Coulomb correlations and electronic structure of CuCo2S4: a DFT + DMFT study
- Authors: Skornyakov S.L1,2, Trifonov I.O1,2, Anisimov V.I1,2
- 
							Affiliations: 
							- M. N. Miheev Institute of Metal Physics, Russian Academy of Sciences
- Ural Federal University
 
- Issue: Vol 117, No 7-8 (4) (2023)
- Pages: 596-597
- Section: Articles
- URL: https://rjeid.com/0370-274X/article/view/664137
- DOI: https://doi.org/10.31857/S1234567823080050
- EDN: https://elibrary.ru/WCSELB
- ID: 664137
Cite item
Abstract
By employing a combined method of density functional theory and dynamical mean-field theory (DFT + DMFT) we study the spectral properties and local moment formation in the normal state of a Co-based superconductor CuCo2S4. The obtained quasiparticle mass enhancement 
 is smaller than that in iron-based parent compounds indicating weak correlations in the Co 
 states. We show that the mass enhancement is accompanied by an insignificant renormalization and shift of the bands in the vicinity of the Fermi level. This subtle modification is sufficient to induce a substantial transformation of one of the Fermi surface sheets and occurs due to the presence of shallow Fermi surface pockets in the electronic structure of CuCo2S4. The calculated local and fluctuating moments are smaller than those in iron-based superconductors questioning the importance of spin fluctuations for understanding the pairing mechanism of CuCo2S4.
About the authors
S. L Skornyakov
M. N. Miheev Institute of Metal Physics, Russian Academy of Sciences;Ural Federal University
														Email: letters@kapitza.ras.ru
				                					                																			                												                														
I. O Trifonov
M. N. Miheev Institute of Metal Physics, Russian Academy of Sciences;Ural Federal University
														Email: letters@kapitza.ras.ru
				                					                																			                												                														
V. I Anisimov
M. N. Miheev Institute of Metal Physics, Russian Academy of Sciences;Ural Federal University
							Author for correspondence.
							Email: letters@kapitza.ras.ru
				                					                																			                												                														
References
- K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R.A. Dilanian, and T. Sasaki, Nature 422, 53 (2003).
- H. Sakurai, Y. Ihara, and K. Takada, Physica C 514, 378 (2015).
- H. Mizoguchi, T. Kuroda, T. Kamiya, and H. Hosono, Phys. Rev. Lett. 106, 237001 (2011).
- B.K. Rai, I.W.H. Oswald, J.K. Wang, G.T. McCandless, J.Y. Chan, and E. Morosan, Chem. Mater. 27, 2488 (2015).
- Z. He, R. Huang, K. Zhou, Y. Liu, S. Guo, Y. Song, Z. Guo, S. Hu, L. He, Q. Huang, L. Li, J. Zhang, S. Wang, J. Guo, X. Xing, and J. Chen, Inorg. Chem. 60, 6157 (2021).
- J. L. Sarrao, L.A. Morales, J.D. Thompson, B. L. Scott, G.R. Stewart, F. Wastin, J. Rebizant, P. Boulet, E. Colineau, and G.H. Lander, Nature 420, 297 (2002).
- N. J. Curro, T. Caldwell, E.D. Bauer, L.A. Morales, M. J. Graf, Y. Bang, A.V. Balatsky, J.D. Thompson, and J. L. Sarrao, Nature 434, 622 (2005).
- K. Miyatani, T. Tanaka, S. Sakita, M. Ishikawa, and N. Shirakawa, Jpn. J. Appl. Phys. 32, Suppl. 32-3, 448 (1993).
- Y. Furukawa, S. Wada, K. Miyatani, T. Tanaka, M. Fukugauchi, and M. Ishikawa, Phys. Rev. B 51, 6159 (1995).
- Y.-Y. Jin, S.-H. Sun, Y.-W. Cui, Q.-Q. Zhu, L.-W. Ji, Z. Ren, and G.-H. Cao, Phys. Rev. Mater. 5, 074804 (2021).
- H. Sugita, S. Wada, K. Miyatani, T. Tanaka, and M. Ishikawa, Physica B 284, 473 (2000).
- S. Wada, H. Sugita, K. Miyatani, T. Tanaka, and T. Nishikawa, J. Phys.: Condens. Matter 14, 219 (2002).
- G. Baskaran, Phys. Rev. Lett. 91, 097003 (2003).
- T. Fujimoto, G.-Q. Zheng, Y. Kitaoka, R. L. Meng, J. Cmaidalka, and C.W. Chu, Phys. Rev. Lett. 92, 047004 (2004).
- Q.-H. Wang, D.-H. Lee, and P.A. Lee, Phys. Rev. B 69, 092504 (2004).
- J. Hirsch, M. Maple, and F. Marsiglio, Physica C 514, 1 (2015).
- Z. Yue, Z. Hou, F. Yun, P. Liu, G. Yang, A. Bake, W. Zhao, D. Cortie, C. Shu, S. Hu, J. Cheng, and X. Wang, J. Mater. Chem. C 9, 8874 (2021).
- L. Wu, L. Sun, X. Li, Q. Zhang, Y. Zhang, J. Gu, K. Wang, and Y. Zhang, Small 16, 2001468 (2020).
- K.Miyatani, T. Tanaka, and M. Ishikawa, J. Appl. Phys. 83, 6792 (1998).
- A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).
- V. I. Anisimov, A. I. Poteryaev, M.A. Korotin, A.O. Anokhin, and G. Kotliar, J. Phys. Condens. Matter 9, 7359 (1997).
- Z.P. Yin, K. Haule, and G. Kotliar, Nat. Mater. 10, 932 (2011).
- I.A. Nekrasov, N. S. Pavlov, and M.V. Sadovskii, JETP Letters 102, 30 (2015).
- S. L. Skornyakov and I. Leonov, Phys. Rev. B 100, 235123 (2019).
- S. L. Skornyakov, V. I. Anisimov, and I. Leonov, Phys. Rev. B 103, 155115 (2021).
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					