1155/2015/128076
- Berghe TV, Vanlangenakker N, Parthoens E, Deckers W, Devos M, Festjens N, Guerin C, Brunk U, Declercq W, Vandenabeele P (2010) Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ 17(6): 922–930. https://doi.org/10.1038/cdd.2009.184
- Mizushima N, Komatsu M (2011) Autophagy: Renovation of cells and tissues. Cell 147(4): 728–741. https://doi.org/10.1016/j.cell.2011.10.026
- Nie T, Zhu L, Yang Q (2021) The classification and basic processes of autophagy. Autophagy: Biol Dis Technol Methodol: 3–16. https://doi.org/10.1007/978-981-16-2830-6_1
- Ravikumar B, Futter M, Jahreiss L, Korolchuk VI, Lichtenberg M, Luo S, Massey DC, Menzies FM, Narayanan U, Renna M (2009) Mammalian macroautophagy at a glance. J Cell Sci 122(11): 1707–1711. https://doi.org/10.1242/jcs.031773
- Mejlvang J, Olsvik H, Svenning S, Bruun J-A, Abudu YP, Larsen KB, Brech A, Hansen TE, Brenne H, Hansen T (2018) Starvation induces rapid degradation of selective autophagy receptors by endosomal microautophagy. J Cell Biol 217(10): 3640–3655. https://doi.org/10.1083/jcb.201711002
- Tooze SA, Yoshimori T (2010) The origin of the autophagosomal membrane. Nat Cell Biol 12(9): 831–835. https://doi.org/10.1038/ncb0910-831
- Lefebvre C, Legouis R, Culetto E (2018) ESCRT and autophagies: Endosomal functions and beyond. Semin Cell Dev Biol 74: 21–28. https://doi.org/10.1016/j.semcdb.2017.08.014
- Sahu R, Kaushik S, Clement CC, Cannizzo ES, Scharf B, Follenzi A, Potolicchio I, Nieves E, Cuervo AM, Santambrogio L (2011) Microautophagy of cytosolic proteins by late endosomes. Dev Cell 20(1): 131–139. https://doi.org/10.1016/j.devcel.2010.12.003
- Lamark T, Johansen T (2021) Mechanisms of selective autophagy. Annu Rev Cell Dev Biol 37(1): 143–169. https://doi.org/10.1146/annurev-cellbio-120219-035530
- Lu G, Wang Y, Shi Y, Zhang Z, Huang C, He W, Wang C, Shen HM (2022) Autophagy in health and disease: From molecular mechanisms to therapeutic target. MedComm 3(3): e150. https://doi.org/10.1002/mco2.150
- Parzych KR, Klionsky DJ (2014) An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal 20(3): 460–473. https://doi.org/10.1089/ars.2013.5371
- Tumbarello DA, Waxse BJ, Arden SD, Bright NA, Kendrick-Jones J, Buss F (2012) Autophagy receptors link myosin VI to autophagosomes to mediate Tom1-dependent autophagosome maturation and fusion with the lysosome. Nat Cell Biol 14(10): 1024–1035. https://doi.org/10.1038/ncb2589
- Yao R, Shen J (2023) Chaperone–mediated autophagy: Molecular mechanisms, biological functions, and diseases. MedComm 4(5): e347. https://doi.org/10.1002/mco2.347
- Chaudhary S, Dhiman A, Dilawari R, Chaubey GK, Talukdar S, Modanwal R, Patidar A, Malhotra H, Raje CI, Raje M (2021) Glyceraldehyde-3-Phosphate dehydrogenase facilitates macroautophagic degradation of mutant huntingtin protein aggregates. Mol Neurobiol 58(11): 5790–5798. https://doi.org/10.1007/s12035-021-02532-5
- Bandyopadhyay U, Sridhar S, Kaushik S, Kiffin R, Cuervo AM (2010) Identification of regulators of chaperone-mediated autophagy. Mol Cell 39(4): 535–547. https://doi.org/10.1016/j.molcel.2010.08.004
- Orenstein SJ, Cuervo AM (2010) Chaperone-mediated autophagy: Molecular mechanisms and physiological relevance. Semin Cell Dev Biol 21(7): 719–726. https://doi.org/10.1016/j.semcdb.2010.02.005
- Bandyopadhyay U, Cuervo AM (2008) Entering the lysosome through a transient gate by chaperone-mediated autophagy. Autophagy 4(8): 1101–1103. https://doi.org/10.4161/auto.7150
- Fatokun AA, Dawson VL, Dawson TM (2014) Parthanatos: mitochondrial–linked mechanisms and therapeutic opportunities. Br J Pharmacol 171(8): 2000–2016. https://doi.org/10.1111/bph.12416
- Andrabi SA, Dawson TM, Dawson VL (2008) Mitochondrial and nuclear cross talk in cell death: Parthanatos. Ann N Y Acad Sci 1147(1): 233–241. https://doi.org/10.1196/annals.1427.014
- Huang P, Chen G, Jin W, Mao K, Wan H, He Y (2022) Molecular mechanisms of parthanatos and its role in diverse diseases. Int J Mol Sci 23(13): 7292. https://doi.org/10.3390/ijms23137292
- Wang X, Ge P (2020) Parthanatos in the pathogenesis of nervous system diseases. Neuroscience 449: 241–250. https://doi.org/10.1016/j.neuroscience.2020.09.049
- Aki T, Funakoshi T, Uemura K (2015) Regulated necrosis and its implications in toxicology. Toxicology 333: 118–126. https://doi.org/10.1016/j.tox.2015.04.003
- Galluzzi L, Kepp O, Krautwald S, Kroemer G, Linkermann A (2014) Molecular mechanisms of regulated necrosis. Semin Cell Dev Biol 35: 24–32. https://doi.org/10.1016/j.semcdb.2014.02.006
- Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G (2019) The molecular machinery of regulated cell death. Cell Res 29(5): 347–364. https://doi.org/10.1038/s41422-019-0164-5
- Yang L, Guttman L, Dawson VL, Dawson TM (2024) Parthanatos: mechanisms, modulation, and therapeutic prospects in neurodegenerative disease and stroke. Biochem Pharmacol 228: 116174. https://doi.org/10.1016/j.bcp.2024.116174
