Oxidative Damage and Antioxidant Response of Acinetobacter calcoaceticus, Pseudomonas putida and Rhodococcus erythropolis Bacteria during Antibiotic Treatment
- Autores: Sazykin I.S.1, Plotnikov A.A.1, Lanovaya O.D.1, Onasenko K.A.1, Polinichenko A.E.1, Mezga A.S.1, Azhogina T.N.1, Litsevich A.R.1, Sazykina M.A.1
- 
							Afiliações: 
							- Southern Federal University
 
- Edição: Volume 60, Nº 1 (2024)
- Páginas: 39-47
- Seção: Articles
- URL: https://rjeid.com/0555-1099/article/view/674573
- DOI: https://doi.org/10.31857/S0555109924010049
- EDN: https://elibrary.ru/HCUPXZ
- ID: 674573
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
In this work, oxidative damage and the level of antioxidant response in Acinetobacter calcoaceticus, Pseudomonas putida, and Rhodococcus erythropolis cells under the influence of such antibiotics as ampicillin, azithromycin, rifampicin, tetracycline, and ceftriaxone were studied. The level of protein carboxylation and lipid peroxidation (LPO), as well as the activity of superoxide dismutase (SOD), catalase, glutathione reductase (GR), and the level of glutathione 3 and 6 hours after antibiotic treatment of bacteria were assessed. It is observed that SOD induction occurs earlier and is more active than catalase induction. In A. calcoaceticus, SOD is induced together with protein carboxylation and probably protects them from oxidative damage, while catalase induction correlates with LPO. A positive correlation is also noted between catalase activity and glutathione content in R. erythropolis. Catalase activity increases insignificantly and even decreases under the studied antibiotics influence, which is associated with an insignificant level of lipid peroxidation in most prokaryotes. On the other hand, low catalase activity can contribute to genome destabilization as a result of oxidative stress and enhance the adaptive evolution of bacteria.
Texto integral
 
												
	                        Sobre autores
I. Sazykin
Southern Federal University
														Email: samara@sfedu.ru
				                					                																			                												                	Rússia, 							Rostov-on-Don, 344090						
A. Plotnikov
Southern Federal University
														Email: samara@sfedu.ru
				                					                																			                												                	Rússia, 							Rostov-on-Don, 344090						
O. Lanovaya
Southern Federal University
														Email: samara@sfedu.ru
				                					                																			                												                	Rússia, 							Rostov-on-Don, 344090						
K. Onasenko
Southern Federal University
														Email: samara@sfedu.ru
				                					                																			                												                	Rússia, 							Rostov-on-Don, 344090						
A. Polinichenko
Southern Federal University
														Email: samara@sfedu.ru
				                					                																			                												                	Rússia, 							Rostov-on-Don, 344090						
A. Mezga
Southern Federal University
														Email: samara@sfedu.ru
				                					                																			                												                	Rússia, 							Rostov-on-Don, 344090						
T. Azhogina
Southern Federal University
														Email: samara@sfedu.ru
				                					                																			                												                	Rússia, 							Rostov-on-Don, 344090						
A. Litsevich
Southern Federal University
														Email: samara@sfedu.ru
				                					                																			                												                	Rússia, 							Rostov-on-Don, 344090						
M. Sazykina
Southern Federal University
							Autor responsável pela correspondência
							Email: samara@sfedu.ru
				                					                																			                												                	Rússia, 							Rostov-on-Don, 344090						
Bibliografia
- Yoneyama H., Katsumata R. // Biosci. Biotechnol. Biochem. 2006. V. 70. № 5. P. 1060–1075.
- Фурман Ю.В., Артюшкова Е. Б., Аниканов А. В. // Актуальные проблемы социально-гуманитарного и научно-технического знания. 2019. № 1. С. 1–3.
- Пескин А.В. // Биохимия. 1997. Т. 62. № 12. С. 1571–1578.
- Imlay J.A. // Cur. Opin. Microbiol. 2015. V. 24. P. 124–131.
- Sazykin I.S., Sazykina M. A. // Gene. 2023. V. 857. P. 147170. https://doi.org/10.1016/j.gene.2023.147170
- Goyal A. // iScience. 2022. V. 25. № 5. P. 104312.
- Levine R.L., Garland D., Oliver C. N., Amici A., Climent I., Lenz A. G. et al. // Methods Enzymol. 1990. V. 186. P. 464–478.
- Дубинина Е.Е., Бурмистров С. О., Ходов Д. А., Поротов Г. Е. // Вопросы медицинской химии. 1995. Т. 41. № 1. С. 24–26.
- Стальная И.Д., Гаришвили Т. Г. // Современные методы в биохимии. 1977. Т. 2. № 3. С. 66–68.
- Королюк М. А., Иванова Л. К., Майорова И. Г., Токарева В. А. //Лабораторное дело. 1988. № 4. С. 44–47.
- Сирота Т.В. // Вопросы медицинской химии. 1999. Т. 45. № 3. С. 263–272.
- Ellman G.L. // Arch. Biochem. Biophys. 1959. V. 82. № 1. P. 70–77.
- Юсупова Л.Б. // Лабораторное дело. 1989. Т. 4. № 19–21. С. 13.
- Wanarska E., Mielko K. A., Maliszewska I., Młynarz P. // Sci. Rep. 2022. V. 12. № 1. P. 1913.
- Shin B., Park C., Park W. //Appl. Microbiol. Biotechnol. 2020. Т. 104. С. 1423–1435.
