Reaction Ways of Lignin Monomer Conversion in Propanol-2

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Lignin, a large-scale waste from the processing of lignocellulose biomass, is a promising raw material to obtain products with high added value. The processes of lignin depolymerization lead to the formation of oxygen-containing compounds, a.i. phenol derivatives. Since the depolymerization of lignin involves many reactions, including the conversion of monomers, the purpose of this work is to study the ways of conversion of phenol, anisole, guaiacol, syringol, eugenol, hydroquinone, and p-ethylphenol both as individual components and in a mixture during its catalytic processing. The experiments were carried out in the medium of propanol-2 in the presence of Ni–Ru/SiO2@HPS catalyst varying the process conditions. The composition of the products of conversion lignin monomers was studied. The main ways of the transformation of monophenols were found to be hydrogenation of the aromatic ring, deoxygenation and hydrogenation of the resulting aromatic hydrocarbons. The rate of component consumption during the conversion of the mixture was found to be lower than that for the individual substrates. A study of the process temperature and the partial pressure of hydrogen on the conversion of a mixture of substrates was carried out. Aromatic hydrocarbons were chosen as target products in this work. The optimal conditions for the conversion of a mixture of substrates in terms of process rate and selectivity to aromatic hydrocarbons were estimated to be a temperature of 280°C, a partial pressure of hydrogen 3.0 MPa.

Texto integral

Acesso é fechado

Sobre autores

A. Stepacheva

Tver State Technical University

Autor responsável pela correspondência
Email: a.a.stepacheva@mail.ru
Rússia, Tver