- Wang Y, An R, Umanah GK, Park H, Nambiar K, Eacker SM, Kim B, Bao L, Harraz MM, Chang C (2016) A nuclease that mediates cell death induced by DNA damage and poly (ADP-ribose) polymerase-1. Science 354(6308): aad6872. https://doi.org/10.1126/science.aad6872
- Liu S, Luo W, Wang Y (2022) Emerging role of PARP-1 and PARthanatos in ischemic stroke. J Neurochem 160(1): 74–87. https://doi.org/10.1111/jnc.15464
- Kong D, Zhu J, Liu Q, Jiang Y, Xu L, Luo N, Zhao Z, Zhai Q, Zhang H, Zhu M (2017) Mesenchymal stem cells protect neurons against hypoxic-ischemic injury via inhibiting parthanatos, necroptosis, and apoptosis, but not autophagy. Cell Mol Neurobiol 37: 303–313. https://doi.org/10.1007/s10571-016-0370-3
- Harrision D, Gravells P, Thompson R, Bryant HE (2020) Poly (ADP-ribose) glycohydrolase (PARG) vs. poly (ADP-ribose) polymerase (PARP)-function in genome maintenance and relevance of inhibitors for anti-cancer therapy. Front Mol Biosci 7: 191. https://doi.org/10.3389/fmolb.2020.00191
- Wang H, Yu S-W, Koh DW, Lew J, Coombs C, Bowers W, Federoff HJ, Poirier GG, Dawson TM, Dawson VL (2004) Apoptosis-inducing factor substitutes for caspase executioners in NMDA-triggered excitotoxic neuronal death. J Neurosci 24(48): 10963–10973. https://doi.org/10.1523/JNEUROSCI.3461-04.2004
- Mitroshina EV, Saviuk M, Vedunova MV (2023) Necroptosis in CNS diseases: Focus on astrocytes. Front Aging Neurosci 14: 1016053. https://doi.org/10.3389/fnagi.2022.1016053
- Clemente-Suárez VJ, Redondo-Flórez L, Beltrán-Velasco AI, Ramos-Campo DJ, Belinchón-deMiguel P, Martinez-Guardado I, Dalamitros AA, Yáñez-Sepúlveda R, Martín-Rodríguez A, Tornero-Aguilera JF (2023) Mitochondria and brain disease: A comprehensive review of pathological mechanisms and therapeutic opportunities. Biomedicines 11(9): 2488. https://doi.org/10.3390/biomedicines11092488
- Akbar M, Essa MM, Daradkeh G, Abdelmegeed MA, Choi Y, Mahmood L, Song B-J (2016) Mitochondrial dysfunction and cell death in neurodegenerative diseases through nitroxidative stress. Brain Res 1637: 34–55. https://doi.org/10.1016/j.brainres.2016.02.016
- Arrázola MS, Lira M, Véliz-Valverde F, Quiroz G, Iqbal S, Eaton SL, Lamont DJ, Huerta H, Ureta G, Bernales S (2023) Necroptosis inhibition counteracts neurodegeneration, memory decline, and key hallmarks of aging, promoting brain rejuvenation. Aging Cell 22(5): e13814. https://doi.org/10.1111/acel.13814
- Thadathil N, Nicklas EH, Mohammed S, Lewis TL, Richardson A, Deepa SS (2021) Necroptosis increases with age in the brain and contributes to age-related neuroinflammation. Geroscience 43: 2345–2361. https://doi.org/10.1007/s11357-021-00448-5
- Shields DC, Haque A, Banik NL (2020) Neuroinflammatory responses of microglia in central nervous system trauma. J Cereb Blood Flow Metab 40: S25–S33. https://doi.org/10.1177/0271678X20965786
- Yuan J, Amin P, Ofengeim D (2019) Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat Rev Neurosci 20(1): 19–33. https://doi.org/10.1038/s41583-018-0093-1
- Zhao Q, Yu X, Zhang H, Liu Y, Zhang X, Wu X, Xie Q, Li M, Ying H, Zhang H (2017) RIPK3 mediates necroptosis during embryonic development and postnatal inflammation in Fadd-deficient mice. Cell Rep 19(4): 798–808. https://doi.org/10.1016/j.celrep.2017.04.011
- Royce GH, Brown-Borg HM, Deepa SS (2019) The potential role of necroptosis in inflammaging and aging. Geroscience 41(6): 795–811. https://doi.org/10.1007/s11357-019-00131-w
- Anosike NL, Adejuwon JF, Emmanuel GE, Adebayo OS, Etti-Balogun H, Nathaniel JN, Omotosho OI, Aschner M, Ijomone OM (2023) Necroptosis in the developing brain: Role in neurodevelopmental disorders. Metab Brain Dis 38(3): 831–837. https://doi.org/10.1007/s11011-023-01203-9
- Nixon RA (2007) Autophagy, amyloidogenesis and Alzheimer disease. J Cell Sci 120(23): 4081–4091. https://doi.org/10.1242/jcs.019265
- Pierone BC, Pereira CA, Garcez ML, Kaster MP (2020) Stress and signaling pathways regulating autophagy: From behavioral models to psychiatric disorders. Exp Neurol 334: 113485. https://doi.org/10.1016/j.expneurol.2020.113485
- Belgrad J, De Pace R, Fields RD (2020) Autophagy in myelinating glia. J Neurosci 40(2): 256–266. https://doi.org/10.1523/JNEUROSCI.1066-19.2019
- Bai I, Keyser C, Zhang Z, Rosolia B, Hwang J-Y, Zukin RS, Yan J (2024) Epigenetic regulation of autophagy in neuroinflammation and synaptic plasticity. Front Immunol 15: 1322842. https://doi.org/10.3389/fimmu.2024.1322842
- Rezin GT, Amboni G, Zugno AI, Quevedo J, Streck EL (2009) Mitochondrial dysfunction and psychiatric disorders. Neurochem Res 34: 1021–1029. https://doi.org/10.1007/s11064-008-9865-8
- Ochneva A, Zorkina Y, Abramova O, Pavlova O, Ushakova V, Morozova A, Zubkov E, Pavlov K, Gurina O, Chekhonin V (2022) Protein misfolding and aggregation in the brain: Common pathogenetic pathways in neurodegenerative and mental disorders. Int J Mol Sci 23(22): 14498. https://doi.org/10.3390/ijms232214498
