Линейные рекуррентные уравнения в пространстве выпуклых компактов и диаметры их решений
- Авторы: Войделевич А.С1
- 
							Учреждения: 
							- Институт математики НАН Беларуси
 
- Выпуск: Том 59, № 8 (2023)
- Страницы: 1084-1088
- Раздел: Статьи
- URL: https://rjeid.com/0374-0641/article/view/649489
- DOI: https://doi.org/10.31857/S0374064123080071
- EDN: https://elibrary.ru/IOVIRW
- ID: 649489
Цитировать
Полный текст
 Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Доступ платный или только для подписчиков
		                                							Доступ платный или только для подписчиков
		                                					Аннотация
В пространстве выпуклых компактов с операцией сложения по Минковскому и операцией умножения матрицы на множество рассмотрены линейные рекуррентные уравнения первого порядка. Дано полное описание таких уравнений, все решения которых имеют постоянный диаметр. Для уравнений специального вида вычислены показатели Ляпунова последовательностей диаметров их решений.
Об авторах
А. С Войделевич
Институт математики НАН Беларуси
							Автор, ответственный за переписку.
							Email: aliaksei.vaidzelevich@gmail.com
				                					                																			                												                								Минск, Беларусь						
Список литературы
- Hukuhara M. Integration des applications measurables dont la valeur est un compact convexe // Funk. Ekv. 1967. V. 10. P. 205-223.
- Lakshmikantham V., Gnana Bhaskar T., Vasundhara Devi J. Theory of Set Differential Equations in Metric Spaces. London, 2006.
- Очеретнюк Е.В., Слынько В.И. Качественный анализ решений нелинейных дифференциальных уравнений с производной Хукухары в пространстве $\mathrm{conv}\mathbb{R}^2$ // Дифференц. уравнения. 2015. Т. 51. № 8. С. 1004-1018.
- Атамась И.В., Слынько В.И. Формула Лиувилля-Остроградского для некоторых классов дифференциальных уравнений с производной Хукухары // Дифференц. уравнения. 2019. Т. 55. № 11. С. 1452-1464.
- Войделевич А.С. Стационарные линейные дифференциальные уравнения с производной Хукухары, сохраняющие многогранники // Дифференц. уравнения. 2020. Т. 56. № 12. С. 1695-1698.
- Войделевич А.С. Показатели Ляпунова радиусов вписанных и описанных сфер решений стационарных линейных дифференциальных уравнений с производной Хукухары // Дифференц. уравнения. 2021. Т. 57. № 4. С. 572-576.
- Войделевич А.С. Линейные дифференциальные уравнения с производной Хукухары, сохраняющие свойство постоянства ширины // Дифференц. уравнения. 2022. T. 58. № 1. С. 17-22.
- Колмогоров А.Н., Фомин С.В. Элементы теории функций и функционального анализа. М., 2009.
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									

 
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail 

