ON THE EXPANSION OF THE STATE SPACE PARTITIONS SET FOR A STABLE SWITCHED AFFINE SYSTEM
- Autores: Fursov A.S1,2,3, Krylov P.A2
- 
							Afiliações: 
							- Department of Mathematics, School of Science
- Lomonosov Moscow State University
- Kharkevich Institute for Information Transmission Problems of RAS
 
- Edição: Volume 60, Nº 11 (2024)
- Páginas: 1541-1552
- Seção: CONTROL THEORY
- URL: https://rjeid.com/0374-0641/article/view/649589
- DOI: https://doi.org/10.31857/S0374064124110095
- EDN: https://elibrary.ru/JDRZGZ
- ID: 649589
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
For a switched affine system closed by stabilizing static feedback, a method is presented for constructing a parametric family of partitions of the state space, relative to which this closed system remains stable.
			                Palavras-chave
Sobre autores
A. Fursov
Department of Mathematics, School of Science; Lomonosov Moscow State University; Kharkevich Institute for Information Transmission Problems of RAS
														Email: fursov@cs.msu.ru
				                					                																			                												                								Ханчжоу, Китай; Москва						
P. Krylov
Lomonosov Moscow State University
														Email: pavel@leftsystem.ru
				                					                																			                												                								Москва						
Bibliografia
- Fursov, A.S. and Krylov, P.A., On the stability of a switched affine system for a class of switching signals, Differ. Equat., 2023, vol. 59, no. 4, pp. 563–571.
- Fursov, A.S. and Krylov, P.A., On the construction of the graph of discrete states of s switched affine system, Differ. Equat., 2023, vol. 59, no. 11, pp. 1547–1556.
- Krein, M. On extreme points of regular convex sets / M. Krein, D. Milman // Studia Mathematica. — 1940. — № 9. — P. 133-138.
- Chernikov, S.N., Lineinye neravenstva (Linear Inequalities), Moscow: Nauka, 1968.
- Filippov, A.F. Differentsial’nye uravneniya s razryvnoi pravoi chast’yu (Differential Equations with a Discontinuous Right Side), Moscow: Nauka, 1985.
- Il’in, V.A. and Kim, G.D., Lineinaya algebra i analiticheskaya geometriya (Linear Algebra and Analytic Geometry), Moscow: MSU Press, 2002.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