- Gómez-Virgilio L, Silva-Lucero M-D-C, Flores-Morelos D-S, Gallardo-Nieto J, Lopez-Toledo G, Abarca-Fernandez A-M, Zacapala-Gómez A-E, Luna-Muñoz J, Montiel-Sosa F, Soto-Rojas LO (2022) Autophagy: A key regulator of homeostasis and disease: An overview of molecular mechanisms and modulators. Cells 11(15): 2262. https://doi.org/10.3390/cells11152262
- Kenney DL, Benarroch EE (2015) The autophagy-lysosomal pathway: General concepts and clinical implications. Neurology 85(7): 634–645. https://doi.org/10.1212/WNL.0000000000001860
- Metaxakis A, Ploumi C, Tavernarakis N (2018) Autophagy in age-associated neurodegeneration. Cells 7(5): 37. https://doi.org/10.3390/cells7050037
- Liang Y (2019) Emerging concepts and functions of autophagy as a regulator of synaptic components and plasticity. Cells 8(1): 34. https://doi.org/10.3390/cells8010034
- Nikoletopoulou V, Sidiropoulou K, Kallergi E, Dalezios Y, Tavernarakis N (2017) Modulation of autophagy by BDNF underlies synaptic plasticity. Cell Metab 26(1): 230–242.e5. https://doi.org/10.1016/j.cmet.2017.06.005
- Wang S, Long H, Hou L, Feng B, Ma Z, Wu Y, Zeng Y, Cai J, Zhang D-W, Zhao G (2023) The mitophagy pathway and its implications in human diseases. Signal Transduct Target Ther 8(1): 304. https://doi.org/10.1038/s41392-023-01503-7
- Sidibe DK, Kulkarni VV, Dong A, Herr JB, Vogel MC, Stempel MH, Maday S (2022) Brain-derived neurotrophic factor stimulates the retrograde pathway for axonal autophagy. J Biol Chem 298(12): 102673. https://doi.org/10.1016/j.jbc.2022.102673
- Ou-Yang P, Cai Z-Y, Zhang Z-H (2023) Molecular regulation mechanism of microglial autophagy in the pathology of Alzheimer's disease. Aging Dis 14(4): 1166. https://doi.org/10.14336/AD.2023.0106
- Xu X, Sun B, Zhao C (2023) Poly (ADP-Ribose) polymerase 1 and parthanatos in neurological diseases: From pathogenesis to therapeutic opportunities. Neurobiol Dis 106314. https://doi.org/10.1016/j.nbd.2023.106314
- Min W, Cortes U, Herceg Z, Tong W-M, Wang Z-Q (2010) Deletion of the nuclear isoform of poly (ADP-ribose) glycohydrolase (PARG) reveals its function in DNA repair, genomic stability and tumorigenesis. Carcinogenesis 31(12): 2058–2065. https://doi.org/10.1093/carcin/bgq205
- Hong S, Yi JH, Lee S, Park C-H, Ryu JH, Shin KS, Kang SJ (2019) Defective neurogenesis and schizophrenia-like behavior in PARP-1-deficient mice. Cell Death Dis 10(12): 943. https://doi.org/10.1038/s41419-019-2174-0
- Kölliker-Frers R, Udovin L, Otero-Losada M, Kobiec T, Herrera MI, Palacios J, Razzitte G, Capani F (2021) Neuroinflammation: An integrating overview of reactive‐Neuroimmune cell interactions in health and disease. Mediat Inflamm 2021(1): 9999146. https://doi.org/10.1155/2021/9999146
- Craft JM, Watterson DM, Van Eldik LJ (2005) Neuroinflammation: A potential therapeutic target. Expert Opin Ther Targets 9(5): 887–900. https://doi.org/10.1517/14728222.9.5.887
- Skoblenick K, Castellano J, Rogoza R, Dyck B, Thomas N, Gabriele J, Chong V, Mishra R (2006) Translocation of AIF in the human and rat striatum following protracted haloperidol, but not clozapine treatment. Apoptosis 11: 663–672. https://doi.org/10.1007/s10495-006-5698-6
- Zhao W, Liu Y, Xu L, He Y, Cai Z, Yu J, Zhang W, Xing C, Zhuang C, Qu Z (2022) Targeting necroptosis as a promising therapy for Alzheimer’s disease. ACS Chem Neurosci 13(12): 1697–1713. https://pubs.acs.org/doi/10.1021/acschemneuro.2c00172
- Caccamo A, Branca C, Piras IS, Ferreira E, Huentelman MJ, Liang WS, Readhead B, Dudley JT, Spangenberg EE, Green KN (2017) Necroptosis activation in Alzheimer's disease. Nat Neurosci 20(9): 1236–1246. https://doi.org/10.1038/nn.4608
- Zhang R, Song Y, Su X (2023) Necroptosis and Alzheimer’s disease: Pathogenic mechanisms and therapeutic opportunities. J Alzheimers Dis 94(s1): S367–S86. https://doi.org/10.3233/JAD-220809
- Salvadores N, Moreno-Gonzalez I, Gamez N, Quiroz G, Vegas-Gomez L, Escandón M, Jimenez S, Vitorica J, Gutierrez A, Soto C (2022) Aβ oligomers trigger necroptosis-mediated neurodegeneration via microglia activation in Alzheimer’s disease. Acta Neuropathol Commun 10(1): 31. https://doi.org/10.1186/s40478-022-01332-9
- Zou C, Mifflin L, Hu Z, Zhang T, Shan B, Wang H, Xing X, Zhu H, Adiconis X, Levin JZ (2020) Reduction of mNAT1/hNAT2 contributes to cerebral endothelial necroptosis and Aβ accumulation in Alzheimer’s disease. Cell Rep 33(10): 108447. https://doi.org/10.1016/j.celrep.2020.108447
- Jayaraman A, Htike TT, James R, Picon C, Reynolds R (2021) TNF-mediated neuroinflammation is linked to neuronal necroptosis in Alzheimer's disease hippocampus. Acta Neuropathol Commun 9: 1–21. https://doi.org/10.1186/s40478-021-01264-w
- Guo F, Liu X, Cai H, Le W (2018) Autophagy in neurodegenerative diseases: Pathogenesis and therapy. Brain Pathol 28(1): 3–13. https://doi.org/10.1111/bpa.12545
- Tung Y-T, Wang B-J, Hu M-K, Hsu W-M, Lee H, Huang W-P, Liao Y-F (2012) Autophagy: A double-edged sword in Alzheimer’s disease. J Biosci 37: 157–165. https://doi.org/10.1007/s12038-011-9176-0