E. Tereshina

Tver State Technical University

Email: a.a.stepacheva@mail.ru
Rússia, Tver

A. Tarasova

Tver State Technical University

Email: a.a.stepacheva@mail.ru
Rússia, Tver

M. Akinchits

Tver State Technical University

Email: a.a.stepacheva@mail.ru
Rússia, Tver

E. Ershova

Tver State Technical University

Email: a.a.stepacheva@mail.ru
Rússia, Tver

S. Emelyanova

Tver State Technical University

Email: a.a.stepacheva@mail.ru
Rússia, Tver

V. Matveeva

Tver State Technical University

Email: a.a.stepacheva@mail.ru
Rússia, Tver

M. Sulman

Tver State Technical University

Email: a.a.stepacheva@mail.ru
Rússia, Tver

Bibliografia

  1. Yan P., Wang H., Liao Y., Wang C. // Renew. Sustain. Energy Rev. 2023. V. 178. P. Art. 113219.
  2. Jing Y., Guo Y., Xia Q., Liu X., Wang Y. // Chem. 2019. V. 5. № 10. P. 2520.
  3. Stocker M. // Angew. Chem. Int. Ed. 2008. V. 47. № 48. P. 9200.
  4. Sun Z., Bottari G., Afanasenko A., Stuart M.C.A., Deuss P.J., Fridrich B., Barta K. // Nature Catal. 2018. V. 1. P. 82.
  5. Передерий С. // ЛесПромИнформ. 2021. Т. 157. № 3. С. 108.
  6. Симонова В.В., Шендрик Т.Г., Кузнецов Б.Н. // Журнал Сибирского Федерального Университета. Химия. 2010. Т. 4. № 3. С. 340.
  7. Gillet S., Aguedo M., Petitjean L., Morais A.R.C., da Costa Lopes A.M., Lukasik R.M., Anastas P.T. // Green Chem. 2017. V. 19. P. 4200.
  8. Размер рынка лигнина, доля. Прогнозный отчет, 2024-2032. https://www.gminsights.com/ru/industry-analysis/lignin-market
  9. Jing Y., Dong L., Guo Y., Liu X., Wang Y. // ChemSusChem. 2019. V. 13. № 17. P. 4181.
  10. Schutyser W., Renders T., Van den Bosch S., Koelewijin S.F., Beckman G.T., Sels B.F. // Chem. Soc. Rev. 2018. V. 47. P. 852.
  11. Карманов А.П., Монаков Ю.Б. // Успехи химии. 2003. Т. 72. № 8. С. 797.
  12. Ninomiya K., Ochiai K., Eguchi M., Kuroda K., Tsuge Y., Ogino C., Taima T., Takahashi K. // Ind. Crops Prod. 2018. V. 111. P. 457.
  13. Wan Z., Zhang H., Niu M., Guo Y., Li H. // Int. J. Biol. Macromol. 2024. V. 272. Part 1. Art. 132922.
  14. Mukesh C., Huang G., Qin H., Liu Y., Ji X. // Biomass & Bioenergy. 2024. V. 188. Art. 107305.
  15. Lian P., Liu S., Ma Z., Wang X., Han Y. // Ind. Crops Prod. 2024. V. 212. Art. 118376.
  16. Кузнецов Б.Н., Чесноков Н.В. // Химия в интересах устойчивого развития. 2018. Т. 26. С. 305.
  17. Bhatia S.K., Gurav R., Choi T.R., Han Y.H., Park Y.L., Park J.Y., Jung H.R., Yang S.Y., Song H.S., Kim S.H., Choi K.Y., Yang U.H. // Biores. Technol. 2019. V. 289. Art. 121704.
  18. Hou S., Shen B., Zhang D., Li R., Xu X., Wang K., Lai C., Yong Q. // Biores. Technol. 2022. V. 362. P. 127825.
  19. Knezevic A., Milovanovic I., Stajic M., Loncar N., Brceski I., Vukojevic J., Cilerdzic J. // Biores. Technol. 2013. V. 138. P. 117.
  20. Liu E., Segato F., Prade R.A., Wilkins M.R. // Biores. Technol. 2021. V. 338. Art. 125564.
  21. Долгоносов Б.М., Губернаторова Т.Н. Механизмы и кинетика деструкции органического вещества в водной среде. Москва: URSS. 2011. 208 с.
  22. Феофилова Е.П., Мысякина И.С. // Прикладная биохимия и микробиология. 2016. Т. 52. № 6. С. 559.
  23. Ильясов С.Г., Черкашин В.А., Сакович Г.В. // Химия растительного сырья. 2013. Т. 4. С. 21.
  24. Арапова О.В., Чистяков А.В., Цодиков М.В., Моисеев И.И. // Нефтехимия. 2020. Т. 60. № 3. С. 251.
  25. Куликова М.В., Крылова А.Ю., Крысанова К.О., Куликов А.Б., Максимов А.Л. // Наногетерогенный катализ. 2023. Т. 8. № 1. С. 3.
  26. Perez E., Abad-Fernandez N., Lourencon T., Balakshin M., Sixta H., Cocero M.J. // Biomass & Bioenergy. 2022. V. 163. Art. 106536.
  27. Patil V., Adhikari S., Cross P., Jahromi H. // Renew. Sustain. Energy Rev. 2020. V. 133. Art. 110359.