- Belenky P., Ye J. D., Porter C. B., Cohen N. R., Lobritz M. A., Ferrante T. et al. // Cell Rep. 2015. V. 13. № 5. P. 968–980.
- Brogden R.N., Ward A. // Drugs. 1988. V. 35. № 6. P. 604–645.
- Постникова Л.Б., Соодаева С. К., Климанов И. А., Кубышева Н. И., Афиногенов К. И., Глухова М. В., Никитина Л. Ю. // Пульмонология. 2017. V. 27. № 5. P. 664–671.
- Куликова Н. А. // Международный студенческий научный вестник. 2017. № 4–5. С. 614–615.
- Weimer A., Kohlstedt M., Volke D. C., Nikel P. I., Wittmann C. // Appl. Microbiol. Biotechnol. 2020. V. 104. P. 7745–7766.S
- Nikel P. I., Fuhrer T., Chavarría M., Sánchez-Pascuala A., Sauer U., de Lorenzo V. // ISME J. 2021. V. 15. № 6. P. 1751–1766.
- Van Acker H., Gielis J., Acke M., Cools F., Cos P., Coenye T. // PloS One. 2016. V. 11. № 7. e0159837. https://doi.org/10.1371/journal.pone.0159837
- Pátek M., Grulich M., Nešvera J. // Biotechnol. Adv. 2021. V. 53. P. 107698.
- Urbano S. B., Di Capua C., Cortez N., Farías M. E., Alvarez H. M. // Extremophiles. 2014. V. 18. P. 375–384.
- Meireles A., Faia S., Giaouris E., Simões M. // Biofouling. 2018. V. 34. № 10. P. 1150–1160.
- Ren X., Zou L., Holmgren A. // Curr. Med. Chem. 2020. V. 27. № 12. P. 1922–1939. https://doi.org/10.2174/0929867326666191007163654
- Cleeland R., Squires E. // Am. J. Med. 1984. V. 77. (4C). P. 3–11.
- Mourenza Á., Gil J. A., Mateos L. M., Letek M. // Antioxidants. 2020. V. 9. № 5. P. 361.
- Aguilera J., Rautenberger R. // Oxidative Stress in Aquatic Ecosystems. 2011. P. 58–71. https://doi.org/10.1002/9781444345988.ch4
- Martins D., McKay G., Sampathkumar G., Khakimova M., English A. M., Nguyen D. // PNAS. 2018. V. 115. № 39. P. 9797–9802.
- Heindorf M., Kadari M., Heider C., Skiebe E., Wilharm G. // PloS One. 2014. V. 9. № 7. P. e101033.
- Retsema J., Girard A., Schelkly W., Manousos M., Anderson M., Bright G. et al. // Antimicrob. Agents Сhemother. 1987. V. 31. № 12. P. 1939–1947.
- Mirzaei R., Mesdaghinia A., Hoseini S. S., Yunesian M. // Chemosphere. 2019. V. 221. P. 55–66.
- Ramanathan S., Arunachalam K., Chandran S., Selvaraj R., Shunmugiah K. P., Arumugam V. R. // J. Аppl. Microbiol. 2018. V. 125. № 1. P. 56–71. https://doi.org/10.1111/jam.13741.
- Zhang Y.N., Duan K. M. // Sci. China C Life Sci. 2009. V. 52. № 6. P. 501–505.
- Daschner F.D., Frank U. // Infection. 1989. V. 17. № 4. P. 272–274.
- Gnann Jr J. W., Goetter W. E., Elliott A. M., Cobbs C. G. // Antimicrob. Agents Chemother // 1982. V. 22. № 1. P. 1–9.
- El-Barbary M.I., Hal A. M. // J. Aquac. Res. Development. 2017. V. 8. № 7. P. 1–7. https://doi.org/10.4172/2155-9546.1000499
- Konikkat S., Scribner M. R., Eutsey R., Hiller N. L., Cooper V. S., McManus J. // PLoS genetics. 2021. V. 17. № 7: e1009634. https://doi.org/10.1371/journal.pgen.1009634
- Elbehiry A., Marzouk E., Aldubaib M., Moussa I., Abalkhail A., Ibrahem M. et al. // AMB Express. 2022. V. 12. № 1. P. 53. https://doi.org/10.1186/s13568-022-01390-1
- Plaggenborg R., Overhage J., Loos A., Archer J. A. C., Lessard P., Sinskey A. J. et al. // Appl. Microbiol. Biotechnol. 2006. V. 72. № 4. P. 745–755.
- Stancu M. M. // J. Environ. Sci. (Shina) 2014. V. 26. № 10. P. 2065–2075. https://doi.org/10.1016/j.jes.2014.08.006
- Yamshchikov A.V., Schuetz A., Lyon G. M. // Lancet Infecti. Dis. 2010. V. 10. № 5. P. 350–359.
- McNeil M.M., Brown J. M. // Eur. J. Epidemiol. 1992. V. 8. № 3. P. 437–443.
- Asoh N., Watanabe H., Fines-Guyon M., Watanabe K., Oishi K., Kositsakulchai W. et al. // J. Clin. Microbiol. 2003. V. 41. № 6. P. 2337–2340.
- Vaubourgeix J., Lin G., Dhar N., Chenouard N., Jiang X., Botella H. et al. // Cell Host & Microbe. 2015. V. 17. № 2. P. 178–190.
- Nyström T. // EMBO J. 2005. V. 24. № 7. P. 1311–1317.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 