- Ozcelik S, Fraser G, Castets P, Schaeffer V, Skachokova Z, Breu K, Clavaguera F, Sinnreich M, Kappos L, Goedert M (2013) Rapamycin attenuates the progression of tau pathology in P301S tau transgenic mice. PloS One 8(5): e62459. https://doi.org/10.1371/journal.pone.0062459
- Lee J-H, Yu WH, Kumar A, Lee S, Mohan PS, Peterhoff CM, Wolfe DM, Martinez-Vicente M, Massey AC, Sovak G (2010) Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 141(7): 1146–1158. https://doi.org/10.1016/j.cell.2010.05.008
- Moreau K, Fleming A, Imarisio S, Lopez Ramirez A, Mercer JL, Jimenez-Sanchez M, Bento CF, Puri C, Zavodszky E, Siddiqi F (2014) PICALM modulates autophagy activity and tau accumulation. Nat Commun 5(1): 4998. https://doi.org/10.1038/ncomms5998
- Martire S, Mosca L, d’Erme M (2015) PARP-1 involvement in neurodegeneration: A focus on Alzheimer’s and Parkinson’s diseases. Mech Ageing Dev 146: 53–64. https://doi.org/10.1016/j.mad.2015.04.001
- Abeti R, Abramov AY, Duchen MR (2011) β-amyloid activates PARP causing astrocytic metabolic failure and neuronal death. Brain 134(6): 1658–1672. https://doi.org/10.1093/brain/awr104
- Kauppinen TM, Suh SW, Higashi Y, Berman AE, Escartin C, Won SJ, Wang C, Cho S-H, Gan L, Swanson RA (2011) Poly (ADP-ribose) polymerase-1 modulates microglial responses to amyloid β. J Neuroinflammation 8: 1–17. https://doi.org/10.1186/1742-2094-8-152
- Balestrino R, Schapira AH (2020) Parkinson disease. Eur J Neurol 27(1): 27–42. https://doi.org/10.1111/ene.14108
- Callizot N, Combes M, Henriques A, Poindron P (2019) Necrosis, apoptosis, necroptosis, three modes of action of dopaminergic neuron neurotoxins. PloS One 14(4): e0215277. https://doi.org/10.1371/journal.pone.0215277
- Oñate M, Catenaccio A, Salvadores N, Saquel C, Martinez A, Moreno-Gonzalez I, Gamez N, Soto P, Soto C, Hetz C (2020) The necroptosis machinery mediates axonal degeneration in a model of Parkinson disease. Cell Death Differ 27(4): 1169–1185. https://doi.org/10.1038/s41418-019-0408-4
- Iannielli A, Bido S, Folladori L, Segnali A, Cancellieri C, Maresca A, Massimino L, Rubio A, Morabito G, Caporali L (2018) Pharmacological inhibition of necroptosis protects from dopaminergic neuronal cell death in Parkinson’s disease models. Cell Rep 22(8): 2066–2079. https://doi.org/10.1016/j.celrep.2018.01.089
- Lee Y, Kang HC, Lee BD, Lee Y-I, Kim YP, Shin J-H (2014) Poly (ADP-ribose) in the pathogenesis of Parkinson's disease. BMB reports 47(8): 424. https://pmc.ncbi.nlm.nih.gov/articles/PMC4206713/
- Wang H, Shimoji M, Yu SW, Dawson TM, Dawson VL (2003) Apoptosis inducing factor and PARP-mediated injury in the MPTP mouse model of Parkinson's disease. Ann N Y Acad Sci 991(1): 132–139. https://doi.org/10.1111/j.1749-6632.2003.tb07471.x
- Outeiro TF, Grammatopoulos TN, Altmann S, Amore A, Standaert DG, Hyman BT, Kazantsev AG (2007) Pharmacological inhibition of PARP-1 reduces α-synuclein-and MPP+-induced cytotoxicity in Parkinson’s disease in vitro models. Biochem Biophys Res Commun 357(3): 596–602. https://doi.org/10.1016/j.bbrc.2007.03.163
- Liu J, Hu H, Wu B (2021) RIPK1 inhibitor ameliorates the MPP+/MPTP-induced Parkinson’s disease through the ASK1/JNK signalling pathway. Brain Res 1757: 147310. https://doi.org/10.1016/j.brainres.2021.147310
- Kim D-Y, Leem Y-H, Park J-S, Park J-E, Park J-M, Kang JL, Kim H-S (2023) RIPK1 regulates microglial activation in lipopolysaccharide-induced neuroinflammation and MPTP-induced Parkinson’s disease mouse models. Cells 12(3): 417. https://doi.org/10.3390/cells12030417
- Motawi TM, Abdel-Nasser ZM, Shahin NN (2020) Ameliorative effect of necrosulfonamide in a rat model of Alzheimer’s disease: Targeting mixed lineage kinase domain-like protein-mediated necroptosis. ACS Chem Neurosci 11(20): 3386–3397. https://pubs.acs.org/doi/10.1021/acschemneuro.0c00516
- Leem Y-H, Kim D-Y, Park J-E, Kim H-S (2023) Necrosulfonamide exerts neuroprotective effect by inhibiting necroptosis, neuroinflammation, and α-synuclein oligomerization in a subacute MPTP mouse model of Parkinson’s disease. Sci Rep 13(1): 8783. https://doi.org/10.1038/s41598-023-35975-y
- Graff S, Petkovic S (2019) Parkinson's disease: How do highly toxic α‐Synuclein/PAR aggregates mediate neuronal cell death? Mov Disord 34(5): 683. https://doi.org/10.1002/mds.27688
- Adamczyk A, Kaźmierczak A (2009) Alpha-synuclein inhibits poly (ADP-ribose) polymerase-1 (PARP-1) activity via NO-dependent pathway. Folia Neuropathol 47(3): 247–251. https://pubmed.ncbi.nlm.nih.gov/19813144/
- Kam T-I, Mao X, Park H, Chou S-C, Karuppagounder SS, Umanah GE, Yun SP, Brahmachari S, Panicker N, Chen R (2018) Poly (ADP-ribose) drives pathologic α-synuclein neurodegeneration in Parkinson’s disease. Science 362(6414): eaat8407. https://doi.org/10.1126/science.aat8407
- Li Y-Y, Qin Z-H, Sheng R (2024) The multiple roles of autophagy in neural function and diseases. Neurosci Bull 40(3): 363–382. https://doi.org/10.1007/s12264-023-01120-y
