Use of Metabolic Inert Mycobacterium abscessus Cells to Study the Efficiency Of Drugs
- Autores: Martini B.A.1, Salina E.G.1,2
- 
							Afiliações: 
							- A.N. Bach Institute of Biochemistry, Research Center of Biotechnologies Russian Academy of Sciences
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
 
- Edição: Volume 59, Nº 6 (2023)
- Páginas: 599-604
- Seção: Articles
- URL: https://rjeid.com/0555-1099/article/view/674590
- DOI: https://doi.org/10.31857/S0555109923060089
- EDN: https://elibrary.ru/CKTHEU
- ID: 674590
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
We investigated the effectiveness of antibiotics (amikacin, bedaquiline, linezolid, moxifloxacin, rifampicin) on metabolically inert M. abscessus obtained under conditions of potassium deficiency in vitro. It was found that bedaquiline led to a significant decrease in the ability of bacteria to form colonies on solid media, but did not lead to their death, since it was shown that during cultivation in a liquid medium, they reverted to a state of active division and growth. Moxifloxacin had a bactericidal effect against metabolically inert bacteria, irreversibly and significantly reducing the number of viable cells in culture, which emphasizes the effectiveness of its use for the treatment of infections caused by M. abscessus.
Palavras-chave
Sobre autores
B. Martini
A.N. Bach Institute of Biochemistry, Research Center of Biotechnologies Russian Academy of Sciences
														Email: elenasalina@yandex.ru
				                					                																			                												                								Russia, 119071, Moscow						
E. Salina
A.N. Bach Institute of Biochemistry, Research Center of Biotechnologies Russian Academy of Sciences; Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: elenasalina@yandex.ru
				                					                																			                												                								Russia, 119071, Moscow; Russia, 117997, Moscow						
Bibliografia
- Johansen M.D., Herrmann J.L., Kremer L. // Nat. Rev. Microbiol. 2020. V. 18. № 1. P. 392–407. https://doi.org/10.1038/s41579-020-0331-1
- Recchia D., Stelitano G., Stamilla A., Gutierrez D.L., Degiacomi G., Chiarelli L.R., Pasca M.R. // Int. J. Mol. Sci. 2023. V. 24. № 5. P. 4635. https://doi.org/10.3390/ijms24054635
- Sepulcri C., Vena A., Bassetti M. // Curr. Opin. Infect. Dis. 2023. V. 36. № 2. P. 74–80. https://doi.org/10.1097/QCO.0000000000000905
- Berube B.J., Castro L., Russell D., Ovechkina Y., Parish T. // Front Microbiol. 2018. V. 9. P. 2417. https://doi.org/10.3389/fmicb.2018.02417
- Yam Y.K., Alvarez N., Go M.L., Dick T. // Front Microbiol. 2020. V. 11. P. 359. https://doi.org/10.3389/fmicb.2020.00359
- Shleeva M., Mukamolova G.V., Young M., Williams H.D., Kaprelyants A.S. // Microbiology. 2004. V. 150. P. 1687–1697. https://doi.org/10.1099/mic.0.26893-0
- Salina E.G., Waddell S.J., Hoffmann N., Rosenkrands I., Butcher P.D., Kaprelyants A.S. // Open Biol. 2014. V. 4. P. 140106. https://doi.org/10.1098/rsob.140106
- Connell N. // Methods Cell Biol. 1994. V. 45 P. 107–125. https://doi.org/10.1016/s0091-679x(08)61848-8
- Shleeva M.O., Kudykina Y.K., Vostroknutova G.N., Suzina N.E., Mulyukin A.L., Kaprelyants A.S. // Tuberculosis (Edinb). 2011. V. 91. P. 146–154. https://doi.org/10.1016/j.tube.2010.12.006
- de Man J.C. // J. Appl. Microbiol. 1975. V. 1. P. 67–78. https://doi.org/10.1007/BF01880621
- Palomino J.C., Martin A., Camacho M., Guerra H., Swings J., Portaels F. // Antimicrob. Agents Chemother. 2002. V. 46. № 8. P. 2720–2722. https://doi.org/10.1128/AAC.46.8.2720-2722.2002
- Coban A.Y., Deveci A., Sunter A.T., Palomino J.C., Martin A. // Int J Mycobacteriol. 2014. V. 3. № 4. P. 230–241. https://doi.org/10.1016/j.ijmyco.2014.09.002
- Performance Standards for Antimicrobial Susceptibility Testing. // Clinical and Laboratiry Standard Institute Wayne, V. 27(1). 17th Information Supplement.
- Myers A. // J. Biol. Educ. 1990. V. 24. № 2. P. 123–127. https://doi.org/10.1080/00219266.1990.9655123
- Salina E., Ryabova O., Kaprelyants A., Makarov V. // Antimicrob. Agents Chemother. 2014. V.58. № 1. P. 55–60. https://doi.org/10.1128/AAC.01308-13
- Hurst-Hess K.R., Saxena A., Rudra P., Yang Y., Ghosh P. // Mol. Cell. 2022. V.82. № 17. P. 3166–3177. https://doi.org/10.1016/j.molcel.2022.06.034
- Vesenbeckh S., Schönfeld N., Roth A., Bettermann G., Krieger D., Bauer T.T., Rüssmann H., Mauch H. // Eur. Respir. J. 2017. V. 49. № 5. P. 1700083. https://doi.org/10.1183/13993003.00083-2017
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 

