INITIAL PROBLEM FOR A THIRD ORDER NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS OF CONVOLUTION TYPE
- Autores: Askhabov S.N.1,2,3
- 
							Afiliações: 
							- Kadyrov Chechen State University
- Chechen State Pedagogical University
- Moscow Institute of Physics and Technology
 
- Edição: Volume 60, Nº 4 (2024)
- Páginas: 521-532
- Seção: Articles
- URL: https://rjeid.com/0374-0641/article/view/649537
- DOI: https://doi.org/10.31857/S0374064124040075
- EDN: https://elibrary.ru/PAYTDQ
- ID: 649537
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The article obtains two-sided a priori estimates for the solution of a homogeneous third-order Volterra integro-differential equation with power-law nonlinearity and a difference kernel. It is shown that the lower a priori estimate, which plays the role of a weight function when constructing a metric in the cone of the space of continuous functions, is unimprovable. Using these estimates, using the method of weight metrics (analogous to A. Bielecki’s method), a global theorem on the existence, uniqueness and method of finding a nontrivial solution to the initial problem for the specified integro-differential equation in the class of non-negative continuous functions on the positive half-axis is proved. It is shown that the solution can be found by the method of successive approximations and an estimate of the rate of their convergence to the exact solution is obtained. Examples are given to illustrate the results obtained.
			                Palavras-chave
Sobre autores
S. Askhabov
Kadyrov Chechen State University; Chechen State Pedagogical University; Moscow Institute of Physics and Technology
														Email: askhabov@yandex.ru
				                					                																			                												                								Grozny, Russia; Grozny, Russia; Dolgoprudny, Russia						
Bibliografia
- Okrasinski, W. Nonlinear Volterra equations and physical applications / W. Okrasinski // Extracta Math. — 1989. — V. 4, № 2. — P. 51–74.
- Askhabov S.N. Nonlinear convolution type equations / S.N. Askhabov, M.A. Betilgiriev // Semin. Anal., Oper. Equat. Numer. Anal. 1989/90. — Berlin : Karl-Weierstrass-Institut fu¨r Mathematik, 1990. — P. 1–30.
- Brunner, H. Volterra integral equations: an introduction to the theory and applications / H. Brunner. — Cambridge : Cambridge Univ. Press, 2017. — 402 p.
- Асхабов, С.Н. Интегро-дифференциальное уравнение типа свертки со степенной нелинейностью и неоднородностью в линейной части / С.Н. Асхабов // Дифференц. уравнения. — 2020. — Т. 56, № 6. — С. 786–795.
- Askhabov, S.N. On a second-order integro-differential equation with difference kernels and power nonlinearity / S.N. Askhabov // Bulletin of the Karaganda University. Math. Series. — 2022. — № 2 (106). — P. 38–48.
- Эдвардс, Р. Функциональный анализ: теория и приложения / Р. Эдвардс ; пер. с англ. Г.Х. Бермана, И.Б. Раскиной ; под ред. В.Я. Лина. — М. : Мир, 1969. — 1071 с.
- Okrasinski, W., Nonlinear Volterra equations and physical applications, Extracta Math., 1989, vol. 4, no. 2, pp. 51– 74.
- Askhabov, S.N. and Betilgiriev, M.A., Nonlinear convolution type equations, Semin. Anal., Oper. Equat. Numer. Anal., 1989/90, Berlin: Karl–Weierstrass–Institut fu¨r Mathematik, 1990, pp. 1–30.
- Brunner, H., Volterra Integral Equations: an Introduction to the Theory and Applications, Cambridge: Cambridge University Press, 2017.
- Askhabov, S.N., Integro-differential equation of the convolution type with a power nonlinearity and an inhomogeneity in the linear part, Differ. Equat., 2020, vol. 56, no. 6, pp. 775–784.
- Askhabov, S.N., On a second-order integro-differential equation with difference kernels and power nonlinearity, Bulletin of the Karaganda University. Math. Series, 2022, no. 2 (106), pp. 38–48.
- Edwards, R.E., Functional Analysis: Theory and Applications, New York: Holt, Rinehart, and Winston, 1965.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