- Tripathi MK, Rajput C, Mishra S, Rasheed MSU, Singh MP (2019) Malfunctioning of chaperone-mediated autophagy in Parkinson’s disease: Feats, Constraints, and Flaws of modulators. Neurotox Res 35: 260–270. https://doi.org/10.1007/s12640-018-9917-z
- Lu J, Wu M, Yue Z (2020) Autophagy and Parkinson’s disease. Autophagy: Biol Dis Clin Sci: 21–51. https://doi.org/10.1007/978-981-15-4272-5_2
- Paykel ES (2008) Basic concepts of depression. Dialogues Clin Neurosci 10(3): 279–289. https://doi.org/10.31887/DCNS.2008.10.3/espaykel
- Zeb S, Ye H, Liu Y, Du H-P, Guo Y, Zhu Y-M, Ni Y, Zhang H-L, Xu Y (2023) Necroptotic kinases are involved in the reduction of depression-induced astrocytes and fluoxetine’s inhibitory effects on necroptotic kinases. Front Pharmacol 13: 1060954. https://doi.org/10.3389/fphar.2022.1060954
- Xu X, Yan Y, Yang Z, Zhang T (2024) Down-regulation of RIPK3 prevents depression-like behaviors by restoring the synaptic plasticity and suppressing neuronal loss. J Affect Disord 365: 213–221. https://doi.org/10.1016/j.jad.2024.08.088
- Gong Q, Ali T, Hu Y, Gao R, Mou S, Luo Y, Yang C, Li A, Li T, Hao LL (2024) RIPK1 inhibition mitigates neuroinflammation and rescues depressive-like behaviors in a mouse model of LPS-induced depression. Cell Commun Signal 22(1): 427. https://doi.org/10.1186/s12964-024-01796-3
- Duan Y-W, Chen S-X, Li Q-Y, Zang Y (2022) Neuroimmune mechanisms underlying neuropathic pain: The potential role of TNF-α-necroptosis pathway. Int J Mol Sci 23(13): 7191. https://doi.org/10.3390/ijms23137191
- Sun Y, Chen X, Ou Z, Wang Y, Chen W, Zhao T, Liu C, Chen Y (2022) Dysmyelination by oligodendrocyte-specific ablation of Ninj2 contributes to depressive-like behaviors. Adv Sci 9(3): 2103065. https://doi.org/10.1002/advs.202103065
- Jia J, Le W (2015) Molecular network of neuronal autophagy in the pathophysiology and treatment of depression. Neurosci Bull 31: 427–434. https://doi.org/10.1007/s12264-015-1548-2
- Gassen NC, Rein T (2019) Is there a role of autophagy in depression and antidepressant action? Front Psychiatry 10: 337. https://doi.org/10.3389/fpsyt.2019.00337
- Shu X, Sun Y, Sun X, Zhou Y, Bian Y, Shu Z, Ding J, Lu M, Hu G (2019) The effect of fluoxetine on astrocyte autophagy flux and injured mitochondria clearance in a mouse model of depression. Cell Death Dis 10(8): 577. https://doi.org/10.1038/s41419-019-1813-9
- Gan H, Ma Q, Hao W, Yang N, Chen Z-S, Deng L, Chen J (2024) Targeting autophagy to counteract neuroinflammation: A novel antidepressant strategy. Pharmacol Res: 107112. https://doi.org/10.1016/j.phrs.2024.107112
- Hoseth EZ, Ueland T, Dieset I, Birnbaum R, Shin JH, Kleinman JE, Hyde TM, Mørch RH, Hope S, Lekva T (2017) A study of TNF pathway activation in schizophrenia and bipolar disorder in plasma and brain tissue. Schizophr Bull 43(4): 881–890. https://doi.org/10.1093/schbul/sbw183
- Shan B, Pan H, Najafov A, Yuan J (2018) Necroptosis in development and diseases. Genes Dev 32(5-6): 327–340. https://genesdev.cshlp.org/content/32/5-6/327.short
- Cui F, Gu S, Gu Y, Yin J, Fang C, Liu L (2021) Alteration in the mRNA expression profile of the autophagy-related mTOR pathway in schizophrenia patients treated with olanzapine. BMC psychiatry 21: 1–9. https://doi.org/10.1186/s12888-021-03394-w
- Schneider JL, Miller AM, Woesner ME (2016) Autophagy and schizophrenia: a closer look at how dysregulation of neuronal cell homeostasis influences the pathogenesis of schizophrenia. EJBM 31(1–2): 34. https://pmc.ncbi.nlm.nih.gov/articles/PMC5321090/
- Tan Y, Zhu J, Hashimoto K (2024) Autophagy-related gene model as a novel risk factor for schizophrenia. Transl Psychiatry 14(1): 94. https://doi.org/10.1038/s41398-024-02767-5
- Bernstein H-G, Keilhoff G, Dobrowolny H, Steiner J (2020) Enhanced mitochondrial autophagy (mitophagy) in oligodendrocytes might play a role in white matter pathology in schizophrenia. Med Hypotheses 134: 109443. https://doi.org/10.1016/j.mehy.2019.109443
- Vucicevic L, Misirkic-Marjanovic M, Paunovic V, Kravic-Stevovic T, Martinovic T, Ciric D, Maric N, Petricevic S, Harhaji-Trajkovic L, Bumbasirevic V (2014) Autophagy inhibition uncovers the neurotoxic action of the antipsychotic drug olanzapine. Autophagy 10(12): 2362–2378. https://doi.org/10.4161/15548627.2014.984270
- Park H, Kam T-I, Dawson TM, Dawson VL (2020) Poly (ADP-ribose)(PAR)-dependent cell death in neurodegenerative diseases. Int Rev Cell Mol Biol 353: 1–29. https://doi.org/10.1016/bs.ircmb.2019.12.009
- Balusu S, De Strooper B (2024) The necroptosis cell death pathway drives neurodegeneration in Alzheimer’s disease. Acta Neuropathol 147(1): 96. https://doi.org/10.1007/s00401-024-02747-5
- Li R, Yang L, Lindholm K, Konishi Y, Yue X, Hampel H, Zhang D, Shen Y (2004) Tumor necrosis factor death receptor signaling cascade is required for amyloid-β protein-induced neuron death. J Neurosci 24(7): 1760–1771. https://doi.org/10.1523/JNEUROSCI.4580-03.2004
