Dynamics of deposition and removal of a fluorocarbon film in the cyclic process of plasma-chemical etching of silicon
- Autores: Morozov O.V.1
-
Afiliações:
- Valiev Institute of Physics and Technology of the Russian Academy of Sciences, Yaroslavl Branch
- Edição: Volume 88, Nº 4 (2024)
- Páginas: 531-537
- Seção: Ion-Surface Interactions
- URL: https://rjeid.com/0367-6765/article/view/654697
- DOI: https://doi.org/10.31857/S0367676524040027
- EDN: https://elibrary.ru/QITUXF
- ID: 654697
Citar
Resumo
In situ measurements of the dynamics of deposition and etching of a fluorocarbon film (FCF) during cyclic plasma-chemical etching of silicon using a laser interferometer have been carried out. Direct measurements of the deposition and etch rates, as well as the etch time of the FCF, open up new possibilities for optimizing the cycle procedure. For example, adjusting the etching time of the FCF improves the selectivity of the etching process.
Texto integral

Sobre autores
O. Morozov
Valiev Institute of Physics and Technology of the Russian Academy of Sciences, Yaroslavl Branch
Autor responsável pela correspondência
Email: moleg1967@yandex.ru
Rússia, Yaroslavl, 150007
Bibliografia
- Wu B., Kumar A., Pamarthy S. // J. Appl. Phys. 2010 V. 108. No. 5. Art. No. 051101.
- Abdolvand R., Ayazi F. // Sens. Actuators. A Phys. 2008 V. 144. No. 1. P. 109.
- Chang B., Leussink P., Jensen F. et al. // Microelectron. Eng. 2018. V. 191. P. 77.
- Lips B. Puers R. // J. Phys. Conf. Ser. 2016. V. 757. Art. No. 012005.
- Gerlt M.S., Läubli N.F., Manser M. et al. // Micromachines. 2021. V. 12. No. 5. P. 542.
- Lin P., Xie X., Wang Y. et al. // Microsyst. Technol. 2019. V. 25. P. 2693.
- Meng L. Yan J. // Appl. Phys. A. 2014. V. 117. P. 1771.
- Meng L. Yan J. // Micromech. Microeng. 2015. V. 25. Art. No. 035024.
- Руденко К.В., Мяконьких А.В., Орликовский А.А. // Микроэлектроника. 2007. Т. 36. № 3. С. 206. Rudenko K.V., Myakon’kikh A.V., Orlikovsky A.A. // Russ. Microelectron. 2007. V. 36. No. 3. P. 179.
- Морозов О.В., Амиров И.И. // Микроэлектроника. 2007. Т. 36. № 5. С. 380. Morozov O.V., Amirov I.I. // Russ. Microelectron. 2007. Т. 36. No. 5. С. 333.
- Lai L., Johnson D., Westerman R. // J. Vac. Sci. Technol. A. 2006. V. 24. P. 1283.
- Saraf I.R., Goeckner M.J., Goodlin B.E. et.al. // J. Vac. Sci. Technol. B. 2013. V. 31. Art. No. 011208.
- Oehrlein G.S., Reimanis I., Lee Y.H. // Thin Solid Films. 1986. V. 143. No. 3. P. 269.
- Амиров И.И., Алов Н.В. // Хим. высок. энергий. 2006. Т. 40. № 4. С. 311. Amirov I.I., Alov N.V. // High Energy Chem. 2006. V. 40. No. 4. P. 267.
- Amirov I.I., Gorlachev E.S., Mazaletskiy L.A. et al. // J. Phys. D. Appl. Phys. 2018. V. 51. No. 11. P. 267.
- Xu T., Tao Z., Li H. et al. // Adv. Mech. Eng. 2017. V. 9. No. 12. P. 1.
Arquivos suplementares
Arquivos suplementares
Ação
1.
JATS XML
2.
Fig. 1. Components of the induction plasma source (1–6), reaction chamber (7–13), and laser interferometer (14–19): 1 – reaction gas input system; 2 – quartz flask; 3 – inductor; 4 – RF generator to the inductor; 5 – metal screen of the inductor electromagnetic field potential; 6 – ring electromagnet; 7 – heated screen in the reaction chamber; 8 – water-cooled electrode; 9 – plate holder; 10 – mechanical clamps of the plate holder to the electrode; 11 – system for maintaining excess He pressure in the gap between 8 and 9; 12 – RF generator to the electrode (Wbias); 13 – pumping system; 14 – He-Ne laser (λ=633 nm); 15 – beam splitter; 16 – reference beam photodetector; 17 – interference filter (λ=633 nm); 18 – measuring beam photodetector; 19 – optical window (fused quartz).
Baixar (167KB)
3.
Fig. 2. Characteristic interferometer signal I(t) obtained for 55 TMDSE cycles (the global minimum and maximum of the I(t) dependence reflect the decrease in the thickness of the SiO2 film during its etching as a whole by Δh=107 nm) (a); the interferometer signal during one TMDSE cycle at different intervals of the general I(t) dependence and the dynamics of switching the flow of SF6 and C4F8 gases (b).
Baixar (191KB)
4.
Fig. 3. Results of calculating the deposition and etching rates in one cycle for three TMDSE processes with the QSF6 parameter equal to: 1 – 12 ncm3/min, 2 – 10 ncm3/min, 3 – 8 ncm3/min.
Baixar (132KB)
5.
Fig. 4. SEM images of grooves after 300 TMDSE cycles (tbias=3 s) with the QSF6 parameter equal to: 10 ncm3/min (groove depth 298 μm) (a), 8 ncm3/min (groove depth 296 μm) (b), 8 ncm3/min (groove depth 227 μm) (c).
Baixar (344KB)
