Effect of Disorder on Magnetotransport in Semiconductor Artificial Graphene
- Autores: Tkachenko O.A.1, Tkachenko V.A.1,2, Baksheev D.G.2, Sushkov O.P.3
- 
							Afiliações: 
							- Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences
- Novosibirsk State University
- School of Physics, University of New South Wales
 
- Edição: Volume 117, Nº 3-4 (2) (2023)
- Páginas: 228-234
- Seção: Articles
- URL: https://rjeid.com/0370-274X/article/view/663514
- DOI: https://doi.org/10.31857/S1234567823030084
- EDN: https://elibrary.ru/OXGCHZ
- ID: 663514
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Magnetotransport in mesoscopic samples with semiconductor artificial graphene has been simulated within the Landauer–Büttiker formalism. Model four-terminal systems in a high-mobility two-dimensional electron gas have a square shape with a side of 3–5 μm, which is filled with a short-period (120 nm) weakly disordered triangular lattice of antidots at the modulation amplitude of the electrostatic potential comparable with the Fermi energy. It has been found that the Hall resistance 
 in the magnetic field range of B = 10–50 mT has a hole plateau 
, where R0 = h/2e2 = 12.9 kΩ, at carrier densities in the lattice below the Dirac point n < n1D and an electron plateau 
 at n > n1D. Enhanced disorder destroys the plateaus, but a carrier type (electrons or holes) holds. Long-range disorder at low magnetic fields suppresses quantized resistance plateaus much more efficiently than short-range disorder.
Sobre autores
O. Tkachenko
Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences
														Email: otkach@isp.nsc.ru
				                					                																			                												                								630090, Novosibirsk, Russia						
V. Tkachenko
Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences; Novosibirsk State University
														Email: otkach@isp.nsc.ru
				                					                																			                												                								630090, Novosibirsk, Russia; 630090, Novosibirsk, Russia						
D. Baksheev
Novosibirsk State University
														Email: otkach@isp.nsc.ru
				                					                																			                												                								630090, Novosibirsk, Russia						
O. Sushkov
School of Physics, University of New South Wales
							Autor responsável pela correspondência
							Email: otkach@isp.nsc.ru
				                					                																			                												                								2052, Sydney, Australia						
Bibliografia
- D.Q. Wang, D. Reuter, A.D. Wieck, A.R. Hamilton, and O. Klochan, Appl. Phys. Lett. 117, 032102 (2020).
- O.A. Tkachenko, V.A. Tkachenko, I. S. Terekhov, and O.P. Sushkov, 2D Mater. 2, 014010 (2015).
- Y. Hatsugai, T. Fukui, and H. Aoki, Phys. Rev. B 74, 205414 (2006).
- Y. Zheng and T. Ando, Phys. Rev. B 65, 245420 (2002).
- O.A. Tkachenko and V.A. Tkachenko, JETP Lett. 99, 204 (2014).
- O.A. Tkachenko, V.A. Tkachenko, D.G. Baksheev, and O.P. Sushkov, JETP Lett. 116, 616 (2022).
- L. N'advorn'ık, M. Orlita, N.A. Goncharuk, L. Smr˘cka, V. Nov'ak, V. Jurka, K. Hru˘ska, Z. V'yborn'y, Z.R. Wasilewski, M. Potemski, and K. V'yborn'y, New J. Phys. 14, 053002 (2012).
- C.W. Groth, M. Wimmer, A.R. Akhmerov, and X. Waintal, New J. Phys. 16, 063065 (2014).
- M. B¨uttiker, Phys. Rev. Lett. 57, 1761 (1986).
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