- Dhuriya YK, Sharma D (2018) Necroptosis: A regulated inflammatory mode of cell death. J Neuroinflammation 15: 1–9. https://doi.org/10.1186/s12974-018-1235-0
- Chen X-Y, Dai Y-H, Wan X-X, Hu X-M, Zhao W-J, Ban X-X, Wan H, Huang K, Zhang Q, Xiong K (2022) ZBP1-mediated necroptosis: mechanisms and therapeutic implications. Molecules 28(1): 52. https://doi.org/10.3390/molecules28010052
- Dai W, Jiang L (2019) Dysregulated mitochondrial dynamics and metabolism in obesity, diabetes, and cancer. Front Endocrinol 10: 570. https://doi.org/10.3389/fendo.2019.00570
- Araki T, Milbrandt J (2000) Ninjurin2, a novel homophilic adhesion molecule, is expressed in mature sensory and enteric neurons and promotes neurite outgrowth. J Neurosci 20(1): 187–195. https://doi.org/10.1523/JNEUROSCI.20-01-00187.2000
- Bonam SR, Ruff M, Muller S (2019) HSPA8/HSC70 in immune disorders: A molecular rheostat that adjusts chaperone-mediated autophagy substrates. Cells 8(8): 849. https://doi.org/10.3390/cells8080849
- Kaushik S, Cuervo AM (2018) The coming of age of chaperone-mediated autophagy. Nat Rev Mol Cell Biol 19(6): 365–381. https://doi.org/10.1038/s41580-018-0001-6
- Dai L, Liu M, Ke W, Chen L, Fang X, Zhang Z (2024) Lysosomal dysfunction in α-synuclein pathology: Molecular mechanisms and therapeutic strategies. Cell Mol Life Sci 81(1): 382. https://doi.org/10.1007/s00018-024-05419-5
- Hale AN, Ledbetter DJ, Gawriluk TR, Rucker I, Edmund B (2013) Autophagy: Regulation and role in development. Autophagy 9(7): 951–972. https://doi.org/10.4161/auto.24273
- Xu W, Tan L, Yu J-T (2015) The role of PICALM in Alzheimer’s disease. Mol Neurobiol 52(1): 399–413. https://doi.org/10.1007/s12035-014-8878-3
- Zhu C, Herbst S, Lewis PA (2023) Leucine-rich repeat kinase 2 at a glance. J Cell Sci 136(17): jcs259724. https://doi.org/10.1242/jcs.259724
- Recuero S, Delgado-Bermúdez A, Mateo-Otero Y, Garcia-Bonavila E, Llavanera M, Yeste M (2021) Parkinson disease protein 7 (PARK7) is related to the ability of mammalian sperm to undergo in vitro capacitation. Int J Mol Sci 22(19): 10804. https://doi.org/10.3390/ijms221910804
- Murata MM, Kong X, Moncada E, Chen Y, Imamura H, Wang P, Berns MW, Yokomori K, Digman MA (2019) NAD+ consumption by PARP1 in response to DNA damage triggers metabolic shift critical for damaged cell survival. Mol Biol Cell 30(20): 2584–2597. https://doi.org/10.1091/mbc.E18-10-0650
- Batnasan E, Wang R, Wen J, Ke Y, Li X, Bohio AA, Zeng X, Huo H, Han L, Boldogh I (2015) 17-beta estradiol inhibits oxidative stress-induced accumulation of AIF into nucleolus and PARP1-dependent cell death via estrogen receptor alpha. Toxicol Lett 232(1): 1–9. https://doi.org/10.1016/j.toxlet.2014.09.024
- Wang Y, Dawson VL, Dawson TM (2009) Poly (ADP-ribose) signals to mitochondrial AIF: A key event in parthanatos. Exp Neurol 218(2): 193–202. https://doi.org/10.1016/j.expneurol.2009.03.020
- Moujalled D, Strasser A, Liddell JR (2021) Molecular mechanisms of cell death in neurological diseases. Cell Death Differ 28(7): 2029–2044. https://doi.org/10.1038/s41418-021-00814-y
- Dawson TM, Golde TE, Lagier-Tourenne C (2018) Animal models of neurodegenerative diseases. Nat Neurosci 21(10): 1370–1379. https://doi.org/10.1038/s41593-018-0236-8
- Albanese S, Greco A, Auletta L, Mancini M (2018) Mouse models of neurodegenerative disease: Preclinical imaging and neurovascular component. Brain Imaging Behav 12(4): 1160–1196. https://doi.org/10.1007/s11682-017-9770-3
- Semple BD, Blomgren K, Gimlin K, Ferriero DM, Noble-Haeusslein LJ (2013) Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Prog Neurobiol 106: 1–16. https://doi.org/10.1016/j.pneurobio.2013.04.001
- Italia M, Forastieri C, Longaretti A, Battaglioli E, Rusconi F (2020) Rationale, relevance, and limits of stress-induced psychopathology in rodents as models for psychiatry research: An introductory overview. Int J Mol Sci 21(20): 7455. https://doi.org/10.3390/ijms21207455
- Selvarani R, Van Michelle Nguyen H, Thadathil N, Wolf RF, Freeman WM, Wiley CD, Deepa SS, Richardson A (2023) Characterization of novel mouse models to study the role of necroptosis in aging and age-related diseases. GeroScience 45(6): 3241–3256. https://doi.org/10.1007/s11357-023-00955-7
- Su Z, Yang Z, Xu Y, Chen Y, Yu Q (2015) Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer 14: 1–14. https://doi.org/10.1186/s12943-015-0321-5
- Yue Z, Holstein GR, Chait BT, Wang QJ (2009) Using genetic mouse models to study the biology and pathology of autophagy in the central nervous system. Methods Enzymol 453: 159–180. https://doi.org/10.1016/S0076-6879(08)04008-1
- Wang Y-Q, Wang L, Zhang M-Y, Wang T, Bao H-J, Liu W-L, Dai D-K, Zhang L, Chang P, Dong W-W (2012) Necrostatin-1 suppresses autophagy and apoptosis in mice traumatic brain injury model. Neurochem Res 37: 1849–1858. https://doi.org/10.1007/s11064-012-0791-4
- Sun Y, Islam S, Michikawa M, Zou K (2024) Presenilin: A Multi-Functional Molecule in the Pathogenesis of Alzheimer’s Disease and Other Neurodegenerative Diseases. Int J Mol Sci 25(3): 1757. https://doi.org/10.3390/ijms25031757
