Hopf Bifurcation in a Predator–Prey System with Infection
- Авторлар: Krishchenko A.P.1,2, Podderegin O.A.1
- 
							Мекемелер: 
							- Bauman Moscow State Technical University, Moscow, 105005, Russia
- Federal Research Center “Computer Science and Control,” Russian Academy of Sciences, Moscow, 119333, Russia
 
- Шығарылым: Том 59, № 11 (2023)
- Беттер: 1566-1570
- Бөлім: Articles
- URL: https://rjeid.com/0374-0641/article/view/649457
- DOI: https://doi.org/10.31857/S0374064123110122
- EDN: https://elibrary.ru/PEXCDU
- ID: 649457
Дәйексөз келтіру
Аннотация
We study a model of a predator–prey system with possible infection of prey in the form of a three-dimensional system of ordinary differential equations. Using the localization method of compact invariant sets, the existence of an attractor is proved and a compact positively invariant set is found that estimates its position. The conditions for the extinction of populations and the existence of equilibria are found. A numerical method for finding a Hopf bifurcation of the inner equilibrium is proposed and an example of an arising stable limit cycle is given.
Авторлар туралы
A. Krishchenko
Bauman Moscow State Technical University, Moscow, 105005, Russia; Federal Research Center “Computer Science and Control,” Russian Academy of Sciences, Moscow, 119333, Russia
														Email: apkri@bmstu.ru
				                					                																			                												                								Москва Россия						
O. Podderegin
Bauman Moscow State Technical University, Moscow, 105005, Russia
							Хат алмасуға жауапты Автор.
							Email: podderegino@gmail.com
				                					                																			                												                								Москва Россия						
Әдебиет тізімі
- Bate A.M., Hilkerr F.M. Complex dynamics in an eco-epidemiological model // Bull. Math. Biol. 2013. V. 75. P. 2059-2078.
- Крищенко А.П. Локализация инвариантных компактов динамических систем // Дифференц. уравнения. 2005. Т. 41. № 12. С. 1597-1604.
- Арнольд В.И. Обыкновенные дифференциальные уравнения. М., 2012.
Қосымша файлдар
 
				
			 
						 
					 
						 
						 
						

 
  
  
  Мақаланы E-mail арқылы жіберу
			Мақаланы E-mail арқылы жіберу 
 Ашық рұқсат
		                                Ашық рұқсат Рұқсат берілді
						Рұқсат берілді Рұқсат ақылы немесе тек жазылушылар үшін
		                                							Рұқсат ақылы немесе тек жазылушылар үшін
		                                					