Generation of Quantum Vortices by Waves on the Surface of Superfluid Helium
- Autores: Sultanova M.R.1,2, Remizov I.A.1,2, Mezhov-deglin L.P.1, Levchenko A.A.1,2
- 
							Afiliações: 
							- Osipyan Institute of Solid State Physics, Russian Academy of Sciences
- Landau Institute for Theoretical Physics, Russian Academy of Sciences
 
- Edição: Volume 118, Nº 7-8 (10) (2023)
- Páginas: 596-601
- Seção: Articles
- URL: https://rjeid.com/0370-274X/article/view/661639
- DOI: https://doi.org/10.31857/S1234567823200089
- EDN: https://elibrary.ru/ORIKOR
- ID: 661639
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The formation of quantum vortices by two mutually perpendicular waves excited on the surface of superfluid helium has been observed. The interaction of negative charges injected under the surface of He-II with the vortex flow of the liquid, which is formed by surface waves at frequencies from 20 to 49.9 Hz, in the temperature range of 1.5–2.17 K has been studied experimentally by analyzing the current distribution detected by vertically oriented segments of a receiving collector. The efficient capture of injected charges by quantum vortices has been observed at a temperature of T = 1.5 K, which leads to a significant redistribution of currents between segments of the receiving collector. Charges leave traps on quantum vortices at temperatures near T = 1.7 K. With a further increase in the temperature, injected charges are scattered on vortex flows of the normal component, which are generated by surface waves.
Sobre autores
M. Sultanova
Osipyan Institute of Solid State Physics, Russian Academy of Sciences;Landau Institute for Theoretical Physics, Russian Academy of Sciences
														Email: mabinkaiftt@issp.ac.ru
				                					                																			                												                								142432, Chernogolovka, Moscow region, Russia;142432, Chernogolovka, Moscow region, Russia						
I. Remizov
Osipyan Institute of Solid State Physics, Russian Academy of Sciences;Landau Institute for Theoretical Physics, Russian Academy of Sciences
														Email: mabinkaiftt@issp.ac.ru
				                					                																			                												                								142432, Chernogolovka, Moscow region, Russia;142432, Chernogolovka, Moscow region, Russia						
L. Mezhov-deglin
Osipyan Institute of Solid State Physics, Russian Academy of Sciences
														Email: mabinkaiftt@issp.ac.ru
				                					                																			                												                								142432, Chernogolovka, Moscow region, Russia						
A. Levchenko
Osipyan Institute of Solid State Physics, Russian Academy of Sciences;Landau Institute for Theoretical Physics, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: mabinkaiftt@issp.ac.ru
				                					                																			                												                								142432, Chernogolovka, Moscow region, Russia;142432, Chernogolovka, Moscow region, Russia						
Bibliografia
- W. F. Vinen, Proceedings of the Royal Society A 260, 218 (1961).
- W. F. Vinen and R. J. Donnelly, Phys. Today 60(4), 43 (2007).
- P. M. Walmsley, A. A. Levchenko, and A. I. Golov, J. Low Temp. Phys. 145, 143 (2006).
- S. K. Nemirovskii, Phys. Rev. B 102, 064511 (2020).
- P. M. Walmsley, A. I. Golov, H. E. Hall, A. A. Levchenko, and W. F. Vinenet, Phys. Rev. Lett. 99, 265302 (2007).
- W. F. Vinen, J. Low Temp. Phys. 145, 7 (2006).
- P. Moroshkin, P. Leiderer, K. Kono, S. Inui, and M. Tsubota, Phys. Rev. Lett. 122, 174502 (2019).
- S. V. Filatov, V. M. Parfenyev, S. S. Vergeles, M. Yu. Brazhnikov, A. A. Levchenko, and V. V. Lebedevand, Phys. Rev. Lett. 116, 054501 (2016).
- I. A. Remizov, M. R. Sultanova, A. A. Levchenko, and L. P. Mezhov-Deglin, Fizika Nizkikh Temperatur 47, 409 (2021)
- Low Temperature Physics 47, 378 (2021).
- R. J. Donnelly, Quantized vortices in Helium II, Cambridge University Press, Cambridge (1991), v. 233, p. 690.
- R. J. Donnelly, Phys. Rev. Lett. 14, 39 (1965).
- R. L. Douglass, Phys. Rev. Lett. 13, 791, (1964).
- D. Mateo, J. Eloranta, and G. A. Williams, J. Chem. Phys. 142, 064510 (2015).
- J. W. P. Pratt and J. W. Zimmermann, Phys. Rev. 177, 412 (1969).
- P. M. Walmsley, A. A. Levchenko, S. E. May, and A. I. Golov, J. Low Temp. Phys. 146, 511 (2007).
- R. Donnelly and C. F.Barenghi, J. Phys. Chem. Ref. Data 27(6), 1217 (1998).
- S. V. Filatov and A. A. Levchenko, Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques 14, 751 (2020).
- S. V. Filatov, A. V. Poplevin, A. A. Levchenko, and V. M. Parfenyev, Physica D: Nonlinear Phenomena 434, 133218 (2022).
- L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon press, N.Y. (1989), v. 6.
- V. M. Parfenyev and S. S. Vergeles, Phys. Rev. Fluids 5, 094702 (2020).
- V. B. Shikin and Yu. P. Monarkha, Two-dimensional electron system in helium, Nauka, Fizmatlit, Moscow (1989).
- V. P.Ruban, JETP 133, 779 (2020).
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