- Wahl D, Coogan SC, Solon-Biet SM, De Cabo R, Haran JB, Raubenheimer D, Cogger VC, Mattson MP, Simpson SJ, Le Couteur DG (2017) Cognitive and behavioral evaluation of nutritional interventions in rodent models of brain aging and dementia. Clin Interv Aging 12: 1419–1428. https://doi.org/10.2147/CIA.S145247
- Keller PJ (2013) In vivo imaging of zebrafish embryogenesis. Methods 62(3): 268–278. https://doi.org/10.1016/j.ymeth.2013.03.015
- Jontes JD, Emond MR (2012) Fluorescence imaging of transgenic zebrafish embryos. Cold Spring Harb Protoc prot069245. https://doi.org/10.1101/pdb.top069237
- Kaizuka T, Morishita H, Hama Y, Tsukamoto S, Matsui T, Toyota Y, Kodama A, Ishihara T, Mizushima T, Mizushima N (2016) An autophagic flux probe that releases an internal control. Mol Cell 64(4): 835–849. https://doi.org/10.1016/j.molcel.2016.09.037
- Cui J, Sim TH-F, Gong Z, Shen H-M (2012) Generation of transgenic zebrafish with liver-specific expression of EGFP-Lc3: A new in vivo model for investigation of liver autophagy. Biochem Biophys Res Commun 422(2): 268–273. https://doi.org/10.1016/j.bbrc.2012.04.145
- Shkarina K, Hasel de Carvalho E, Santos JC, Ramos S, Leptin M, Broz P (2022) Optogenetic activators of apoptosis, necroptosis, and pyroptosis. J Cell Biol 221(6): e202109038. https://doi.org/10.1083/jcb.202109038
- Eimon PM (2014) Studying apoptosis in the zebrafish. Methods Enzymol 545: 395–431. https://doi.org/10.1016/B978-0-12-417158-9.00016-9
- Burggren W, Abramova R, Bautista NM, Fritsche Danielson R, Dubansky B, Gupta A, Hansson K, Iyer N, Jagadeeswaran P, Jennbacken K (2024) A larval zebrafish model of cardiac physiological recovery following cardiac arrest and myocardial hypoxic damage. Biol Open 13(9): bio.060230. https://doi.org/10.1242/bio.060230
- Zeng C-W, Sheu J-C, Tsai H-J (2020) The neuronal regeneration of adult zebrafish after spinal cord injury is enhanced by transplanting optimized number of neural progenitor cells. Cell Transplant 29: 0963689720903679. https://doi.org/10.1177/0963689720903679
- Hu X-M, Li Z-X, Lin R-H, Shan J-Q, Yu Q-W, Wang R-X, Liao L-S, Yan W-T, Wang Z, Shang L (2021) Guidelines for regulated cell death assays: A systematic summary, a categorical comparison, a prospective. Front Cell Dev Biol 9: 634690. https://doi.org/10.3389/fcell.2021.634690
- Kist M, Vucic D (2021) Cell death pathways: Intricate connections and disease implications. EMBO J 40(5): e106700. https://doi.org/10.15252/embj.2020106700
- Stoica BA, Faden AI (2010) Programmed neuronal cell death mechanisms in CNS injury. Acute Neuronal Injury: 169–200. https://doi.org/10.1007/978-0-387-73226-8_12
- Martin LJ (2001) Neuronal cell death in nervous system development, disease, and injury. Int J Mol Med 7(5): 455–478. https://doi.org/10.3892/ijmm.7.5.455
- Button RW, Luo S, Rubinsztein DC (2015) Autophagic activity in neuronal cell death. Neurosci Bull 31: 382–394. https://doi.org/10.1007/s12264-015-1528-y
- Aggarwal S, Mannam P, Zhang J (2016) Differential regulation of autophagy and mitophagy in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 311(2): L433–L452. https://doi.org/10.1152/ajplung.00128.2016
- Chen SH, Oyarzabal EA, Sung YF, Chu CH, Wang Q, Chen SL, Lu RB, Hong JS (2015) Microglial regulation of immunological and neuroprotective functions of astroglia. Glia 63(1): 118–131. https://doi.org/10.1002/glia.22738
- Kotova M, Apukhtin K, Nikitin S, Kalueff A (2024) Revisiting Functional Heterogeneity of Microglia and Astroglia. J Evol Biochem Physiol 60(6): 2172–2190. https://doi.org/10.1134/S0022093024060036
- Alam Q, Zubair Alam M, Mushtaq G, A Damanhouri G, Rasool M, Amjad Kamal M, Haque A (2016) Inflammatory process in Alzheimer’s and Parkinson's diseases: central role of cytokines. Curr Pharm Des 22(5): 541–548. https://doi.org/10.2174/1381612822666151125000300
- Kumar V (2019) Toll-like receptors in the pathogenesis of neuroinflammation. J Neuroimmunol 332: 16–30. https://doi.org/10.1016/j.jneuroim.2019.03.012
- Scarpitta A, Hacker UT, Büning H, Boyer O, Adriouch S (2021) Pyroptotic and necroptotic cell death in the tumor microenvironment and their potential to stimulate anti-tumor immune responses. Front Oncol 11: 731598. https://doi.org/10.3389/fonc.2021.731598
- Liu L, Li J, Ke Y, Zeng X, Gao J, Ba X, Wang R (2022) The key players of parthanatos: opportunities for targeting multiple levels in the therapy of parthanatos-based pathogenesis. Cell Mol Life Sci 79: 1–15. https://doi.org/10.1007/s00018-021-04109-w
- Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140(6): 918–934. https://doi.org/10.1016/j.cell.2010.02.016
- Kempuraj D, Thangavel R, Selvakumar GP, Zaheer S, Ahmed ME, Raikwar SP, Zahoor H, Saeed D, Natteru PA, Iyer S (2017) Brain and peripheral atypical inflammatory mediators potentiate neuroinflammation and neurodegeneration. Front Cell Neurosci 11: 216. https://doi.org/10.3389/fncel.2017.00216