  28. Akiya N., Savage P.E. // Chem. Rev. 2002. V. 102. № 8. P. 2725.
  29. Hu J., Zhang S., Xiao R., Jiang X., Wang Y., Sun Y., Lu P. // Biores. Technol. 2019. V. 279. P. 228.
  30. Kong X., Liu C., Xu W., Han Y., Fan Y., Lei M., Li M., Xiao R. // Fuel Proces. Technol. 2021. V. 218. Art. 106869.
  31. Shen D., Liu N., Dong C., Xiao R., Gu S. // Chem. Eng. J. 2015. V. 270. P. 641.
  32. Kim J.Y., Oh S., Hwang H., Cho T.S., Choi I.G., Choi J.W. // Chemosphere. 2013. V. 93. № 9. P. 1755.
  33. Nielsen J.B., Jensen A., Madsen L.R., Larsen F.H., Felby C., Jensen A.D. // Energy & Fuels. 2017. V. 31. № 7. P. 7223.
  34. Huang X., Koranyi T.I., Boot M.D., Hensen E.J.M. // Green Chem. 2015. V. 17. P. 7359.
  35. Phongpreecha T., Christy K.F., Singh S.K., Hao P., Hodge D.B. // Biores. Technol. 2020. V. 316. Art. 123907.
  36. Jiang B., Hu J., Qiao Y., Jiang X., Lu P. // Energy & Fuels. 2019. V. 33. P. 8786.
  37. Sang Y., Wu Q., Liu Q., Bai Y., Chen H., Li Y. // Energy & Fuels. 2021. V. 35. № 1. P. 519.
  38. Yang X., Feng M., Choi J.S., Meyer H.M., Yang B. // Fuel. 2019. V. 244. P. 528.
  39. Shu R., Xu Y., Ma L., Zhang Q., Wang C., Chen Y. // Chem. Eng. J. 2018. V. 338. P. 457.
  40. Kristianto I., Limarta S.O., Lee H., Ha J.M., Suh D.J., Jae J. // Biores. Technol. 2017. V. 234. P. 424.
  41. Huang S., Mahmood N., Zhang Y., Tymchyshyn M., Yuan Z., Xu C.C. // Fuel. 2017. V. 209. P. 579.
  42. Li L., Kong J., Zhang H., Liu S., Zheng Q., Zhang Y., Ma H., He H., Long J., Li X. // Appl. Catal. B: Environ. 2020. V. 279. № 15. Art. 119343.
  43. Deng W., Zhang H., Wu X., Li R., Zhang Q., Wang Y. // Green Chem. 2015. V. 17. P. 5009.
  44. Tarabanko V.E., Kaygorodov K.L., Kazachenko A.S., Smirnova M.A., Chelbina Y.V., Kosivtsov Y., Golubkov V.A. // Catalysts. 2023. V. 13. № 12. P. 1490.
  45. Stepacheva A.A., Manaenkov O.V., Markova M.E., Sidorov A.I., Bykov A.V., Sulman M.G., Kiwi-Minsker L. // Catalysts. 2023. V. 13. № 5. P. 856.
  46. Chen H.-Y.T., Pacchioni G. // ChemCatChem. 2016. V. 8. P. 2492.
  47. Kirkwood K., Jackson S.D. // Top. Catal. 2021. V. 64. P. 934.
  48. Peters J.E., Carpenter J.R., Dayton D.C. // Energy & Fuels. 2015. V. 2. P. 909.
  49. Venkatesan K., Krishna J.V.J., Anjana S., Selvam P., Vinu R. // Catal. Commun. 2021. V. 148. Art. 106164.
  50. Li X., Liu J., Zhang J., Liu B., Ma W., Wang C., Chen G. // Cellulose. 2019. V. 26. P. 8301.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Kinetic curves of substrate consumption and product accumulation during conversion of phenol (a), anisole (b), p-ethylphenol (c) and hydroquinone (d) in the presence of Ni-Ru/SiO2@HPS catalyst. Process conditions: temperature - 280°C, substrate to catalyst ratio - 10 mol substrate/g metal, hydrogen partial pressure - 3.0 MPa

Baixar (305KB)
3. Fig. 2. Kinetic curves of substrate consumption and product accumulation during the conversion of guaiacol (a), syringol (b) and eugenol (c) in the presence of Ni-Ru/SiO2@HPS catalyst. Process conditions: temperature - 280°C, substrate to catalyst ratio - 10 mol substrate/g metal, hydrogen partial pressure - 3.0 MPa

Baixar (312KB)
4. Scheme 1. Conversion pathways of lignin depolymerisation monomers: phenol (a), anisole (b), p-ethylphenol (c) and hydroquinone (d)

Baixar (331KB)
5. Scheme 2. Conversion pathways of lignin depolymerisation monomers: guaiacol (a), syringol (b) and eugenol (c)

Baixar (363KB)
6. Fig. 3. Consumption curves of lignin depolymerisation product mixture over time in the presence of Ni-Ru/SiO2@HPS catalyst. Process conditions: temperature - 280°C, substrate to catalyst ratio - 10 mol substrate/g metal, hydrogen partial pressure - 3.0 MPa

Baixar (98KB)