- Murta V, Farías MI, Pitossi FJ, Ferrari CC (2015) Chronic systemic IL-1β exacerbates central neuroinflammation independently of the blood–brain barrier integrity. J Neuroimmunol 278: 30–43. https://doi.org/10.1016/j.jneuroim.2014.11.023
- Ek M, Engblom D, Saha S, Blomqvist A, Jakobsson P-J, Ericsson-Dahlstrand A (2001) Pathway across the blood–brain barrier. Nature 410(6827): 430–431. https://doi.org/10.1038/35068632
- Fedele M, Gualillo O, Vecchione A (2011) Animal models of human pathology. J Biomed Biotech 2011. https://doi.org/10.1155/2011/764618
- Yan L, Shi J, Zhu J (2024) Cellular and molecular events in colorectal cancer: Biological mechanisms, cell death pathways, drug resistance and signalling network interactions. Discover Oncol 15(1): 294. https://doi.org/10.1007/s12672-024-01163-1
- Santagostino SF, Assenmacher C-A, Tarrant JC, Adedeji AO, Radaelli E (2021) Mechanisms of regulated cell death: current perspectives. Vet Pathol 58(4): 596–623. https://doi.org/10.1177/03009858211005537
- Radogna F, Dicato M, Diederich M (2015) Cancer-type-specific crosstalk between autophagy, necroptosis and apoptosis as a pharmacological target. Biochem Pharmacol 94(1): 1–11. https://doi.org/10.1016/j.bcp.2014.12.018
- Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N (2013) Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta Mol Cell Res 1833(12): 3448–3459. https://doi.org/10.1016/j.bbamcr.2013.06.001
- Jain V, Singh MP, Amaravadi RK (2023) Recent advances in targeting autophagy in cancer. Trends Pharmacol Sci 44(5): 290–302. https://doi.org/10.1016/j.tips.2023.02.003
- Kovacs GG (2016) Molecular pathological classification of neurodegenerative diseases: Turning towards precision medicine. Int J Mol Sci 17(2): 189. https://doi.org/10.3390/ijms17020189
- Wamsley B, Geschwind DH (2020) Functional genomics links genetic origins to pathophysiology in neurodegenerative and neuropsychiatric disease. Curr Opin Genet Dev 65: 117–125. https://doi.org/10.1016/j.gde.2020.05.032
- Ye K, Chen Z, Xu Y (2023) The double-edged functions of necroptosis. Cell Death Dis 14(2): 163. https://doi.org/10.1038/s41419-023-05691-6
- Khoury MK, Gupta K, Franco SR, Liu B (2020) Necroptosis in the pathophysiology of disease. Am J Pathol 190(2): 272–285. https://doi.org/10.1016/j.ajpath.2019.10.012
- Xu B, Fang J, Wang J, Jin X, Liu S, Song K, Wang P, Liu J, Liu S (2023) Inhibition of autophagy and RIP1/RIP3/MLKL-mediated necroptosis by edaravone attenuates blood spinal cord barrier disruption following spinal cord injury. Biomed Pharmacother 165: 115165. https://doi.org/10.1016/j.biopha.2023.115165
- Degterev A, Ofengeim D, Yuan J (2019) Targeting RIPK1 for the treatment of human diseases. Proc Natl Acad Sci USA 116(20): 9714–9722. https://doi.org/10.1073/pnas.1901179116
- Mishra J, Bhatti GK, Sehrawat A, Singh C, Singh A, Reddy AP, Reddy PH, Bhatti JS (2022) Modulating autophagy and mitophagy as a promising therapeutic approach in neurodegenerative disorders. Life Sci 311: 121153. https://doi.org/10.1016/j.lfs.2022.121153
- He S, Huang S, Shen Z (2016) Biomarkers for the detection of necroptosis. Cell Mol Life Sci 73: 2177–2181. https://doi.org/10.1007/s00018-016-2192-3
- Chiou S, Al-Ani AH, Pan Y, Patel KM, Kong IY, Whitehead LW, Light A, Young SN, Barrios M, Sargeant C (2024) An immunohistochemical atlas of necroptotic pathway expression. EMBO Mol Med: 1–33. https://doi.org/10.1038/s44321-024-00074-6
- Sepand MR, Ranjbar S, Kempson IM, Akbariani M, Muganda WCA, Müller M, Ghahremani MH, Raoufi M (2020) Targeting non-apoptotic cell death in cancer treatment by nanomaterials: recent advances and future outlook. Nanomedicine 29: 102243. https://doi.org/10.1016/j.nano.2020.102243
- Lin YX, Wang Y, Wang H (2017) Recent advances in nanotechnology for autophagy detection. Small 13(33): 1700996. https://doi.org/10.1002/smll.201700996
- Tweedie-Cullen RY, Reck JM, Mansuy IM (2009) Comprehensive mapping of post-translational modifications on synaptic, nuclear, and histone proteins in the adult mouse brain. J Proteome Res 8(11): 4966–4982. https://doi.org/10.1021/pr9003739
- Ramazi S, Allahverdi A, Zahiri J (2020) Evaluation of post-translational modifications in histone proteins: A review on histone modification defects in developmental and neurological disorders. J Biosci 45(1): 135. https://doi.org/10.1007/s12038-020-00099-2
- Virág L, Robaszkiewicz A, Rodriguez-Vargas JM, Oliver FJ (2013) Poly (ADP-ribose) signaling in cell death. Mol Asp Med 34(6): 1153–1167. https://doi.org/10.1016/j.mam.2013.01.007
- Bray SJ (2006) Notch signalling: A simple pathway becomes complex. Nat Rev Mol Cell Biol 7(9): 678–689. https://doi.org/10.1038/nrm2009
- Lorzadeh S, Kohan L, Ghavami S, Azarpira N (2021) Autophagy and the Wnt signaling pathway: A focus on Wnt/β-catenin signaling. Biochim Biophys Acta Mol Cell Res 1868(3): 118926. https://doi.org/10.1016/j.bbamcr.2020.118926
Supplementary files
